Copper Catalysis

International Edition: DOI: 10.1002/anie.201508959 German Edition: DOI: 10.1002/ange.201508959

Copper-Catalyzed Borylative Cross-Coupling of Allenes and Imines: Selective Three-Component Assembly of Branched Homoallyl Amines

James Rae, Kay Yeung, Joseph J. W. McDouall, and David J. Procter*

Abstract: A copper-catalyzed three-component coupling of allenes, bis(pinacolato)diboron, and imines allows regio, chemo-, and diastereoselective assembly of branched α,β -substituted- γ -boryl homoallylic amines, that is, products bearing versatile amino, alkenyl, and borane functionality. Alternatively, convenient oxidative workup allows access to α -substituted- β -amino ketones. A computational study has been used to probe the stereochemical course of the cross-coupling.

Branched amines are common motifs in biologically active molecules. Substituted homoallylic amines are privileged synthetic precursors to such motifs in addition to being a common substructure in bioactive synthetic targets in their own right (Scheme 1 a).^[1] While the allylation of imines provides the most direct access to important homoallylic amines,^[2,3] the process is generally more challenging than the allylation of aldehydes because of the lower electrophilicity/ reactivity of imines and their increased steric bulk, difficulties in predicting the stereochemical outcome of additions, and imine/enamine E/Z isomerization. In particular, the additions of substituted allyl metals require sophisticated levels of regio- and stereocontrol, which, if unchecked, lead to complex mixtures.^[4] Thus, new approaches to the selective generation and controlled addition of functionalized allyl metals, formed under catalytic conditions using inexpensive catalysts, to imines, promises to expand access to complex homoallylic amines while unlocking new avenues for their subsequent synthetic manipulation.

The use of allenes and imines in catalytic three-component coupling reactions which involve the in situ generation of allyl metals has emerged as an exciting strategy to afford valuable, substituted homoallylic amines (Scheme 1 b).^[5-7] For example, the groups of Oshima,^[5e] Grigg,^[5a-d] and Malinakova^[5f-i] have studied the catalytic generation of allyl metals from allenes, by organometallic addition, and their addition to imines. In an important advance, Morken and co-workers described the asymmetric palladium-catalyzed diboration of allenes with subsequent addition of an imine to trap the

Scheme 1.

a) Homoallylic amines and their derivatives, in biologically significant targets. b) Previous work: Metal-catalyzed, three-component, couplings involving allenes and imines. c) This work: Copper-catalyzed, highly selective, three-component, borylative allylation of imines. Pin=pinacolato.

functionalized allyl borane intermediates in a separate operation.^[5] In the study from Morken et al., linear adducts were obtained and products were typically isolated as ketones after in situ oxidation of the C–B bond. In the above studies, expensive and supply-risk platinum-group metals were used.^[5] Herein we describe a regio-, chemo-, and diastereoselective copper-catalyzed three-component coupling of allenes,^[8] bis(pinacolato)diboron, and imines,^[9,10] proceeding via allyl coppers to give readily isolable, branched homoallylic amines bearing versatile amino, alkenyl, and borane functionalities (Scheme 1 c).

^[*] Dr. J. Rae, K. Yeung, Dr. J. J. W. McDouall, Prof. Dr. D. J. Procter School of Chemistry, University of Manchester Oxford Rd, Manchester, M13 9PL (UK) E-mail: david.j.procter@manchester.ac.uk

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201508959.

^{© 2015} The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Faced with the challenge of controlling the regioselectivity of borylcopper addition to allenes, it was clear that the use of a well-defined, bench-stable, and commercially available precatalyst would be highly desirable. Optimization of the process commenced with using 5 mol% IPrCuCl, the allene **1a**, 6 mol % of KOtBu, and 1.1 equivalents of $B_2 pin_2$ in the borylative cross-coupling with the N-phenyl imine 2a. The corresponding homoallylic amine **3a** was obtained with 27% conversion (Table 1, entry 1). Pleasingly, increasing the

Table 1: Optimization of the copper-catalyzed borylative cross-coupling of allenes and imines.[a]

N ^{-Ph}		+ Daia	IPr0 KO <i>t</i> f	CuCl (5 mol%) Bu (see Table)	Ph	Ph NH Brin
Ph 2a	1a R = F 1b R = 0	≥ т в₂ріп₂ Рh Су	T , THF		R anti major 3a R = Ph 3b R = Cy	
Entry	Product	7 [°C]	t [h]	KOtBu (equiv)	d.r. ^[b]	Conv. [%] ^[c]
1	3 a	RT	18	0.06	57:43	27
2	3 a	RT	18	0.3	64:36	62
3	3 a	RT	18	0.7	63:37	75
4	3 a	RT	18	1.0	62:38	94
5 ^[d]	3 a	RT	18	0.06	63:37	41
6	3 b	RT	1.5	1.0	77:23	100
7	3 b	0	3	1.0	82:18	90
8	3 b	-78 to RT	18	1.0	85:15	100

[a] Reaction conditions: Allene (1.5 equiv), B2pin2 (1.1 equiv), imine (1 equiv). [b] Determined by ¹H NMR analysis of the crude product mixture. [c] Determined by ¹H NMR analysis of the crude product mixture using an internal standard. [d] 1 equiv of Cs₂CO₃ added. THF = tetrahydrofuran.

amount of base to 1 equivalent (entries 2-4) resulted in near complete conversion to give 3a. Although the base could be changed (entry 5; the use of Cs₂CO₃ gave 41% conversion), the use of KOtBu appeared optimal. Pleasingly, the allene 1b, also underwent efficient borylative cross-coupling with 2a under these reaction conditions (entry 6) and temperature was found to influence the diastereoselectivity of threecomponent coupling (entries 7 and 8). By initiating the borylative cross-coupling of 1b and 2a at -78 °C (entry 8), quantitative conversion into 3b was observed and the homoallylic amine was obtained in 85:15 d.r.

With optimized reaction conditions in hand, we evaluated the scope of the reaction. In general, the reaction proved to be high yielding, and a wide range of allene (1) and imine (2) coupling partners were converted into the corresponding homoallylic amines 3 with complete regiocontrol and with up to greater than 98% diastereocontrol (Scheme 2). A range of allenes was tolerated, including substrates bearing linear alkyl (to give 3c, 3d, and 3u), aryl (to give 3a), and 1,1-dialkyl (to give 3p-t and 3v) substituents. 1,1-Disubstitution in the starting allene allowed assembly of homoallylic amines, bearing quaternary centers, in a selective three-component coupling. The common para-methoxyphenyl (PMP) protecting group for the nitrogen atom was incorporated in a range of aryl-substituted imines and proved compatible with the cross-

Ń Me

3r 70%

C Me 3k R = 1-naphthyl, 94:6 d.r., 74% 3p X = OMe, 86% 3q X = Br. 82% 3I R = mesityl, no reaction 3m R = o-tolyl, >98:2 d.r., 80% 3n R = *i*Pr. 95:5 d.r., 37% 30 R = tBu, >98:2 d.r., 6%

Scheme 2. Substrate scope in the copper-catalyzed borylative allylation of imines. Reaction conditions: Allene (1.5 equiv), B₂pin₂ (1.1 equiv), imine (1 equiv). Yields are those of the isolated products. [a] See Figure 2a for X-ray structure. PMP = para-methoxyphenyl.

coupling process (to give 3e-q and 3s-u). The borylative cross-coupling showed good functional-group tolerance with OMe (3f and 3p), CF₃ (3g), Br (3h and 3q), thienyl (3j and 3t), and furanyl (3i and 3s) groups proving compatible with the reaction conditions. When the steric bulk of the imine substituent R¹ was increased, higher diastereoselectivities were noted, with *i*Pr- (3n), *t*Bu- (3o), 1-naphthyl- (3k), and otolyl-substituted (3m) products generated with excellent diastereoselectivity (between 94:6 and > 98:2 d.r.). The influence of the imine substituent R^1 is best illustrated by comparing the assembly of the products 3d and 3u: the use of an o-tolyl-substituted imine increases the diastereoselectivity of the process from 79:21 to 92:8 d.r. Interestingly, the use of a *tert*-butylimine and an isopropylimine (to give **30** and **3n**, respectively) resulted in low yields of the isolated products, while the attempted use of a mesityl imine resulted in no reaction. Thus, the reaction is significantly slowed by the use of bulky groups on the imine. This slower reaction is likely a result of the large substituents diminishing the rate of the transmetallation event which closes the catalytic cycle and involves a Cu-N species and B₂pin₂ (see below).

Pleasingly, the use of N-aryl imines afforded threecomponent coupling products (3) which were stable to silica gel column chromatography, and showed no signs of protodeborylation, a common issue for vinylboron-containing compounds.^[11] In the case of adducts arising from the use of N-benzyl imines, products decomposed on silica, and were best isolated as the analogous methyl ketones after oxidative

Figure 1. Copper-catalyzed three-component assembly of Mannich bases.

workup (Figure 1). Thus, α,β -substituted Mannich adducts were also available from the copper-catalyzed three-component coupling in good to excellent yields and with high diastereocontrol.^[12]

The suitability of the copper-catalyzed three-component coupling for preparative scale synthesis was next investigated. Pleasingly, upon cross-coupling with B_2pin_2 and **1b**, 0.5 grams (2.2 mmol) of **2b** gave 1.0 gram of the functionalized homoallylic amine **3m** in 97% yield and it was essentially isolated as a single diastereoisomer (Scheme 3).

Scheme 3. Preparative scale copper-catalyzed borylative allylation of an imine. Ar = *o*-tolyl.

¹¹B NMR analysis of functionalized homoallylic amine products **3** (¹¹B: $\delta = -2.9$ to 11 ppm; ¹¹B $\delta = 35$ ppm for a typical Bpin group) indicates an sp³-hybridized boron center resulting from dative coordination of the N_n \rightarrow B_p in solution.^[13] However, X-ray crystallographic analysis of **3v** suggested that the B–N interaction is disrupted in the solid state (Figure 2 a). The B–N interaction could also be broken by protonation of the nitrogen atom, that is, treatment of **3m** with 1 equivalent of trifluoromethane sulfonic acid afforded the salt **5a** (Figure 2b).

Interestingly, N-sulfinyl and N-sulfonyl imines were unreactive under the reaction conditions of the coppercatalyzed three-component coupling. In a mechanistic study designed to explore this observation, no conversion was observed in an experiment involving both 2a and the N-tosyl imine 2c (Scheme 4a). Both imines were detected unchanged in the ¹H NMR spectra of the crude reaction mixture. An unproductive coordination of 2c to copper appears to prevent reaction of the boryl copper intermediate with the allene. To probe this further, a stoichiometric amount of the IPrCl was used to generate the allylcopper intermediate **6**. Addition of 2c to the preformed **6** generated the expected adduct 3w in 56% yield (Scheme 4b). This control experiment shows that allylcopper intermediates are efficiently trapped by N-sulfonyl imines and suggests that catalyst inhibition by the imine,

Figure 2. a) ¹¹B NMR data and X-ray crystallographic^[21] analysis of 3v. b) Formation of a salt of 3m by disrupting the the $N_n \rightarrow B_p$ interaction. Ar = *o*-tolyl, Tf=trifluoromethanesulfonyl.

a) Mechanistic study 1: N-sulfonyl imines

b) Mechanistic study 2: N-sulfonyl imines

Scheme 4. a) The presence of an N-sulfonyl imine inhibits coupling with an N-phenyl imine. b) A preformed, functionalized allyl copper undergoes coupling with an N-sulfonyl imine.^[21] Ts = 4-toluenesulfonyl.

possibly by formation of the coordination adduct **7**, in which the N-tosyl imine chelates to the copper catalyst through both the nitrogen and oxygen atoms, lies behind the lack of reactivity observed with these imines.^[14]

A proposed mechanism for the copper-catalyzed threecomponent coupling is shown in Scheme 5. After initial formation of the ligated copper alkoxide I, transmetallation with B_2pin_2 yields II. Regioselective insertion of the allene into the Cu–B bond then gives the allylcopper III, which can undergo diastereoselective addition to the imine to afford the homoallylic amine IV. Base-assisted transmetallation then

Scheme 5. A proposed catalytic cycle for the copper-catalyzed borylative allylation of imines.

regenerates II and yields V, which upon workup gives the homoallylic amines **3** after protonation.

The observed *anti* diastereoselectivity of the cross-coupling may arise from the addition of Z-allyl copper **III** through either the six-membered chair transition structure (TS) **8a**, in which copper interacts with the imine nitrogen atom, or through the half-chair-like transition structure **8b**, in which the imine nitrogen atom interacts with boron (Scheme 6).

Scheme 6. Possible origin of diastereocontrol in the borylative crosscoupling of allenes and imines.

To explore the origin of the diastereoselectivity further, we have carried out computational studies on the coupling of the model imine **A** and allylcopper **B** (Scheme 7). Geometries were fully optimized in the gas phase and also in THF solvent.^[15,16] As **A** and **B** approach each other, the potential energy decreases until the minimum energy structure (**C**) is formed through interaction of copper with the nitrogen atom. In the gas phase this structure lies 29.6 kJ mol^{-1} in energy lower than the separated reactants. From the intermediate **C**, a six-membered transition-state structure is formed (**D**; see **8a** in Scheme 6). The energy barrier to the formation of **D** is only 10.0 kJ mol^{-1} (THF). After the formation of **D**, the *anti* product **E**, with the Cu atom coordinated centrally over the

Scheme 7. Computational study on the coupling of model substrates **A** and **B**. Hydrogen atoms have been omitted for clarity.

C=C bond, is formed with an exothermicity of about 113 kJ mol^{-1} .

The computational studies clearly suggest that the *anti* selectivity of the copper-catalyzed three-component coupling arises from the interaction of copper with the imine nitrogen atom and the formation of **8a** (see transition structure **D** in Scheme 7), despite several substituents occupying pseudoaxial orientations.^[17] Initial interaction of the imine nitrogen atom with boron is calculated to be less favorable and there is a large barrier to carbon–carbon bond formation via the alternative half-chair-like transition structure **8b** (see the Supporting Information).

Finally, a preliminary study illustrates that the threecomponent approach to functionalized homoallylic amines can be extended to the silylative cross-coupling of allenes and imines.^[18] Employing Suginome's reagent, Me₂PhSiBpin,^[19] in a related copper-catalyzed assembly involving **1a** and **2a** gave the homoallylic amine **3x** with complete regiocontrol, high diastereocontrol, and in good yield (Scheme 8).

Scheme 8. Copper-catalyzed silylative allylation of an imine. Me₂PhSiBpin (1.1 equiv).

In summary, the first copper-catalyzed three-component coupling of allenes, imines, and bis(pinacolato)diboron furnishes stable borylated homoallylic amines, or Mannich-type products after oxidative work-up, with high control. The process utilizes a commercially available copper catalyst, tolerates a range of allene and imine building blocks, and affords complex homoallylic amine products in high yield with excellent regiocontrol and high diastereocontrol.^[20] coupling arises from imine complexation to the copper of the allylcopper intermediate and addition through a six-membered chair transition structure.

Acknowledgments

We thank The University of Manchester for financial support and EPSRC (Established Career Fellowship to D.J.P. and DTA Studentship to J.R.), and Mateusz Plesniak and Jim Raftery for X-ray crystallography.

Keywords: allenes · boron · copper · cross-coupling · imines

How to cite: Angew. Chem. Int. Ed. 2016, 55, 1102–1107 Angew. Chem. 2016, 128, 1114–1119

- a) C. H. Hassall, E. M. Wilson, J. Chem. Soc. 1964, 2657; b) U. Schmidt, J. Schmidt, Synthesis 1994, 1994, 300; c) E. S. Prosser, R. Pruthi, J. G. Csernansky, Psychopharmacology 1989, 99, 109; for related homoallylic amine motifs in bioactive molecules, see: d) T. C. Nugent, in Process Chemistry in the Pharmaceutical Industry, Vol. 2, CRC Press, New York 2007, pp. 137–156.
- [2] For reviews on allylation: a) S. E. Denmark, J. Fu, *Chem. Rev.* 2003, *103*, 2763; b) H. Ding, G. K. Friestad, *Synthesis* 2005, 2005, 2815; c) M. Yus, J. C. González-Gómez, F. Foubelo, *Chem. Rev.* 2011, *111*, 7774; d) Y. Yamamoto, N. Asao, *Chem. Rev.* 1993, *93*, 2207.
- [3] Pertinent examples of copper-catalyzed imine allylation: a) S. Yamasaki, K. Fujii, R. Wada, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2002, 124, 6536; b) T. Kamei, K. Fujita, K. Itami, J. Yoshida, Org. Lett. 2005, 7, 4725; c) R. Wada, T. Shibuguchi, S. Makino, K. Oisaki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2006, 128, 7687; d) E. M. Vieira, M. L. Snapper, A. H. Hoveyda, J. Am. Chem. Soc. 2011, 133, 3332; e) D. Ghosh, P. K. Bera, M. Kumar, S. H. R. Abdi, N. H. Khan, R. I. Kureshy, H. C. Bajaj, RSC Adv. 2014, 4, 56424; f) Y.-S. Zhao, Q. Liu, P. Tian, J.-C. Tao, G.-Q. Lin, Org. Biomol. Chem. 2015, 13, 4174.
- [4] For selected examples of allylations of imines utilizing substituted allyl motifs, see: a) M. Z. Chen, M. McLaughlin, M. Takahashi, M. A. Tarselli, D. Yang, S. Umemura, G. C. Micalizio, J. Org. Chem. 2010, 75, 8048; b) J. L.-Y. Chen, V. K. Aggarwal, Angew. Chem. Int. Ed. 2014, 53, 10992; Angew. Chem. 2014, 126, 11172; c) H. B. Hepburn, H. W. Lam, Angew. Chem. Int. Ed. 2014, 53, 11605; Angew. Chem. 2014, 126, 11789.
- [5] Of the catalytic coupling reactions of allenes and imines involving allylmetal species generated in situ, none utilize copper salts or result in 2-Bpin addition. For catalytic threecomponent reactions involving allene addition to imines, see: a) I. R. Cooper, R. Grigg, W. S. MacLachlan, M. Thornton-Pett, V. Sridharan, Chem. Commun. 2002, 1372; b) L. A. T. Cleghorn, R. Grigg, C. Kilner, W.S. MacLachlan, V. Sridharan, Chem. Commun. 2005, 3071; c) R. Grigg, S. McCaffrey, V. Sridharan, C. W. G. Fishwick, C. Kilner, S. Korn, K. Bailey, J. Blacker, Tetrahedron 2006, 62, 12159; d) R. Grigg, J. Blacker, C. Kilner, S. McCaffrey, V. Savic, V. Sridharan, Tetrahedron 2008, 64, 8177; e) Y. Yoshida, K. Murakami, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2010, 132, 8878; f) C. D. Hopkins, H. C. Malinakova, Org. Lett. 2004, 6, 2221; g) C. D. Hopkins, H. C. Malinakova, Org. Lett. 2006, 8, 5971; h) C. D. Hopkins, H. C. Malinakova, Synthesis 2007, 2007, 3558; i) S. Raikar, B. K. Pal, H. C. Malinakova, Synthesis 2012, 44, 1983; j) J. D. Sieber, J. P. Morken, J. Am. Chem. Soc. 2006, 128, 74.
- [6] For selected examples of catalytic nucleophilic allylation of imines using allenes, see: a) S.-H. Kim, S.-J. Oh, Y. Kim, C.-M.

Yu, Chem. Commun. 2007, 5025; b) Y. Kuninobu, P. Yu, K. Takai, Org. Lett. 2010, 12, 4274; c) D. N. Tran, N. Cramer, Angew. Chem. Int. Ed. 2010, 49, 8181; Angew. Chem. 2010, 122, 8357; d) D. N. Tran, N. Cramer, Angew. Chem. Int. Ed. 2013, 52, 10630; Angew. Chem. 2013, 125, 10824; e) J. Kim, H. Kim, N. Kim, C.-M. Yu, J. Org. Chem. 2014, 79, 1040; f) S. Oda, B. Sam, M. J. Krische, Angew. Chem. Int. Ed. 2015, 54, 8525; Angew. Chem. 2015, 127, 8645.

Angewandte

Edition Chemie

- [7] For examples of catalytic nucleophilic allylation using allenes, see: a) S.-S. Ng, T. F. Jamison, J. Am. Chem. Soc. 2005, 127, 7320; b) S.-S. Ng, T. F. Jamison, Tetrahedron 2005, 61, 11405; c) S.-S. Ng, T. F. Jamison, Tetrahedron 2006, 62, 11350; d) J. Moran, A. Preetz, R. A. Mesch, M. J. Krische, Nat. Chem. 2011, 3, 287; e) J. R. Zbieg, E. L. McInturff, M. J. Krische, Org. Lett. 2010, 12, 2514; f) S. B. Han, I. S. Kim, H. Han, M. J. Krische, J. Am. Chem. Soc. 2009, 131, 6916; g) E. Skucas, J. R. Zbieg, M. J. Krische, J. Am. Chem. Soc. 2009, 131, 5054; h) M.-Y. Ngai, E. Skucas, M. J. Krische, Org. Lett. 2008, 10, 2705; i) J. F. Bower, E. Skucas, R. L. Patman, M. J. Krische, J. Am. Chem. Soc. 2007, 129, 15134; j) E. Skucas, J. F. Bower, M. J. Krische, J. Am. Chem. Soc. 2007, 129, 12678; k) T. Liang, K. D. Nguyen, W. Zhang, M. J. Krische, J. Am. Chem. Soc. 2015, 137, 3161; 1) B. Y. Park, K. D. Nguyen, M. R. Chaulagain, V. Komanduri, M. J. Krische, J. Am. Chem. Soc. 2014, 136, 11902; m) B. Sam, T. Luong, M. J. Krische, Angew. Chem. Int. Ed. 2015, 54, 5465; Angew. Chem. 2015, 127, 5555; n) B. Sam, T. P. Montgomery, M. J. Krische, Org. Lett. 2013, 15, 3790; o) X. Yu, X. Lu, Org. Lett. 2009, 11, 4366; p) H. Tsukamoto, T. Matsumoto, Y. Kondo, Org. Lett. 2008, 10, 1047; q) T. Toyoshima, T. Miura, M. Murakami, Angew. Chem. Int. Ed. 2011, 50, 10436; Angew. Chem. 2011, 123, 10620; r) M. Jeganmohan, C.-H. Cheng, Chem. Commun. 2008, 3101. See also Ref. [5f].
- [8] Previous copper-catalyzed borylation of allenes: a) S. B. Thorpe, X. Guo, W. L. Santos, *Chem. Commun.* 2011, 47, 424; b) W. Yuan, S. Ma, *Adv. Synth. Catal.* 2012, 354, 1867; c) W. Yuan, X. Zhang, Y. Yu, S. Ma, *Chem. Eur. J.* 2013, 19, 7193; d) F. Meng, B. Jung, F. Haeffner, A. H. Hoveyda, *Org. Lett.* 2013, 15, 1414; e) K. Semba, M. Shinomiya, T. Fujihara, J. Terao, Y. Tsuji, *Chem. Eur. J.* 2013, 19, 7125; f) H. Jang, B. Jung, A. H. Hoveyda, *Org. Lett.* 2014, 16, 4658.
- [9] Pertinent examples of nucleophilic copper-catalyzed allylation using allenes: a) F. Meng, H. Jang, B. Jung, A. H. Hoveyda, Angew. Chem. Int. Ed. 2013, 52, 5046; Angew. Chem. 2013, 125, 5150; b) J. Kawai, P. K. Chikkade, Y. Shimizu, M. Kanai, Angew. Chem. Int. Ed. 2013, 52, 7177; Angew. Chem. 2013, 125, 7318; c) P. K. Chikkade, Y. Shimizu, M. Kanai, Chem. Sci. 2014, 5, 1585; d) Y. Zhou, W. You, K. B. Smith, M. K. Brown, Angew. Chem. Int. Ed. 2014, 53, 3475; Angew. Chem. 2014, 126, 3543; e) K. Semba, N. Bessho, T. Fujihara, J. Terao, Y. Tsuji, Angew. Chem. Int. Ed. 2014, 53, 9007; Angew. Chem. 2014, 126, 9153; f) F. Meng, K. P. McGrath, A. H. Hoveyda, Nature 2014, 513, 367; g) T. Itoh, Y. Shimizu, M. Kanai, Org. Lett. 2014, 16, 2736.
- [10] For a recent review on copper-catalyzed borylations of unsaturated C-C bonds: K. Semba, T. Fujihara, J. Terao, Y. Tsuji, *Tetrahedron* 2015, *71*, 2183.
- [11] The instability of vinylpinacolboronates bearing a β -alcohol has been noted and ascribed to oxygen–boron coordination (see Ref. [8a]). The instability of other related vinylpinacolboronates has also been observed (see Ref. [8e]).
- [12] For recent reviews on the Mannich reaction, see: a) M. Arend, B. Westermann, N. Risch, *Angew. Chem. Int. Ed.* **1998**, *37*, 1044; *Angew. Chem.* **1998**, *110*, 1096; b) A. Córdova, *Acc. Chem. Res.* **2004**, *37*, 102.
- [13] G. P. Harlow, L. N. Zakharov, G. Wu, S.-Y. Liu, *Organometallics* 2013, 32, 6650.
- [14] The use of an alcohol additive did not provide the desired product. For examples of copper-catalyzed allylations of imines

requiring an alcohol additive for catalyst turnover, see Ref. [3c] and [3d].

- [15] The nature of all stationary points was confirmed by vibrational analysis and the solvation calculations employing the polarizable continuum model (PCM) of solvation: S. Miertuš, E. Scrocco, J. Tomasi, *Chem. Phys.* **1981**, *55*, 117. See Supporting Information.
- [16] All calculations were carried out at the B3LYP/6-31G(d,p)level using the Gaussian suite of programs: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
- [17] The low barrier calculated for coupling of the E imine through a six-membered chair TS **8a** led us not to invoke imine isomerization prior to cross-coupling. For a recent allylation of

imines that invokes imine isomerization: R. Alam, A. Das, G. Huang, L. Eriksson, F. Himo, K. J. Szabó, *Chem. Sci.* 2014, *5*, 2732.

- [18] For recent copper-catalyzed silylations of allenes using silylborane reagents, see: a) Y.-H. Xu, L.-H. Wu, J. Wang, T.-P. Loh, *Chem. Commun.* 2014, 50, 7195; b) J. Rae, Y. C. Hu, D. J. Procter, *Chem. Eur. J.* 2014, 20, 13143; c) Y. Tani, T. Fujihara, J. Terao, Y. Tsuji, *J. Am. Chem. Soc.* 2014, 136, 17706; d) Y. Tani, T. Yamaguchi, T. Fujihara, J. Terao, Y. Tsuji, *Chem. Lett.* 2015, 44, 271; e) H. Yoshida, Y. Hayashi, Y. Ito, K. Takaki, *Chem. Commun.* 2015, 51, 9440; f) A. García-Rubia, J. A. Romero-Revilla, P. Mauleón, R. Gómez Arrayás, J. C. Carretero, *J. Am. Chem. Soc.* 2015, 137, 6857.
- [19] For reviews of Si–B reagents in synthesis, see: a) T. Ohmura, M. Suginome, *Bull. Chem. Soc. Jpn.* 2009, 82, 29; b) M. Oestreich, E. Hartmann, M. Mewald, *Chem. Rev.* 2013, 113, 402.
- [20] Preliminary studies show the feasibility of developing an asymmetric version of the copper-catalyzed three-component coupling. See the Supporting Information.
- [21] CCDC 1425291 (3v), 1425294 (3w), and 1425293 (5a) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Received: September 24, 2015 Revised: October 27, 2015 Published online: December 3, 2015