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1  | INTRODUCTION

Testicular spermatozoa are incapable of fertilizing eggs. Spermatozoa 
acquire their fertilizing ability (e.g., motility, capacitation, acrosome re‐
action, and sperm‐egg fusion capabilities) during transition through the 
epididymis. At copulation, a mixture of cauda epididymal spermatozoa 

and accessory gland secretions is ejaculated into the female repro‐
ductive tract. The accessory gland secretions mainly come from the 
seminal vesicles (SV), prostates, bulbourethral gland (also known as 
“Cowper's gland”), and urethral glands.1 Specifically, men ejaculate 
3–3.5 mL of semen into the female reproductive tract, which is mainly 
composed of secretions from SV (1.5–2.0 mL), prostates (0.5 mL), and 
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Abstract
Background: A mixture of spermatozoa and accessory gland secretions (from seminal 
vesicles, prostates, and coagulating glands) is ejaculated into the female reproductive 
tract at copulation. However, the physiological function of accessory glands on male 
fecundity remains unclear.
Methods: Publications regarding the physiological functions of male accessory glands 
were summarized.
Main  findings  (Results):  The functions of accessory glands have been studied 
using male rodents surgically removed coagulating glands (CG), prostates (PR), or 
seminal vesicles (SV). CG‐removed males are fertile or subfertile, while the fe‐
cundity of PR‐removed males is controversial. SV‐removed males show copula‐
tory plug defects, leading to fewer sperm in the uterus and severe subfertility. 
TGM4, SVS2, and PATE4 were identified as essential factors for copulatory plug 
formation. When the sufficient number of epididymal spermatozoa was artificially 
injected into a uterus (AI method), they could efficiently fertilize oocytes, implicat‐
ing that accessory gland secretions are not essential. Seminal vesicle secretions 
(SVSs) improved fertilization rates only when low numbers of spermatozoa were 
used for AI. The changes of uterine environment by SVSs could not improve the 
pregnancy rate.
Conclusion: Accessory gland factors are critical for copulatory plug formation and 
support sperm fertilizing ability.
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bulbourethral gland and urethral glands (0.1 mL).2 As summarized in 
Table 1, the role of accessory glands in male fecundity has been stud‐
ied using mice and rats by surgically removing accessory glands in‐
dividually. The prostate is composed of four regions (ventral, lateral, 
dorsal, and anterior regions), and the fecundity of males having under‐
gone an anterior prostatectomy (also known as “coagulating glands”; 
CG) was either reduced3,4 or comparable to control males.5‐7 The re‐
maining regions in the prostate tightly adhere to the SV and urinary 
bladder,8 complicating surgical removal of each region. In fact, there 
are discrepancies between previous studies on the fecundity of male 
mice and rats with ventral and dorsal prostatectomies.3,5,9 Thus, the 
physiological function of these separate regions of the prostates on 
male fecundity remains unclear. There is no report on male fecundity 
after surgically removing the bulbourethral gland or urethral glands. 
When the SV of male mice and rats was surgically removed, the males 
become severely subfertile.3‐7 Thus, the SV is thought to play a ben‐
eficial role in fertilization in vivo. Here, we mainly introduce the physi‐
ological function of SV on male fecundity at the molecular level based 
on recent finding.

2  | PHYSIOLOGICAL FUNCTIONS OF 
ACCESSORY GLAND SECRETIONS

2.1 | Copulatory plug

As one of the physiological functions of accessory gland secre‐
tions, copulatory plug formation is well known in several primates 
(e.g. chimpanzee) and rodents.10,11 Proteins from CG and SV are 
required for copulatory plug formation in vitro.12 In fact, CG‐re‐
moved male mice and rats show decreases in the copulatory plug 
weight, but these males are fertile or subfertile (Table 1).3,4,5,6,7 
SV‐removed males hardly make the copulatory plug (Figure 1 and 
Table 1), and these males become severely subfertile.3,4,5,6,7 We 
revealed that plug formation defects caused semen leakage from 
the vagina, resulting in a decrease in sperm numbers in the uterus 
and male fecundity (Figure 1).6 When the females without copu‐
latory plugs after mating were immediately re‐caged with other 
males, the females had subsequent productive matings.6 Thus, we 
concluded that the copulatory plug has the dual function of not 

Reference Treated
Pregnancy 
rate (%) Litter size Plug weight (mg)

Mouse

Pang et al.5 Control 73 9.4 ± 0.3 ND

VP and DP (‐) 38 9.8 ± 0.9 ND

CG (‐) 73 9.2 ± 2.8 ND

SV (‐) 7 4 ND

Peitz and 
Olds‐Clarke28

Control 95.2 ± 1.9 8.3 ± 0.3 ND

SV (‐) 77.8 ± 5.1 8.0 ± 0.4 ND

Kawano et al.7 Control ND 13.6 ± 0.5 ND

CG (‐) ND 9.6 ± 2.0 ND

SV (‐) ND 0 0

Noda et al.6 Control 1.4 ± 0.3# 8.8 ± 2.0 43.5 ± 13.8

CG (‐) 1.5 ± 0.0# 9.1 ± 2.4 21.6 ± 11.2

SV (‐) 0.6 ± 0.5# 6.1 ± 3.7 3.5 ± 3.6

Rat

Gunn and Gould9 Control 61.4 ± 1.9 9.9 ± 0.4 ND

DP (‐) 58.4 ± 7.8 9.1 ± 0.4 ND

Queen et al.3 Control 100 5.5 ± 0.5## ND

VP (‐) 100 5.3 ± 0.4## ND

DP (‐) 0 0 ND

CG (‐) 25 5.2 ± 1.6## ND

SV (‐) 0 0 ND

Carballada and 
Esponda4

Control N.D 14.8 ± 0.6 58.5 ± 3.7

CG (‐) 33.3 13.0 ± 4.6 14.2 ± 18.4

SV (‐) N.D 0 0

Note: Sham‐operated males were used as the control.
Abbreviations: #, No. of litters/female/month; ##, Some data from Table 1 of Queen et al. [3] were 
used; (‐), males with specified organ surgically removed; CG, coagulating gland; DP, dorsal prostate; 
N.D., not determined; SV, seminal vesicle; VP, ventral prostate.

TA B L E  1   Fecundity of male mice and 
rats with accessory glands surgically 
removed
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only inhibiting sequential matings but to maintain spermatozoa in 
the uterus to ensure male fecundity, as a winner‐take‐all strategy 
to advance male reproduction.

In copulatory plug formation, it is thought that transglutaminase 4 
(TGM4) from prostates and coagulating glands catalyze the formation 
of ε‐(γ‐glutamyl)lysine cross‐bridges among seminal vesicle secretion 1 
(SVS1) to SVS3 (Table 2).6,11,13‐20 In fact, previous papers showed that 
single KO males of Tgm4 or Svs2 are subfertile due to plug formation 
defects.7,21 Lin et al. showed that the peptide sequence “QXK(S/T)” 
within SVS3 acts as the cross‐linking sites by reacting of guinea pig 
liver transglutaminase with recombinant polypeptides from SVS3.16 
SVS2 also contains this peptide sequence.6 Although SVS1 does not 

contain the sequence “QXK(S/T),” Tseng et al. showed that two gluta‐
mine residues in SVS1 (Q232 and Q254) were the major site for TGM4 
cross‐linking by mass spectrometry.14 Recently, we reported that pros‐
tate and testis expression 4 (PATE4; also known as SVS7) is the essen‐
tial factor for copulatory plug formation with Pate4 KO mice (Figure 1 
and Table 2).6 Though we could not find “QXK(S/T)” in PATE4, our re‐
sults suggest that PATE4 may be cross‐linked by a TGM4‐dependent/
independent manner or have an unknown function to facilitate cop‐
ulatory plug formation. Other reports suggest that several glutamine 
and lysine residues (eg, Q86 and K59) in SVS4 are the target sites for 
TGM4 cross‐linking (Table 2).22‐24 Thus, the mechanism of copulatory 
plug formation may be more complicated than expected.

F I G U R E  1   Observation of vaginas 
immediately after mating. Sham‐operated 
(control), seminal vesicle removed, and 
Pate4 KO males were mated with wild‐
type females

TA B L E  2   Physiological functions of proteins in accessory gland secretions

Function Proteins Summary of results

Copulatory plug formation SVS1 Two glutamines (Q232 and Q254) in SVS1 are the site for TGM4 cross‐linking14

SVS2 SVS2 has the TGM4 cross‐linking site and conserves the peptide sequence 
“QXK(S/T)” for TGM4.6,11,13 Svs2 KO males show plug formation defects7

SVS3 The peptide sequence “QXK(S/T)” in SVS3 was identified as the site for TGM4 
cross‐linking16

SVS4 Several glutamine and lysine residues (eg, Q86 and K59) in SVS4 were identified 
as the substrate for TGM422‐24

PATE4 Pate4 KO males show plug formation defects6

TGM4 TGM4, an enzyme from prostates and coagulating glands, catalyzes the forma‐
tion of ε‐(γ‐glutamyl)lysine cross‐bridges among SVSs.6,11,13‐20 Tgm4 KO males 
show plug formation defects21

Sperm fertilizing ability Motility SPMI These proteins from seminal vesicles function as sperm motility inhibitors in 
vitro (SPMI42,43 and SVA44)SVA

PATE4 PATE4 improved sperm motility in vitro45

Capacitation SVS2 These proteins were identified as decapacitation factors in vitro (SVS2,48 
SPINKL,49,50 and SERPINE251)SPINKL

SERPINE2

Survival SVS2 SVS2 protects the spermatozoa from an immunological response in the uterus 
using Svs2 KO males7

Uterine environment TGFβ These proteins in seminal plasma are involved in the inflammatory response of 
the uterus to seminal fluid55,56,58‐60

Prostaglandin E

TLR4 ligands

Abbreviations: PATE, prostate and testis expression; SERPINE2, serine protease inhibitor, clade E, member 2; SPINKL, serine protease inhibitor Kazal‐
type‐like; SPMI, seminal plasma motility inhibitor; SVA, seminal vesicle autoantigen; SVS, seminal vesicle secretion; TGF, transforming growth factor; 
TGM, transglutaminase; TLR, Toll‐like receptor.



244  |     NODA AND IKAWA

2.2 | Sperm fertilizing ability

It is known that the accessory gland secretions aid the sperm fertiliz‐
ing ability (e.g., sperm motility, capacitation, sperm survival). Seminal 
plasma components improve the sperm motility in human25,26 and 
boar.27 In addition, ejaculated spermatozoa from SV‐removed male 
mice show decreased motility.28 The ejaculated spermatozoa acquire 
fertilizing ability after they stay in the female reproductive tract for 
several hours (known as “sperm capacitation”).29‐31 Spermatozoa 
from some subfertile bulls display the premature capacitation,32 and 
it has been shown components of seminal plasma can inhibit sperm 
capacitation.33 These results suggest that the accessory gland se‐
cretions regulate the timing of sperm capacitation to improve male 
fertility. Accessory gland secretions help the survival and cervical 
transit of epididymal spermatozoa34 and to prevent an immunologi‐
cal response to spermatozoa in the female reproductive tract.35

Interestingly, the ejaculated spermatozoa of SV‐removed boars36 
and bulls37 could efficiently fertilize eggs with artificial insemination 
(AI). Also, cauda epididymal spermatozoa from mice,6,38,39 bulls,40 
and boars41 can fertilize oocytes when these spermatozoa were 
used for AI. From these results, accessory gland secretions appear 
to be unnecessary for sperm fertilizing ability. Recently, we observed 
improvement of sperm fertilization rates by SVSs only when the low 
sperm numbers were used for AI.6 Thus, we concluded that the pos‐
itive effects of accessory gland secretions on the sperm fertilizing 
ability only appear when the amount of sperm numbers in the uterus 
is low referring at least in mice.

There are several functional studies of accessory gland secre‐
tions on sperm fertilizing ability at the molecular level (Table 2). 
Specifically, seminal plasma motility inhibitor,42,43 seminal vesicle 
autoantigen,44 and PATE445 were reported as modulators of sperm 
motility in seminal vesicle secretions. Also, Ca2+ signaling cascades 
induced by the extracellular vesicles secreted from prostate epi‐
thelial cells (known as prostasomes) improved sperm motility.46,47 
SVS2,48 a serine protease inhibitor Kazal‐type‐like (SPINKL),49,50 
and a serine protease inhibitor, clade E, member 2 (SERPINE2)51 
from SV were identified as decapacitation factors. SVS2 and 
SPINKL attached on the plasma membrane of spermatozoa im‐
mediately after ejaculation, which then disappear in spermatozoa 
by the time they reach the oviduct.48,50 This result suggests that 
decapacitation factors on the sperm surface are removed while 
the spermatozoa pass through the uterus. Further, SVS2 acts to 
protect the spermatozoa against the uterus‐derived cytotoxic fac‐
tors.7 As more than 700 proteins from accessory glands were iden‐
tified with proteomics,52 the functional analysis of these proteins 
will be required to further dissect the physiological function of 
accessory gland secretions on sperm fertilizing ability at the mo‐
lecular level.

2.3 | Uterine environment

It is known that the seminal plasma is not only involved in sperm 
fertilizing ability, but also in female reproductive physiology in 

insects and mammals (e.g., immune tolerance for pregnancy).53,54 
Seminal plasma contains the signaling molecules that interact 
with estrogen‐primed epithelial cells lining the female reproduc‐
tive tract to accelerate the expression levels of cytokine and 
chemokine genes.55,56 These upregulated genes facilitate leuko‐
cyte recruitment and activation of the innate and adaptive immune 
system that resembles an inflammatory cascade, leading to the 
preparation of the female reproductive tract for pregnancy.53,55,57 
The inflammatory‐like response to seminal fluid depends on semi‐
nal plasma factors, such as transforming growth factor (TGFβ), E‐
series prostaglandins, and Toll‐like receptor 4 (TLR4) ligand (such 
as bacterial lipopolysaccharide [LPS]; Table 2).55,56,58‐60 The lack 
of accessory gland secretions causes the slower cleavage rates 
in embryogenesis and placental hypertrophy in vivo, from stud‐
ies using mouse and hamster males with accessory glands surgi‐
cally removed,61,62 leading to changes of postnatal growth and 
fetal programming.62,63 Despite these effects, the females artifi‐
cially injected with cauda epididymal spermatozoa become preg‐
nant.38,64 Recently, we revealed no differences in the pregnancy 
rate and the litter size between uterine environments with and 
without stimulation by SVSs when the cauda epididymal sper‐
matozoa were injected into a uterus by AI.6 Thus, factors in ac‐
cessory gland secretions may contribute to regulate the uterine 
environment, but the physiological functions on embryogenesis 
and pregnancy remain limited. The detailed effects of accessory 
gland secretions on postnatal growth and fetal programming need 
further examination.

3  | CONCLUSION

In this review, we mainly highlighted positive functions of SV on 
copulatory plug formation and sperm fertilizing ability. More than 
700 proteins were detected in the accessory glands with proteom‐
ics,52 but the physiological functions of these proteins remain un‐
known. The emergence of the clustered regularly interspaced short 
palindromic repeats (CRISPR)/Cas9 system opened a new era in 
mammalian genome editing.65‐67 Our previous works demonstrated 
that CRISPR/Cas9‐mediated KO mice generation and phenotypic 
analysis are a cost‐effective and labor‐effective approach to quickly 
identify essential gene functions in vivo.68‐70 Thus, utilizing CRISPR/
Cas9 genome editing to examine the function of these 700 genes 
identified as accessory glands will accelerate elucidation of acces‐
sory glands on male fecundity at the molecular level.
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