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Background: Preterm infants are born with an immature immune system, limited passive

immunity, and are at risk of developing bacteremia and sepsis in the postnatal period.

We hypothesized that enteral feeding, with or without added immunoglobulins, improves

the clinical response to systemic infection by coagulase negative staphylococci.

Methods: Using preterm cesarean delivered pigs as models for preterm infants, we

infused live Staphylococcus epidermidis (SE, 5 × 109 colony forming units per kg)

systemically 0–3 days after birth across five different experiments. SE infection responses

were assessed following different gestational age at birth (preterm vs. term), enteral

milk diets (bovine colostrum, infant formula with or without added porcine plasma) and

with/without systemic immunoglobulins. Pigs infected with SE were assessed 12–48 h

for clinical variables, blood bacteriology, chemistry, hematology, and gut dysfunction

(intestinal permeability, necrotizing enterocolitis lesions).

Results: Adverse clinical responses and increased mortality were observed in preterm

vs. term pigs, when infected with SE just after birth. Feeding bovine colostrum just after

birth improved blood SE clearance and clinical status (improved physical activity and

intestinal structure, fewer bone marrow bacteria), relative to pigs fed infant formula. A

few days later, clinical responses to SE bacteremia (hematology, neutrophil phagocytic

capacity, T cell subsets) were less severe, and less affected by different milk diets, with

or without added immunoglobulins.

Conclusion: Prematurity increases the sensitivity of newborn pigs to SE bacteremia,

potentially causing sepsis. Sensitivity to systemic SE infection decreases rapidly in

the days after preterm birth. Both age and diet (parenteral nutrition, colostrum, milk,

formula) may influence gut inflammation, bacterial translocation and systemic immune

development in the days after birth in preterm newborns.
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INTRODUCTION

Preterm infants have an increased risk of infection in the neonatal
period. The risk of late onset sepsis (LOS) is 20–40%, with
increasing risks at lower gestational ages (1, 2). Use of infant
formula, or prolonged use of parenteral nutrition, and associated
use of catheters, increases the risk of LOS (3). Use of milk based
diets shorten the time to full enteral feeding, and thereby removal
of central venous catheters as well as reduces the incidence of
necrotizing enterocolitis (NEC) (4, 5). Severe inflammation of
the gut is associated with sepsis in preterm neonates, but it
is unknown if this effect is due mainly to increased bacterial
translocation, or if local gut inflammatory conditions adversely
affect systemic immunity. The type of nutrition after birth
(parenteral, or enteral feeding with formula, milk or colostrum)
rapidly affects gut maturation in immunocompromised preterm
infants and pigs (6). Whether the first enteral feeding also
influences systemic immunity in such infants is less clear,
although clinical outcomes may be improved after early feeding
with milk or colostrum of either human or animal origin (7–9).

Across the world, some of the most common pathogens
causing LOS in preterm neonates are coagulase negative
staphylococci (CoNS) (2, 10–12). The defense against systemic
CoNS infection is dependent on opsonization of the bacteria
by immunoglobulins and complement factors (13–15).
Immunoglobulin G (IgG) is actively transported across the
placenta, starting in the second trimester, and accelerates toward
term (16). Preterm infants are therefore born with lower levels
of maternally derived IgG (16, 17). As a result, opsonization and
clearance of CoNS is more dependent on complement activation
in these infants (14, 18). However, levels of complement factors
are also lower in preterm infants, as their capacity to synthetize
them is diminished (19). Overall, levels of IgG in preterm
infants have been correlated to the risk of neonatal sepsis, but
providing these infants prophylactic immunoglobulins does not
prevent sepsis (20, 21). A Cochrane review found that infusion
of immunoglobulins led to a slight reduction in nosocomial
infections, but did not affect the incidence of neonatal sepsis
or overall mortality (22). Likewise, providing specific anti-
staphylococcal IgG, did not prevent infection with CoNS (23).

Finally, administration of intravenous IgG during neonatal sepsis
had no effects on clinical outcomes (24).

Oral administration of IgG to preterm infants has
been speculated to prevent NEC as immunoglobulins may
survive passage through the gastrointestinal tract (25). In two
randomized controlled trials, orally administered human IgG
and IgA reduced NEC incidence in preterm infants (26, 27), but a
later Cochrane review concluded that there was no overall effect
of oral IgG on NEC incidence in preterm infants (28). In other
studies, enteral feeding with either porcine or bovine colostrum
to preterm pigs prevented NEC, and improved gut maturation
and parameters of systemic immunity (29–33). Feeding of
porcine plasma (PP) has also been shown to improve survival,
growth and diarrhea resistance in growing pigs (34), probably
mediated by diminished pro-inflammatory and increased
anti-inflammatory responses in both gut and lung derived
immune cells (35–37). Dietary PP supplementation was not

associated with adverse events in healthy or malnourished infants
(38, 39) and oral immunoglobulins improved gut symptoms,
recovery and virus clearance in children with rotavirus diarrhea
(40). Collectively, the above studies suggest that feeding
immunoglobulin rich milk diets improves the response to
bacteremia in immature animals and humans. Regardless, the
mechanisms remain unclear and until now scientific results have
not led to general recommendations to feed immunoglobulin
enriched diets to bacteremia sensitive infants. Thus, it remains
unknown how postnatal age, diet (e.g., mother’s own milk,
formula, donor milk), type of immunoglobulin (IgG, IgA and
their species specificity) affect systemic immune responses.

Bovine colostrum (BC), the first milk after birth in cows, is
rich in immunoglobulins and other immunomodulatory factors
(41), inhibits growth of Staphylococcus epidermidis (SE) in
vitro (42) and prevents septic shock and neuroinflammation
in newborn preterm pigs (within 2 d of birth), relative to
pigs not fed enterally (43). To further validate preterm pigs as
models for preterm infants sensitive to blood stream infections,
we investigated responses to SE infection across five different
experiments with varying postnatal ages and exposures to
immunoglobulin-containing diets. First, we compared the effect
of SE infusion on newborn preterm and term pigs lacking
maternal immunoglobulins and enteral feeding. Then we tested
effects of feeding BC or infant formula (IF) to preterm pigs
infected shortly after birth or 2 days later, with or without
immunization withmaternal plasma. Finally, we tested the effects
of feeding preterm pigs IF, supplemented with porcine plasma,
for 3 days, followed by SE inoculation.

MATERIALS AND METHODS

Animal Experimental Procedures
In five separate experiments, 145 piglets from 10 pregnant
sows [(Landrace x Large White) x Duroc crossbreeds] were
delivered by cesarean section at the 106th day (preterm birth,
∼90% gestation) or 116th (term birth, ∼100% gestation) day
of gestation. Animals were housed in individual, heated (37◦C)
and ventilated incubators with 1–2 l/min oxygen supply. Shortly
after delivery, animals were fitted with orogastric catheters (6
Fr, Portex, Kent, UK) for enteral feeding and vascular catheters
(4 Fr, Portex) into the dorsal aorta via the transected umbilical
cord for arterial access. Both control and infected animals
were euthanized according to predefined humane endpoints.
All animal procedures were approved by the Danish National
Committee on Animal Experimentation.

Across all experiments, animals were stratified by birth weight
and randomly allocated to treatment groups. In Experiment 1,
preterm (n = 23) and term (n = 21) pigs were inoculated with
either SE (SE-PRE, n = 15; SE-TERM, n = 14) or control saline
(CON-PRE, n = 8; CON-TERM, n = 7) within 2 h after birth.
Animals received no enteral nutrition and were followed for 48 h.
In Experiment 2, preterm pigs (n = 15) were inoculated with
SE 2 h after birth and were fed either BC (SE-BC, n = 8) or IF
(SE-IF, n = 7) and followed for 12 h. In Experiment 3, preterm
pigs were fed either BC or IF for further 2 days, and inoculated
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TABLE 1 | Overview of experiments.

Experiment Gestational

age at birth

Saline

controlled

Supplemental

maternal immunity*

Age at SE

infusion

Follow-up time Diet

comparison

Enteral

volumes

1 Term or preterm + - 2 h 48 h - -

2 Preterm - - 2 h 12 h BC vs. IF 40–56 ml/kg/d

3 Preterm + + 48 h 48 h BC vs. IF 40–56 ml/kg/d

4 Preterm - - 48 h 24 h BC vs. IF 40–56 ml/kg/d

5 Preterm - + 72 h 24 h PP vs. IF 24–120 ml/kg/d

*Animals immunized with systemic infusion of maternal plasma. BC, bovine colostrum; IF, infant formula; PP, porcine plasma; SE, Staphylococcus epidermidis.

TABLE 2 | Diet compositions, energy, and macronutrient contents.

Diet Product Amount (g/L) Energy (kJ/L) Protein (g/L) Carbohydrate (g/L) Fat (g/L)

BC 4,416 121 20 54

Bovine colostrum powder* 203

IF 3,990 73 42 56

Lacprodan DI-9224† 70

Pepdite‡ 80

SHS Liquigen MCT‡ 75

PP 3,940 81 35 53

Lacprodan DI-9224† 70

Pepdite‡ 66.5

AP 820 porcine plasma# 13.5

SHS Liquigen MCT‡ 75

*Biofiber-Damino (Gesten, Denmark),
†
Arla Foods Ingredients (Aarhus, Denmark), ‡Nutricia (Allerød, Denmark), #APC Europe (Barcelona, Spain). BC, bovine colostrum; IF, infant formula;

PP, porcine plasma.

with SE (SE-BC, n = 13; SE-IF, n = 13) or control saline (CON-
BC, n = 9; CON-IF, n = 12) and followed for 48 h. Further,
these animals were infused with maternal plasma to confer a
low level of maternally-derived IgG similar to preterm infants.
In Experiment 4, in an attempt to increase the sensitivity to SE,
preterm pigs were fed BC (SE-BC, n = 10) or IF (SE-IF, n =

10) for 2 days, but not infused with maternal plasma before
receiving a systemic SE challenge. In Experiment 5, preterm pigs,
supplemented with maternal plasma, were fed with a PP enriched
IF (SE-PP, n = 11) or a control IF (SE-IF, n = 8) and received a
systemic SE challenge after 3 days. An overview of conditions in
the five experiments is shown in Table 1.

Feeding Regimens and Bacterial
Administration
In Experiment 1, animals received no enteral feed and were kept
on 6 ml/kg/h of total parenteral nutrition. In Experiments 2,
3, and 4, animals were fed 40 ml/kg/d on day 1, increasing to
56 ml/kg/d on day 5 of either BC or IF, with 4–6 ml/kg/h of
supplementary parenteral nutrition. In Experiment 5, animals
were fed 24 ml/kg/d of IF with or without added PP on day
1, increasing to 96–120 ml/kg/d on day 5 with 3 ml/kg/d of
supplementary parenteral nutrition.

The BC powder was produced from first and second
milking of Danish Holstein dairy cattle and gently processed
to preserve bioactivity (Biofiber Damino, Gesten, Denmark).

The IF diet consisted of a nutritionally complete IF powder
(Pepdite, Nutricia, Allerød, Denmark) with added whey and
medium chain triglycerides. In the PP enriched IF diet, a
fraction (8%) of the IF powder was replaced with a gently
processed porcine plasma powder (AP 920 P APC Europe,
Spain). The parenteral formulation used in all experiments
(Kabiven, Fresenius Kabi, Bad Homburg, Germany) was
supplemented with vitamins and minerals (Soluvit, Vitalipid
and Peditrace, all Fresenius Kabi), and modified to meet
macronutrient requirements of newborn pigs (30). Detailed
diet compositions and macronutrient contents are presented
in Table 2.

In Experiments 3 and 5, animals were supplemented with

a vascular infusion of 16 ml/kg body weight maternal plasma

within the first 24 h after birth. This was done to confer some level

of immunoglobulins, mimicking the situation in preterm infants.

Preparation of the SE inoculum was performed, as previously
described (43). Briefly, wildtype SE strain 1,457 (a kind gift
from Dr. Xiaoyang Wang, University of Gothenburg, Sweden)
was incubated for 17 h in tryptic soy broth, enumerated with
spectrophotometry and a working solution containing 1.67
× 109 colony forming units (CFU)/ml in sterile saline was
prepared. Animals received 5.0 × 109 CFU/kg body weight
SE as a continuous arterial infusion over 3min. A similar
volume of sterile saline was administered to control animals in
Experiments 1 and 3.
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Clinical Assessment and Euthanasia
Animals were monitored and clinically assessed (gastrointestinal
symptoms, circulation, respiration, consciousness) at least every
3 h prior to, and continuously after SE administration. Animals
were euthanized if they showed clinical signs of circulatory
and/or respiratory collapse (Pale skin, cold extremities, cyanosis,
lethargy, irregular/shallow breathing and/or bradycardia). Rectal
temperature was measured before and at 6- or 12-h intervals after
SE administration. Motor activity was captured by continuous
infrared video surveillance of each incubator connected to
a motion detection software (PigLWin, Ellegaard Systems,
Faaborg, Denmark).

Sample Collection
Arterial blood was collected at regular intervals after SE
administration for hematology and blood gas analysis. After a
follow up period of 12–48 h, animals were sedated with 0.1 ml/kg
Zoletil mixture, mixed blood was drawn by cardiac puncture
and euthanasia performed with a lethal cardiac injection of
barbiturate. In Experiments 3 and 5, animals were fed a
5/5% w/v lactulose and mannitol watery solution 3 h before
scheduled euthanasia for intestinal permeability measurement.
After euthanasia, the abdominal cavity was opened, and urine
collected by bladder puncture. Urinary levels of lactulose
and mannitol were measured as previously described (30).
In Experiments 3, 4 and 5, the stomach and intestines were
examined, and gastrointestinal pathology graded according to an
established NEC scoring system (30). Specifically, in Experiment
3, the left hind leg was released at the hip joint, and femur
dissected and sterilized in ethanol. Using a sterile scalpel, bone
marrow was dissected at the distal epiphysis and a biopsy was
obtained for bacterial enumeration.

Blood Analyses
Enumeration of SE was determined in blood samples taken 3, 6,
and 12 h after SE inoculation in Experiment 2 and at euthanasia
in Experiments 3 and 4, as previously described elsewhere (43).
Briefly, whole blood was cooled after collection, stepwise diluted
in sterile saline (undilute, 1:10 and 1:100), plated out on agar
plates and incubated for 24 h at 37◦C.Colonies were counted and
identification of bacteria was performed byMatrix Assisted Laser
Desorption/Ionization-Time of Flight Mass Spectrometry. In a
similar manner, bacterial enumeration, and identification in bone
marrow homogenate were performed in Experiment 3.

In Experiments 3, 4, and 5, levels of bovine and porcine
IgG in euthanasia blood plasma samples were measured by
enzyme-linked immunosorbent assay (ELISA) using species
specific antibodies (AAI23AB and AAI41, Bio-Rad, Kidlington,
UK). Blood hematology was performed using the Advia
2120i Clinical Chemistry System (Siemens Healthcare GmbH,
Erlangen, Germany). In plasma samples from euthanasia from
Experiments 1, 3, 4, and 5, we determined levels of soluble
terminal complement complex by ELISA (sC5b-9, OptEIA, BD
Biosciences, Eysins, Switzerland). Additionally, in Experiments 3
and 4, plasma levels of tumor necrosis factor alpha (TNF-α) and
interleukin 6 (IL-6) were determined by ELISA (porcine DuoSet
DY686 and DY690B, R&D systems, Abingdon, UK).

Arterial blood gas was measured in Experiments 1, 2, and 4,
using a GEM Premier 3000 (Instrumentation Laboratory, MA,
USA). Hemostatic function in citrate stabilized whole blood was
tested in Experiment 5 by thromboelastography (TEG) using a
TEG 5000 Hemostasis Analyzer System (Haemonetics, Braintree,
MA, USA).

T cell phenotyping in whole blood at 12, 24, and 48 h
(euthanasia) after SE inoculation was done in Experiment 3 by
flow cytometry. Briefly, whole blood samples were subjected
to red blood cell lysis, fixation and permeabilization before
Fc-receptor blocking using porcine serum. Next, cells were
stained for 30min with CD3-PerCP Cy5.5 (clone BB23-8E6-
8C8, BD biosciences, Eysins, Switzerland), CD4a-FITC (clone
MIL17, Bio-Rad), CD8α-PE (clone MIL12, Bio-Rad) and Foxp3-
APC (clone FJK-16s, ThermoFisher Scientific, Waltham, MA,
USA) or respective isotype controls PerCP Cy5.5 mouse
IgG2a (clone G155-178, Becton Dickinson), FITC mouse IgG2b
(clone MCA691, Bio-Rad), PE mouse IgG2a (clone OX-34,
Bio-Rad) or APC mouse IgG2a (clone eBR2a, ThermoFisher
Scientific). Samples were acquired on a BD Accuri C6 Plus
(BD Biosciences, Eysins, Switzerland) and analyzed using BD
Accuri software. The fractions of total T cells (CD3+), CD4
positive T cells (CD3+CD4+CD8−), CD8 positive T cells
(CD3+CD4−CD8+), double positive T cells (CD3+CD4+CD8+)
and regulatory T cells (CD3+CD4+FOXP3+) were determined.
Due to the limitation on antibodies used, the CD8 positive
T cell population would include cytotoxic T cells as well as
γδ T cells and CD8 positive NK cells. Both these cell types
are estimated to account for 1% of CD8 positive T cells in
pigs (44, 45).

Neutrophil phagocytic function was investigated in
Experiments 3 and 5, using a commercial kit (pHRodo,
ThermoFisher, Roskilde, Denmark), as described elsewhere (46).
Briefly, whole blood was incubated at 37◦C for 30min with
phrodo conjugated E. coli. Afterwards the samples were run
on the above mentioned flow cytometer and the neutrophil
population was identified. The phagocytic rate was defined as the
fraction of neutrophils with internalized bacteria and phagocytic
capacity as the median fluorescent intensity of neutrophils.

Statistics
All statistics were performed in STATA v. 14.2 (StataCorp, Texas,
USA). Continuous data were analyzed by a linear mixed effects
model with litter as a fixed factor. Due to the factorial design
of Experiments 1 and 3, we used a linear multilevel model
to determine interactions between gestational age (Experiment
1) or diet (Experiment 3) and SE inoculation. For significant
results a post hoc group comparison by Tukey’s test, these
results are reported in the text of the results section. If data
were not normally distributed, logarithmic transformation was
performed. Data that did not conform to normal distribution
after transformation was analyzed by Kruskal Wallis’ test.
Categorical data was analyzed by Chi2 test. Overall, p < 0.05
were considered significant and those under 0.1 as tendency to
effect. Unless stated otherwise, data shown in text are presented
as means with corresponding standard errors and p-values.
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RESULTS

Experiment 1
In this experiment, to investigate the influence of gestational age
on the response to SE inoculation, we tested the effects of SE or
saline infusion (SE or CON) shortly after term or preterm birth
(TERM or PRE). Resulting in four groups: SE-TERM, SE-PRE,
CON-TERM, and CON-PRE.

One animal in the CON-TERM group died due to bleeding
from the catheter shortly after SE inoculation and was excluded
from the analysis. In the SE-PRE group, 53% (8/14) of animals
were euthanized ahead of schedule, compared to only 12.5%
(1/8) of CON-PRE pigs (Figure 1A). For the term animals, 14%
(2/14) of SE-TERM were euthanized early (both within 24 h of
SE inoculation) compared with none (0/6) of CON-TERM pigs.
Considering the high clinical affection from the SE infusion,
remaining preterm pigs were euthanized after 24 h.

Motor activity was higher in term animals after 6 h but
decreased by SE in both term and preterm animals at 12 and 18 h

(Figure 1B). Term animals showed increased body temperature
after 2 h and SE led to increased body temperature at 6 and
24 h in both term and preterm animals (Figure 1C). Post hoc

testing showed higher body temperatures in SE-TERM vs. SE-
PRE pigs for all time points after 2 h (post hoc test, all p < 0.05).

Blood pH decreased after SE inoculation with corresponding

increases in lactate levels at 12 h (Figures 1D,E), which was more

pronounced in SE-PRE vs. SE-TERM pigs (post hoc test, p <

0.001). Total leucocyte and neutrophil numbers increased less in
SE-PRE vs. SE-TERM pigs (Table 3). In addition, SE inoculation

reduced the platelet and leucocyte counts after 12 h, the latter

explained mainly by reductions in neutrophil and lymphocyte
numbers. This reduction persisted after 24 h for lymphocytes and

platelets while neutrophil counts then increased, but only in SE-

TERM animals (e.g., significant gestational age× SE interaction,

Table 3). Levels of sC5b-9 in plasma at euthanasia tended to be

lower for SE-TERM vs. CON-TERM animals (15 ± 3 vs. 26 ±

8 ng/mL, p = 0.06), while for surviving preterm animals, there

FIGURE 1 | Preterm birth increases susceptibility to Staphylococcus epidermidis bacteremia. Results of Experiment 1 comparing term (TERM) and preterm (PRE) pigs

infused with Staphylococcus epidermidis (SE) or saline (CON) immediately after birth, without any enteral feeding. (A) Survival rates 24 h post inoculation. (B) Motor

activity, shown as the fraction of time when pigs were physically moving at 2–18 h post inoculation. (C) Body temperature 2–24 h post inoculation. (D) Blood pH

6–24 h post inoculation. (E) Blood lactate levels 6–24 h post inoculation. (A) Presented as Kaplan Meyer curves. (B–E) Presented as means with corresponding

standard errors. (#): Effect of SE (p ≤ 0.1 ≥ 0.05), #: Effect of SE (p < 0. 05), ###: Effect of SE (p < 0.001), ¤: Effect of gestational age (p < 0.05).
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TABLE 3 | Hematological parameters in Experiment 1.

Time after SE (hours) SE-PRE CON-PRE SE-TERM CON-TERM p interaction p SE effect p gestation

Total leucocytes (109 cells/L) 12 1.0 (0.2) 3.1 (0.5) 2.3 (0.9) 4.2 (0.2) NS <0.001 <0.05

24 2.0 (0.5) 3.3 (0.5) 5.4 (1.0) 4.3 (0.5) NS NS NS

48 - - 7.5 (0.6) 4.5 (0.4) - <0.001 -

Neutrophils (109 cells/L) 12 0.3 (0.1) 1.1 (0.2) 1.4 (0.5) 2.6 (0.1) NS <0.001 <0.001

24 0.5 (0.1) 1.4 (0.2) 3.0 (0.6) 2.6 (0.2) <0.01 NS <0.001

48 - - 3.6 (0.3) 2.6 (0.5) - NS -

Lymphocytes (109 cells/L) 12 0.7 (0.1) 1.9 (0.3) 0.3 (0.1) 1.5 (0.1) <0.01 <0.001 NS

24 1.5 (0.5) 1.8 (0.3) 0.7 (0.2) 1.6 (0.3) NS <0.01 NS

48 - - 2.3 (0.2) 1.8 (0.2) - <0.05 -

Monocytes (109 cells/L) 12 0.0 (0.0) 0.1 (0.0) 0.0 (0.0) 0.1 (0.0) NS <0.05 NS

24 0.0 (0.0) 0.1 (0.0) 0.0 (0.0) 0.1 (0.0) NS NS NS

48 - - 0.2 (0.0) 0.0 (0.0) - <0.001 -

Platelets (109cells/L) 12 247 (8) 331 (8) 206 (11) 359 (15) <0.05 <0.001 NS

24 181 (15) 322 (20) 202 (10) 314 (21) NS <0.001 NS

48 - - 123 (8) 211 (26) - <0.001 -

Hematological parameters for preterm (PRE) or term (TERM) animals, infused with Staphylococcus epidermidis (SE) or saline (CON). Data presented as means with corresponding

standard error, p < 0.1 are presented p < 0.05 are considered significant. NS, Not significant.

was no difference between groups (35 ± 7 vs. 27 ± 8 ng/mL
for SE-PRE and CON-PRE, respectively, p > 0.1). However,
levels tending to be increased in animals euthanized prematurely
compared with those that survived (42 ± 4 vs. 31 ± 5 ng/mL,
p= 0.06).

Experiment 2
In this experiment we investigated if clearance of SE from the
bloodstream was affected by enteral feeding of BC vs. IF. Preterm
pigs infused with SE shortly after birth and fed either BC (SE-BC)
or IF (SE-IF) and followed for 12 h.

No animals were euthanized before the end of the 12 h follow
up period. Due to the short intervals between blood samplings
and intensive handling of the pigs, data on movement activity
and body temperature were not collected. The SE-BC group
showed consistently lower levels of SE in blood, though only
significantly after 3 and 12 h (Figure 2A). Blood lactate tended to
be lower in SE-BC after 3 h (Figure 2B) and standard bicarbonate
after 6 h (Figure 2C) whereas blood pH did not differ between
groups (Figure 2D). Likewise, there was no difference in total
leucocyte, neutrophil or lymphocyte counts 12 h after infusion of
SE (Figure 2E).

Experiment 3
In this experiment, investigating if 2 days of BC feeding improves
systemic responses to SE, preterm pigs received maternal plasma
andwere fed either BC or IF until postnatal day 2 where they were
infused with either SE or saline (CON). Resulting in four groups:
SE-BC, SE-IF, CON-BC and CON-IF.

There was no difference in the proportion of animals
euthanized prematurely, with 12% (4/24) in the SE groups and
5% (1/22) in CON (p > 0.1) and these few animals all showed
signs of severe NEC upon necropsy. SE inoculation led to
increased body temperature in both SE-BC and SE-IF groups,

lasting for at least 48 h (Figure 3A). There was no effect of SE on
motor activity, but IF-fed pigs showed reduced activity compared
with BC-fed pigs (Figure 3B).

No effect of SE inoculation or interaction with diet
was observed for the neutrophil phagocytic rate or capacity
(Figures 3C,D). For cellular immune parameters, there were no
interactions between SE and diet but SE inoculation alone led to
several effects, the most important being lower total leucocytes
and monocyte counts at 12 and 24 h, corresponding with lower
lymphocyte and platelet counts at 12, 24, and 48 h in the SE
inoculated groups (Table 4). Diet in itself had little impact on the
hematological parameters (Table 4) T cells were also affected by
SE infection, with a lower total T cell fraction at 12 h and lower
CD4 positive T cell fraction at 24 h (Figures 3E,F). There were
no differences observed for CD8 positive or regulatory T cells
(Figures 3G,H). Also, there were no differences in fractions of
double positive T cells between the groups at any time point (data
not shown).

No interactions between SE and diet were seen for non-
immunological hematological parameters, although SE alone led
to increased hemoglobin and hematocrit values in the SE groups
at 12, 24, and 48 h (Table 4). SE inoculation also led to increased
relative spleen weight (3.2± 0.1 vs. 2.3± 0.1 g/kg, p < 0.001) but
no other organ weights were affected by SE inoculation.

There were similar levels of SE CFUs in bone marrow of SE-
BC and SE-IF pigs (1.1 × 109±7.0 × 108 vs. 4.7 × 108 ± 2.1 ×

108 CFU/mL, p < 0.1). Staphylococcus aureus and Enterococcus
spp. were also detected in the bone marrow and these were less
prevalent in BC vs. IF animals (3 vs. 26%, p < 0.05). Levels of
porcine IgG were similar in all four groups (overall mean 406
± 18 mg/L), however the levels of bovine IgG were significantly
higher in the groups fed BC (Figure 3I), making overall IgG
levels higher in BC fed animals compared to IF (572± 40 vs. 406
± 28 mg/L, p < 0.001). There was no influence of SE infection
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FIGURE 2 | Feeding of bovine colostrum improves clearance of Staphylococcus epidermidis in newborn preterm pigs. Results of Experiment 2 comparing preterm

pigs infused with Staphylococcus epidermidis (SE) immediately after birth and fed either bovine colostrum or infant formula. (A) Abundance of SE in blood 3–12 h post

inoculation, shown as colony-forming units per milliliter of whole blood. (B) Blood lactate levels 3-12 h post inoculation. (C) Blood bicarbonate levels 3–12 h post

inoculation. (D) Blood pH 3–12 h post inoculation. (E) Total leucocyte, neutrophil and lymphocyte counts, taken 12 h post inoculation. (A–E) Presented as means with

corresponding standard errors. (*): Effect of diet (p ≤ 0.1 ≥ 0.05), *Effect of diet (p < 0.05).

on porcine or bovine IgG levels. For gut related parameters, milk
diet influenced the lactulose/mannitol ratio, in that ratios were
lower in BC vs. IF animals (2.6± 0.5 vs. 18.2± 3.3%, p < 0.001).
Incidence of NEC was also lower in BC fed animals over IF (29
vs. 72 %, p < 0.01). No direct effects of SE were observed for the
gut related parameters.

Regardless of diet, the levels of sC5b-9 were lower in SE
inoculated than in CON animals (15 ± 4 vs. 22 ± 4 ng/mL, p <

0.05), whereas levels of TNF-α (102 ± 30 vs. 62 ± 11 pg/mL, p
> 0.1) or IL-6 (430 ± 136 vs. 329 ± 69 pg/mL, p > 0.1) did not
differ. There was no influence of diet on levels of sC5b-9, TNF-α
or IL-6 (data not shown).

Experiment 4
To further investigate the effects of BC feeding we increased
the overall susceptibility to infection by withholding maternal
plasma in all animals. As in Experiment 3, preterm pigs were fed
either BC or IF for 2 days where after all animals were inoculated
with SE, resulting in two groups: SE-BC and SE-IF.

There were no differences in body temperature between pigs
fed BC or IF (Figure 4A), but motor activity was highest in
the SE-BC pigs (Figure 4B). The SE-BC group showed higher
blood acidity 6 h after SE inoculation (Figure 4C) together with
higher oxygen pressure (Figure 4D) and bicarbonate at 24 h
(Figure 4E). Milk diets did not markedly influence hematology
except the reduced monocyte and elevated red blood cell counts
at 6–12 h in SE-BC vs. SE-IF pigs (Supplementary Table 1).

In this experiment, we also collected plasma 6 and 12 h after
inoculation. Levels of TNF-α were increased at 6 h after the SE
challenge and dropped throughout the study, with no difference
between SE-BC and SE-IF (Figure 4F). Likewise, sC5b-9 levels
were elevated 6 h after inoculation with no difference between BC
and IF fed animals, and hardly detectable after 24 h (Figure 4G).
In addition, plasma levels of IL-6 at euthanasia did not differ
between SE-BC and SE-IF (336 ± 67 vs. 351 ± 42 pg/mL, p >

0.1). At 24 h, the majority of administered SE was cleared from
the blood streamwith no difference in clearance capacity between
groups (Figure 4H). Levels of porcine IgG also did not differ
between SE-BC and SE-IF (6 ± 2 vs. 4 ± 1 mg/L, p > 0.1), but
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FIGURE 3 | Two days of bovine colostrum feeding has no impact on response to Staphylococcus epidermidis bacteremia. Results of Experiment 3 comparing

preterm pigs infused with Staphylococcus epidermidis (SE) or saline (CON) at day 3, after being infused with maternal plasma and fed bovine colostrum (BC) or infant

formula (IF) from after birth. (A) Body temperature 0–48 h post inoculation. (B) Motor activity, shown as the fraction of time with physical activity at 0–48 h post

inoculation. (C) Neutrophil phagocytic rate 12–48 h post inoculation, defined as fraction of neutrophils with internalized bacteria. (D) Neutrophil phagocytic capacity

12–48 h post inoculation, defined as median fluorescent index of neutrophils with internalized bacteria. (E) T cells 12–48 h post inoculation, defined as fraction of CD3

positive lymphocytes. (F) CD4 cells 12–48 h post inoculation, defined as the CD4 positive, CD8 and FOXP3 negative fraction of T cells. (G) CD8 cells 12–48 h post

inoculation, defined as the CD8 positive, CD4 and FOXP3 negative fraction of T cells. (H) Regulatory T cells 12–48 h post inoculation, defined as the FOXP3 and CD4

positive, CD8 negative fraction of T cells. CD4 positive as fraction (I) Plasma levels of bovine immunoglobulin G (IgG) at euthanasia. (A–I) Presented as means with

corresponding standard errors. #: Effect of SE (p < 0.05), ##: Effect of SE (p < 0.01), ###: Effect of SE (p < 0.001), (*): Effect of diet (p ≤ 0.1 ≥ 0.05), *: Effect of diet

(p < 0.05), **: Effect of diet (p < 0.01), ***: Effect of diet (p < 0.001).

as expected, levels were much lower than in Experiment 3. Bovine
IgG levels were significantly higher in SE-BC (Figure 4I), making
overall IgG levels higher (209 ± 42 vs. 5 ± 1 mg/L, p < 0.001).
For gut related parameters, mean NEC incidence was lower in
SE-BC than SE-IF pigs, although not significantly (33 vs. 71%, p
> 0.1). In addition, SE-BC pigs showed higher relative weight of
the proximal small intestine (10.2± 0.5 vs. 7.3± 0.7, p < 0.001),
relative to SE-IF.

Experiment 5
To investigate if oral feeding of porcine immunoglobulins
affected the systemic response to SE, preterm pigs were fed IF
with or without added porcine plasma proteins (PP) for 3 days, at
which time all animals were inoculated with SE, resulting in two
groups: SE-IF and SE-PP.

One animal was euthanized ahead of time from the SE-PP
group with signs of NEC at necropsy. Like in the previous studies,
body temperature rose after SE inoculation, but the changes were
not affected by PP supplementation (Figure 5A) and neither
was motor activity (Figure 5B). Like in Experiment 4, most of
the administered SE were cleared from the blood stream 24 h
after infection, but again, with no effect of PP supplementation
(Figure 5E).

At baseline, monocyte counts were higher in SE-PP than SE-
IF pigs (data not shown). After SE inoculation, total leucocyte
counts and lymphocyte counts (Figures 5C,D) were higher in SE-
PP vs. SE-IF pigs at 12 h. No other differences in hematological or
hemostatic parameters were observed (Supplementary Table 2).
Levels of sC5b-9 (18.5 ± 8.2 vs. 5.8 ± 2.0 ng/mL, p > 0.1) and
porcine immunoglobulins (Figure 5F) did not differ between
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TABLE 4 | Hematological parameters in Experiment 3.

Time after SE (hours) SE-IF SE-BC CON-IF CON-BC p interaction p SE P diet

Total leucocytes (109 cells/L) 12 1.5 (0.4) 2.0 (0.7) 2.2 (1.0) 2.9 (0.7) NS <0.01 <0.05

24 1.6 (0.4) 2.1 (1.0) 2.3 (1.0) 2.8 (1.0) NS 0.06 NS

48 2.7 (0.9) 2.3 (0.5) 2.4 (0.8) 2.7 (0.7) NS NS NS

Neutrophils (109 cells/L) 12 0.8 (0.3) 1.3 (0.6) 0.8 (0.5) 1.2 (0.7) NS NS NS

24 0.8 (0.3) 1.2 (0.9) 0.8 (0.4) 1.3 (0.9) NS NS NS

48 1.1 (0.6) 1.3 (0.4) 0.9 (0.4) 1.4 (0.7) NS NS NS

Lymphocytes (109 cells/L) 12 0.5 (0.1) 0.6 (0.2) 1.3 (0.9) 1.6 (0.8) NS <0.001 NS

24 0.7 (0.2) 0.8 (0.4) 1.3 (0.9) 1.3 (0.8) NS <0.01 NS

48 1.0 (0.3) 0.8 (0.3) 1.1 (0.5) 1.1 (0.2) NS <0.05 NS

Monocytes (109 cells/L) 12 0.05 (0.06) 0.05 (0.05) 0.05 (0.03) 0.09 (0.07) NS <0.05 NS

24 0.04 (0.02) 0.04 (0.02) 0.07 (0.03) 0.08 (0.06) NS <0.05 NS

48 0.21 (0.26) 0.05 (0.02) 0.11 (0.07) 0.19 (0.10) NS NS NS

Platelets (109cells/L) 12 141 (24) 170 (33) 370 (278) 409 (188) NS <0.001 NS

24 154 (43) 209 (61) 413 (230) 455 (186) NS <0.001 NS

48 225 (49) 257 (61) 341 (81) 496 (153) NS <0.001 <0.05

Red blood cells (1012cells/L) 12 3.6 (0.5) 3.6 (0.4) 3.6 (0.6) 3.4 (0.7) NS NS NS

24 3.3 (0.4) 3.4 (0.4) 3.5 (0.6) 3.3 (0.8) NS NS NS

48 3.1 (0.2) 3.0 (0.2) 3.1 (0.6) 2.7 (0.6) NS NS NS

Hemoglobin (g/L) 12 4.8 (0.7) 4.7 (0.5) 4.4 (0.9) 3.9 (0.8) NS <0.01 NS

24 4.4 (0.5) 4.4 (0.5) 4.3 (0.8) 3.7 (0.8) NS <0.05 NS

48 4.0 (0.3) 4.1 (0.2) 4.0 (0.8) 3.4 (0.5) NS <0.05 NS

Hematocrit (%) 12 26.7 (3.9) 25.9 (2.4) 24.9 (4.6) 22.7 (3.7) NS <0.05 NS

24 24.8 (2.9) 24.6 (2.1) 24.3 (4.2) 21.5 (4.3) NS <0.05 NS

48 22.0 (1.7) 22.5 (0.9) 22.4 (4.2) 19.0 (3.7) NS <0.05 NS

Hematological parameters for preterm animals, immunized with maternal plasma, infused with Staphylococcus epidermidis (SE) or saline (CON) and fed either bovine colostrum (BC) or

infant formula (IF). Data presented as means with corresponding standard error, p < 0.1 are presented p < 0.05 are considered significant. NS, Not significant.

the SE-PP and SE-IF groups. Supplementation with PP had
no significant effect on NEC incidence (60 vs. 33%, p > 0.1),
lactulose/mannitol ratio (9 ± 2 vs. 5 ± 1%, p > 0.1) or weight
of internal organs (data not shown, all p > 0.1).

DISCUSSION

Bacterial infection remains a major contributor to neonatal
mortality in preterm infants and understanding the response
of preterm infants to bacteremia is key for early diagnosis and
treatment. Postnatal immune system maturation in preterm
infants is not well-understood and may be influenced by
environmental factors, such as diet and microbial colonization
in the gut, lungs and skin epithelia. Regardless, it remains
unclear how postnatal factors influence systemic immunity
development and responses to bacteremia. Using a recently
established model of neonatal bloodstream infection, we first
demonstrate that preterm pigs were markedly more affected
than term pigs by systemic SE exposure shortly after birth,
leading to clear signs of sepsis and high mortality. The clinical
responses were much less pronounced when similar SE doses
were infused after initiation of enteral feeding, either shortly
after birth or after 2 days. However, the responses were not
markedly affected by the type of milk diet, although BC fed
animals showed lower levels of circulating SE when inoculated

shortly after birth. After day 3, luminal supplementation with
porcine plasma proteins into IF also failed to improve responses.
Furthermore, we have done preliminary studies in preterm pigs
that showed limited effects of BC feeding for 4 days, relative
to un-fed animals on total parenteral nutrition (unpublished
observations). Thus, enteral feeding, even with a highly
immunomodulatory milk diet like bovine colostrum, is unlikely
to influence systemic immunity development and bacteremia
responses in preterm neonates beyond its effectiveness in
the immediate neonatal period (first 1–2 days after birth),
as shown also in our previous study (43). A general effect
of enteral feeding on the immune response is possible, as
enterally fed animals had lower blood acidity, lactate and
mortality both when comparing Experiments 1 and 2, and
in the previous preterm pig study (43). However, we have
not yet fully investigated the effect of early enteral feeding
shortly after birth, and further studies are necessary. Whether a
similar age or diet dependency of clinical responses to systemic
bacterial infection is valid for preterm infants remains to be
investigated following different gestational ages, diet regimens
and bacterial exposures.

Regarding gestational age, both preterm and term pigs showed
clinical and immunological responses to SE exposure shortly
after birth (i.e., increasing body temperature, reduced physical
activity and blood pH), but these conditions only became fatal in
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FIGURE 4 | Two days of bovine colostrum feeding has no impact on response to Staphylococcus epidermidis bacteremia, even when maternal antibodies are

withheld. Results of Experiment 4 where preterm pigs were infused with Staphylococcus epidermidis (SE) on day 3, without any previous immunization (plasma

infusion) and fed bovine colostrum (SE-BC) or infant formula (SE-IF). (A) Body temperature 0–24 h post inoculation. (B) Motor activity, shown as the fraction of time

with physical activity at 0–24 h post inoculation. (C) Blood pH 6–24 h post inoculation. (D) Blood oxygen pressure 6–24 h post inoculation. (C) Blood bicarbonate

levels 6–24 h post inoculation. (F) Plasma levels of tumor necrosis factor alpha (TNF-α) 6–24 h post inoculation. (G) Plasma levels of soluble terminal complement

complexes (sC5b-9) 6–12 h post inoculation. (H) Abundance of SE in blood at euthanasia, shown as colony-forming units per milliliter of whole blood. (I) Plasma levels

of bovine immunoglobulin G (IgG) at euthanasia. (A–F) Presented as means with corresponding standard errors. *: Effect of diet (p < 0.05), **: Effect of diet (p < 0.01),

***: Effect of diet (p < 0.001).

preterm pigs, requiring early euthanasia of half of these animals.
Conversely, term pigs maintained a higher body temperature
and their neutrophil counts even exceeded baseline levels at 24 h
after SE infection. Thus, preterm pigs seemed to have a lower
capacity in their bone marrow to replace neutrophils after SE
infection challenge. Neutropenia is often observed in preterm
infants (47, 48).

In the later preterm pig experiments, preterm animals showed
limited diet-dependent differences in systemic responses to
SE, beyond the lowered SE levels in newborn preterm pigs
(<24 h old) fed BC vs. IF. The other para-clinical outcomes
such as leucocyte subsets and blood acidity/lactate did however

not differ. In pigs that were fed BC or IF for 2 days before
SE inoculation, no clear differences in SE responses could be
demonstrated. Also, withholding maternal plasma did not reveal
any further effects of feeding BC over IF on the immune response
during SE bacteremia.

Consistent with protective effects of feeding BC vs. IF on gut
parameters (reduced intestinal permeability and NEC incidence)
in this study, BC feeding is associated with a long series of
structural, functional and immunological changes locally in the
gut of preterm pigs (29–32, 49). In this study, the BC fed animals
were less likely to have enteric bacteria (i.e., Enterococcus spp.
and Staphylococcus aureus) in their bone marrow (Experiment 3),
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FIGURE 5 | Feeding of infant formula, enriched with porcine plasma, has no effect on responses to Staphylococcus epidermidis bacteremia. Results of Experiment 5

where preterm pigs were infused with Staphylococcus epidermidis (SE) on day 4, after infusion of maternal plasma at birth, and then fed infant formula supplemented

with porcine plasma powder (SE-PP) or whey protein (SE-IF). (A) Body temperature 0–24 h post inoculation. (B) Motor activity, shown as the fraction of time with

physical movements at 0–24 h post inoculation. (C) Total blood leucocyte counts 0–24 h post inoculation. (D) Lymphocyte counts in blood, 0–24 h post inoculation (E)

Abundance of SE in blood at euthanasia, shown colony-forming units per milliliter of whole blood. (F) Plasma levels of porcine immunoglobulin G (IgG) at euthanasia.

(A–F) Presented as means with corresponding standard errors. φ: Effect of PP (p < 0.05).

suggesting a protective effect of BC against bacterial translocation
across the intestine. Also, we consistently found higher levels of
motor activity in BC fed animals, suggesting an overall better
clinical status. We have previously shown that BC feeding of
preterm pigs prevented bacterial translocation within the first 1–
2 weeks of life, but not later (29, 50, 51), further suggesting that a
critical window exists early after preterm birth where intestinal
permeability, and therefore the risk of gut derived systemic
infections, can be reduced by protective milk diets. Whether such
bioactive milk diets could affect systemic immunity development
directly, independent of any maturational and protective effects
on the immature gut, remains unclear and may take longer than
just a few days after preterm birth to manifest. In preterm infants,
risk of sepsis is associated with length of parenteral nutrition
(and thereby presence of central catheters), but alleviated by
human milk feeding (3). Possibly, direct systemic immune
effects of enteral milk diets, beyond the first days after preterm
birth, depend on associated changes in the gut microbiota.
An observational study in preterm infants has shown that gut
dysbiosis, with accumulation of fermentation products, precedes
neonatal sepsis (52). However, diet-induced changes to the
gut microbiota may occur mainly after the first week of life,
as shown in previous studies on preterm pigs (30, 31, 53).
This may explain why no marked differences between BC

and IF fed animals were apparent for the systemic response
to SE.

A clear effect of SE inoculation on several immunological
parameters was observed already 12 h after inoculation, including
a marked reduction in monocytes, lymphocytes and platelets.
Following the SE inoculations, bacteria would permeate the
tissues, likely prompting monocytes to leave the vasculature,
explaining the reduced number of circulating monocytes.
Lymphocytes would mostly stay in the blood stream and we
therefore suspect that SE bacteremia induced apoptosis of
peripheral lymphocytes, as indicated from adult sepsis. Here,
a substantial sepsis-induced loss of helper T cells and B
lymphocytes has been observed, compared with trauma patients
and non-septic controls (54, 55). Likewise, thrombocytopenia
is a common finding in preterm infants with neonatal sepsis
(56, 57). Loss of lymphocytes and platelets were observed
across experiments in the SE treated groups. Hematocrit and
hemoglobin values were generally higher in SE infected animals,
likely indicating a greater loss of fluid from the vasculature. Loss
of intravascular fluid is a well-known phenomenon in both adult
and neonatal sepsis caused by increased capillary permeability
(58). Furthermore, we found that circulating levels of sC5b-9
were lower in SE animals indicating that complement factors had
been depleted. The sC5b-9 protein complex is the end product
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of the complement cascade and only has a half-life of 1–2 h
(59), so any product generated by the initial SE inoculation
would be gone by 48 h. Complement activation by SE sepsis
shortly after birth was seen in Experiment 1, as levels were
increased in non-surviving animals and in Experiment 4 with
higher levels shortly after SE inoculation. Although enterally
fed animals, inoculated after 2 days, were less clinically affected
by SE, they remained to have some immunological responses
reflecting neonatal sepsis, but with limited effects of milk diet
(colostrum, formula), regardless of provision of maternal plasma
(Experiment 3) or not (Experiment 4). Thus, this experimentally
induced bacteremia in preterm pigs mimicked many of the signs
and symptoms seen in neonatal sepsis patients.

SE is considered a relatively low-virulent pathogen that
would not normally cause serious systemic responses in healthy
individuals, but SE is often isolated from preterm infants
suspected of sepsis (2). Preterm pigs provide a good model for
studying infections in preterm infants, as the overall values for
hematological and immunological parameters are similar (46).
In addition, the developing pig fetus does not receive IgG via
the placenta, which mimics the situation in preterm infants,
born with low levels of IgG. This allows for experimentally
changing the degree of immunodeficiency, through infusion
of immunoglobulins and other plasma proteins. Neonatal pigs
have the ability to effectively transfer immunoglobulins and
other macromolecules across the intestine within the first 12–
24 h (60, 61). This ability is severely reduced in fetal pigs (62)
and preterm newborn pigs (63, 64) but an ability remains,
as observed by the higher overall plasma IgG levels seen in
animals fed BC or IF-PP. We do not know to what degree
these absorbed bovine immunoglobulins were directed against
SE. Since SE is a common pathogen in cattle (65) it is
probable that the BC powder contains SE specific IgG’s that
would improve opsonisation and clearance of bacteria. However,
improved clearance of SE was only observed in BC fed animals
just after birth (Experiment 2), not those fed for two full
days (Experiment 4), indicating that absorbed immunoglobulins
played a minor role. Absorption of smaller macromolecules
across the intestine has been demonstrated to be increased in very
preterm infants (66–68), as a sign of enhanced gut permeability,
as no specific immunoglobulin uptake mechanism exists. The
overall immunoglobulin levels that we achieved in preterm pigs
by maternal plasma supplementation were far lower than what is
reported in term human neonates, where cord blood IgG levels
range from 4 to 10 g/L (16, 69). The IgG levels of preterm infants
are dependent on gestational age at birth, but were reported to be
only∼3 g/L by 22 weeks gestation (16, 70).

In conclusion, preterm newborn pigs are more sensitive to
SE bacteremia than term pigs. Enteral feeding immediately after

birth dampened the clinical responses to SE, and feeding with
a highly bioactive milk diet, like bovine colostrum, improved
clearance of SE from the bloodstream, relative to infant formula,
with subtle improvements in blood gas parameters. A further
2 days of enteral feeding after preterm birth attenuated the
SE response but the marked effect of BC vs. IF feeding
disappeared. Early feeding with immunomodulatory milk diets
may provide protection against neonatal systemic infection in
preterm infants mainly via improving intestinal maturation
and reducing the need for parenteral nutrition and fluid via
indwelling central catheters. Nevertheless, early feeding with a
protective milk diet, like colostrum, may improve the ability
of preterm infants to resist systemic infections in the first days
after birth.
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