
Frontiers in Immunology | www.frontiersin.

Edited by:
Shiki Takamura,

Kindai University, Japan

Reviewed by:
Kim Klonowski,

University of Georgia, United States
Georges Abboud,

University of Florida, United States

*Correspondence:
Bin Li

binli@shsmu.edu.cn
Yangyang Li

liyangyang@shsmu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Immunological Memory,
a section of the journal

Frontiers in Immunology

Received: 31 October 2020
Accepted: 21 December 2020
Published: 02 February 2021

Citation:
Qian Y, Zhu Y, Li Y and Li B (2021)

Legend of the Sentinels: Development
of Lung Resident Memory T Cells and

Their Roles in Diseases.
Front. Immunol. 11:624411.

doi: 10.3389/fimmu.2020.624411

REVIEW
published: 02 February 2021

doi: 10.3389/fimmu.2020.624411
Legend of the Sentinels:
Development of Lung Resident
Memory T Cells and Their Roles
in Diseases
Youkun Qian†, Yicheng Zhu†, Yangyang Li* and Bin Li*

Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of
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SARS-CoV-2 is wreaking havoc around theworld. To get theworld back on track, hundreds
of vaccines are under development. A deeper understanding of how the immune system
responds to SARS-CoV-2 re-infection will certainly help. Studies have highlighted various
aspects of T cell response in resolving acute infection and preventing re-infections. Lung
resident memory T (TRM) cells are sentinels in the secondary immune response. They are
mostly differentiated from effector T cells, construct specific niches and stay permanently in
lung tissues. If the infection recurs, locally activated lung TRM cells can elicit rapid immune
response against invading pathogens. In addition, they can significantly limit tumor growth or
lead to pathologic immune responses. Vaccines targeting TRM cells are under development,
with the hope to induce stable and highly reactive lung TRM cells through mucosal
administration or “prime-and-pull” strategy. In this review, we will summarize recent
advances in lung TRM cell generation and maintenance, explore their roles in different
diseases and discuss how these cells may guide the development of future vaccines
targeting infectious disease, cancer, and pathologic immune response.
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INTRODUCTION

The COVID-19 pandemic is ravaging the world. By the end of November 2020, there are over 60
million cumulative cases globally, and the number of deaths has exceeded one million (1). This
disease is caused by SARS-CoV-2, which is mainly transmitted through air-borne droplets, leading
to severe pulmonary diseases and systemic damage (2). Up to now, the treatment for COVID-19 is
very limited, and no specific antiviral drug has been developed. Multiple candidate COVID-19
vaccines are undergoing clinical trials (3).

In general, most COVID-19 vaccines in clinical trials focus on humoral immunity, which exerts
antibodies to prevent the virus from invading cells. However, antibodies alone may not be sufficient
to prevent SARS-CoV-2 infection. One reason is that extracellular antibodies cannot completely
clear the cells infected by virus (4). The final elimination of the virus depends on the supplement of
cellular immunity, that is, the role of T cells, which help B cells produce neutralizing antibodies and
can directly kill virus-infected cells. The second is that the memory B cell response tends to be short-
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lived (5), whereas the T cell response can last for many years.
Recent researches have demonstrated that patients who
recovered from the severe acute respiratory syndrome (SARS)
still had long-lasting memory T-cells but reduced antibody
responses (6, 7). Therefore, vaccines against SARS-CoV-2
should focus on activating the adaptive branch of the immune
system and explicitly focus on inducing long-term memory T
cells. Given that many respiratory viruses are controlled by tissue
immune cells that may not be present in the blood, the tissue-
resident memory T (TRM) cells infiltrated in the lungs that can
recognize foreign antigens locally and provide a rapid immune
response will be an area of concern.

Actually, CD8+T cells retained for a long time after influenza
virus infection were observed in mouse lungs as early as 2001 (8).
Extensive studies in mouse models have determined that the lungs
are enriched in TRM cells against a variety of viral and bacterial
antigens brought by respiratory infections or vaccination. Specific
TRM cells were also detected in the respiratory tract of patients with
influenza or tuberculosis (TB) (9). These pathogen-specific TRM

cells producedbyprior exposure can control acute re-infectionsand
achieve long-term immunity. In mouse model, an intranasal
recombinant vaccinia virus boosting regimen has generated
SARS-CoV-specific lung resident memory CD8+T cells. When
re-stimulated, these TRM cells can effectively release a variety of
effector cytokines and cytotoxic molecules that prevent extensive
virus replication and limit the alveolar damage (10). Another study
suggested that the administration of SARS vaccine intranasally
induced CD4+ TRM cells in the respiratory tract of mice, which
offered the protective immunity against death (11). Regarding
SARS-CoV-2, recent published single-cell profiles have indicated
that the CD8+ T cells in bronchoalveolar lavage fluids (BALFs) of
patients with severe infection exhibited a less proportion of tissue-
residentphenotypes than those inmoderately infectedpatients (12).
Hence a vaccine that induces the production of lung TRM cells is an
ideal candidate for generating a strong and rapid immune response
against SARS-CoV-2.

There are other TRM cells in the lungs with different roles,
including TRM cells that may cause pathological immune
responses and tumor-infiltrating TRM cells that can enhance
anti-tumor immunity in the lungs (13). These TRM cells under
different immune microenvironment in the lungs act in various
roles in immune defense, immune homeostasis, and immune
surveillance. An in-depth understanding of the generation and
maintenance of lung TRM cells will provide new insights for the
development of novel vaccine formation and delivery strategies
and lung-specific immunoregulatory therapy.

This reviewwill focus on the definition, generation, anddifferent
roles of lungTRM cells in infection, pathological immune responses,
and cancers, and discuss TRM cell-related vaccination strategies
combined with emerging cutting-edge discoveries.
HALLMARKS OF TRM CELLS

TRM cells, also known as non-circulating memory T cells, include
both CD8+ and CD4+ subgroups. It refers to those memory T
Frontiers in Immunology | www.frontiersin.org 2
cells that occupy long-term residency in local tissues such as
lung, intestine, and skin. Through cell labeling, parabiosis, tissue
transplantation, and other methods, the circulation trajectory of
cells can be observed to determine TRM cells (14–16). However, it
is still a challenge to clearly distinguish TRM cells from other cells
in vitro by surface markers.

In recent years, with the development of transcriptomics, TRM

cells have been found to have unique transcriptional profiles and
functional characteristics. The main hallmarks of TRM cells that
distinguish it from other circulating memory T cells are the
ability to adhere to peripheral tissues and the lack of homing
signals. Based on the research on both mouse and humans, the
most used phenotypic marker defining TRM cell subsets is CD69.
Due to the competitive protein-protein interaction between
CD69 and sphingosine-1-P receptors (S1PR), it inhibits the
expression of S1PR and prevents S1P-mediated egress (17, 18).
These cells also lack CD62L and CC-chemokine receptor 7
(CCR7), both of which direct cells into lymphoid tissue (19).
On the flip side, CD44 up-regulated by TRM cells is the receptor
for hyaluronic acid and other ligands expressed in peripheral
tissues, which can induce the retention of memory T cells in
peripheral tissues (20). As another key TRM cell marker, the
integrin aE:b7 (CD103) is mainly expressed on CD8+ TRM cells
and some on CD4+ TRM cells, which binds E-cadherin and
anchors cells around epithelial cells (21). It is worth noting that
TRM cells in lungs can be defined by several major surface
markers, but this subset itself is still heterogeneous in some
way. The transcriptome analysis reveals the inconsistent changes
in gene expression among different cells (19, 22, 23). Further
elucidation of detailed mechanism of TRM cell formation and
maintenance will add to understanding of the phenotype of lung
TRM cells under different pathophysiological conditions.
DEVELOPMENT OF LUNG TRM CELLS

The development of lung TRM cells can be divided into several
steps: 1) activation in lymphoid tissues and migration into
inflammatory lung tissue guided by local cytokines, 2)
expression of homing molecules and specific transcription
factors and differentiation into lung resident memory T cells,
3) local maintenance in specific niches and replenishment from
TCM cells (Figure 1). So far, the focus on specific transcription
factors and cell surface receptors has gradually revealed details in
the fate determination mechanism of lung TRM cells.

Activation and Migration
The inability to recirculate between lung and lymph nodes or
bloodstream is a key determinant of lung TRM cells (24, 25).
However, these cells did not start in the lung tissue but migrated
into it later. Under normal conditions, naïve T cells consecutively
circulate throughout the body. When infection occurs, dendritic
cells (DCs) migrate from infected respiratory sites into
mediastinal lymph nodes (MdLN) and activate naïve T cells.
Among these migrant DCs there are two subsets, and only airway
localized CD103+ DCs can fully induce the differentiation of
February 2021 | Volume 11 | Article 624411
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naïve T cells into Teff cells (26). Once activated, the Teff cells up-
regulate the expression of CXCR3, CCR5, and CCR4, which
specifically guide Teff cells into lung tissue and help control
pathogen invasion (27–31). For example, after TB infection,
chemokine ligand IP-10 in the lung increases significantly,
which binds to CXCR3 and facilitates T cell migration (29). In
addition, CD8+ and CD4+ lung Teff cells are regulated differently
and tend to localize in different regions. CD8+ Teff cells are
inclined to migrate to the collagen IV-rich region and CD4+ Teff

cells are more prone to be located in areas abundant in collagen I
(32). Compared with CD8+ T cells, CD4+ T cells enter the lung
tissues first and direct the localization of CD8+ T cells. CD4+ T
cells fine-tune chemokine gradients in the microenvironment
such as TGF-b, which promotes the production of CD103 and is
crucial for CD8+ TRM cell formation (33).

Differentiation
Teff cells will not transform into lung TRM cells immediately after
entering the lung tissues. The tissue microenvironment has an
important influence on the development of lung TRM cells. In the
early stage of infection, Teff cells that migrate into the infection
site will encounter redundant inflammatory signals, which guide
Teff cells towards terminal Teff cells (34). They reduce local
inflammation, help remold the microenvironment and make it
Frontiers in Immunology | www.frontiersin.org 3
more appropriate for the differentiation of lung TRM cells. In the
later stage, CD8+ T cells are recruited into tissue damage sites,
which later developed into regenerative tissues termed as repair-
associated memory depots (RAMDs). RAMDs provide
environmental cues that help drive CD8+ Teff cells into CD8+
TRM cells and later become niches for CD8+ TRM cells (35, 36).
Predominant environmental cues include cytokines such as
TGF-b, IL-33, TNF, IFN-g, IL-15, and cognate antigens (18,
33, 37). TGF-b plays an important role in promoting the
expression of TRM cell marker CD103 and CD69. Together
with IL-33 and TNF, TGF-b can provoke KLF2 down-
regulation, which further down-regulates its target protein
S1P1 and increases expression of CD69 (18). Furthermore,
TGF-b down-regulate T-box transcriptional factor and
promote the expression of CD103. T-box transcriptional
factors are composed of eomesodermin (Eomes) and T-bet,
and they vary in the degree of decline. While Eomes is
effectively removed, TRM cells maintain residual levels of T-bet
which is important for TRM cell survival (37). The decrease in
production of T-box transcriptional factor is demonstrated in
mature lung CD8+CD103+ TRM cells (33, 37). Unlike CD8+
TRM cells in other tissues like skin and vagina, where they can
be generated with only local inflammatory signals (38), lung
CD8+ TRM cells must interact with cognate antigen before
FIGURE 1 | Generation and maintenance of lung TRM cells. During the activated phase of infection, dendritic cells present antigens to activate naïve T cells in the
lymph nodes. These cells turn into effector T cells and up-regulate surface marker CXCR3, CXCR6, CCR5, which guide them into inflammatory tissues. After entering
lung tissue, part of effector T cells is regulated by environmental signals including cytokines such as TGF-b and cognate antigens, and differentiate into lung TRM
cells. The rest of the effector T cells undergoes cell death or egress out of the lung. Compared with Teff cells, lung TRM cells manipulate multiple surface markers and
transcription factors that facilitate cell maintenance and survival.
February 2021 | Volume 11 | Article 624411
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differentiation. After the exposure to cognate antigen, CD8+ Teff

cells increase the expression of CD69, CD103, and collagen-
binding integrin VLA-1 (39). T cell receptor (TCR) signaling can
also induce Blimp-1 expression, which biased CD8+ Teff cell
differentiation towards TRM cells rather than TCM cells (40). It is
surprising that pulmonary monocytes and type 1 regulatory T
(Treg) cells also contribute to the differentiation. Pulmonary
monocytes are the major cells to present pathogen antigens,
while type 1 Treg cells promote the bioavailability of TGF-b (41,
42). As mentioned above, CD4+ TRM cells have different
development pathways compared with CD8+ TRM cells. CD4+
TRM cells express different cell markers and are affected by
different cytokines (43). They have low expression of CD103,
and their generation is not interfered by TGF-b, which has a great
impact on the generation of CD8+ TRM cell (44, 45). Beyond that,
IL-2 and IL-15 were found to affect the differentiation of CD4+
Teff cells in different subsets, respectively (44). Researches on
differentiation of CD4+ TRM cells are not as thorough as those
on CD8+ TRM cells, and there are still many points to be clarified.
Maintenance
While persisting in lung tissues, CD8+ and CD4+ TRM cells will
construct different structures that contribute to long-term
survival. Most CD8+ TRM cells reside in specific niches we
refer to as RAMDs, which are constructed by tissue
regeneration after tissue damage. These niches are significant
for lung CD8+ TRM cells. They may present cytokines that help
lung CD8+ TRM cell maintenance. Considering that the recovery
of tissue damage takes a long time, the lung CD8+ TRM cells may
protect this vulnerable part from secondary infection (35, 36).
Unlike CD8+ TRM cells, lung CD4+ TRM cells combine with B
cells and other cells to form ectopic lymphoid tissue called
inducible bronchus-associated lymphoid tissue (iBALT) that
benefits cell survival. In iBALT, CD4+ TRM cells surround B
cell follicles, which facilitate rapid interaction with each other
and provide a recall response toward potential infection (43, 46).
Compared with circulating TEM cells, lung TRM cells displayed
different patterns of genes and transcription factors that regulate
the expression of cytokine receptors and adhesion molecules,
most of which have been mentioned above. Single-cell
sequencing found an important transcription factor Notch,
which controls the expression of CD103 and the basic
metabolic function of lung TRM cells (47). The absence of
Notch greatly reduces the population of lung TRM cells.
Another study indicated that lung TRM cells were programmed
to express IFITM3, which can protect them from secondary
infection and improve survival (48). Except for cytokines and
surface molecules, M1hot tumor-associated macrophages can also
contribute to the maintenance of lung TRM cells in tumor,
possibly due to reduction in nutrition competition (49). In
comparison with other tissue TRM cells that may persist for a
long time or even a lifetime, lung TRM cells gradually disappear
4–5 months after infection. Lung TRM cells that reside in the
airway quickly decline due to the harsh environment, where
amino acid starvation triggers the integrated stress response,
Frontiers in Immunology | www.frontiersin.org 4
leading to cell apoptosis (50). And those retained in the
parenchyma decrease along with the shrink of RMADs. After
full regeneration, most of the RAMDs will disappear, and only a
minority of lung CD8+ TRM cells may survive in iBALTs (35, 36).
In order to compensate for the constant loss, airway TRM cells are
replaced primarily by recruitment from lung interstitium (51),
and TRM cells in interstitium receive continuous replenishment
from circulating TEM cells. TEM cells are recruited and
transformed into lung TRM cells under the influence of TGF-b,
IL-33, and TNF but antigen-independently. However, TEM cells
gradually lose their ability to migrate and convert into lung TRM

cells after infection (52). All in all, TRM cells can only provide a
short period of protection, which leaves the lung much more
susceptible to further infection. However, this may be a designed
mechanism for the prevention of pathological immune response.
LUNG TRM CELLS AGAINST INFECTION

The lungs and respiratory tract, as part of direct access to the
outside world, are easily exposed to various pathogens. Common
pulmonary pathogens include influenza virus, respiratory
syncytial virus (RSV), as well as Streptococcus pneumoniae,
Klebsiella pneumoniae, Bordetella pertussis, and Mycobacterium
tuberculosis. Under normal circumstances, the first infection
caused by these pathogens will not only be cleared by the body’s
immune system but also induce memory T cells, some of which
settle in the lungs as TRM cells (Figure 2).

A large aggregation of studies has shown that the lung is rich
in TRM cells specific to a variety of pathogens such as viruses and
bacteria. These TRM cells have the potential to mediate immunity
against different pathogens and protect the body from re-
infection. It has been demonstrated that influenza-specific TRM

cells exhibited rapid and robust IFN-g and TNF-a responses
after restimulation in vitro (53, 54). In human RSV challenge
model, cells with TRM phenotype can be detected in BALFs, and
the higher frequency of RSV-specific CD8+ TRM is related to the
decrease in the severity of disease and the viral load (55). CD4+
TRM cells accumulate in the lungs after Bordetella pertussis
infection. These cells are pathogen-specific and can secrete IL-
17 and/or IFN-g. A research observed that mice treated with the
S1P antagonist Fingolimod (FTY720) to prevent lymphocyte
migration into the lungs before initial infection with Bordetella
pertussis were significantly more severely affected in the later
stages of infection. However, in the case of re-infection, because
the tissue-infiltrated TEM cells have partially transformed into TRM

cells in the lung, they are not affected by Fingolimod treatment and
can still quickly clear the bacillus. At the same time, the adoptive
transfer of CD4+ TRM cells from the lungs of mice in convalescence
to uninfected mice can protect the latter from pathogens attack
(56). All these evidences indicate that TRM cells act as a pivotal role
in the rapid response of secondary infection.

However, while TRM cells eliminate invasive pathogens, the
released proinflammatory factors such as IFN-g or perforin and
granzymes may damage normal cells, cause lung injury and lead
February 2021 | Volume 11 | Article 624411
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to emphysema or fibrosis, even result in ARDS. Hence, an
effective immune response to these infections requires precise
immune regulation to eliminate pathogens while protecting the
function of normal lung tissue. Many mechanisms exist in the
lung to restrict the inflammatory response to acute infection,
including inhibitory receptors, immunomodulatory molecules
and cells like FOXP3+CD4+ Treg cells (57). Under stable
conditions, a large number of Treg cells is reserved in the lung and
IL-10 expression is significantly increased after influenza infection
(58). In RSV-infected mice, the TCR of Treg cells can specifically
recognize theviral epitope-MHCIIcomplex. Immunizationofmice
with this epitope can reduce clinical manifestations and
immunopathology without virus clearance defects (59). In
addition, PD-L1 and PD-L2 are expressed in alveolar epithelial
cells and are significantly up-regulated to control inflammation in
RSV infection (60). However, some studies held that this may limit
the formation and development of TRM cells and cause negative
effects (61). The detailed mechanisms of lung TRM cell function
and immune homeostasis are not yet fully understood, and
future improvement in the number and stability of TRM cell
population must be carried out on the premise that prevents re-
infection of the virus and does not impair the respiratory health of
the host.
Frontiers in Immunology | www.frontiersin.org 5
LUNG TRM CELLS IN PATHOLOGIC
IMMUNE RESPONSE

As mentioned above, sometimes TRM cells may cease to be the
protector and become part of the destructor, and thus attack
normal tissue and induce chronic inflammatory diseases (13)
(Figure 2). After acute influenza infection, antigen deposits in
the lung for 2–3 months. In young mice, the persistent
presentation of the antigens may induce part of the TRM cells
to exhibit exhausted-like phenotype. This phenotype is thought
to help maintain lung’s immune balance and prevent damage. If
PD-L1 antibody is used to blockade PD-L1 and PD-1 interaction,
exhausted-like TRM cells would rejuvenate, express more
cytokines, and enhance their heterogeneous protection against
infection. But they would also cause pulmonary pathological
change and fibrosis (62). In elderly mice, increased expression of
TGF-b in the environment led to accumulation of TRM cells in
the lungs. However, these TRM cells have low effector activity due
to intrinsic defects and fail to enhance the protective function,
but can instead lead to chronic inflammation and fibrotic sequela
(63). Also, it has been discovered that TH2-TRM cells are closely
related to asthma (64). They release specific cytokines that recruit
eosinophils and maintain mast cells in the airway, which result in
FIGURE 2 | An abstract figure of the role of TRM cells in various lung diseases. Lung TRM cells can: (A) rapidly respond towards invasive pathogens during re-
infection, (B) cause pathologic immune response after overactivated by environmental stimuli or allergen (C) infiltrate in lung tumor and express cytotoxic molecules
and effector cytokines.
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the inflammatory response. Using a mouse model exposed to
house dust mite (HDM), TH2-TRM cells that specifically respond
to HDM are identified. These TH2-TRM cells are developed from
HDM-specific CD4+ Teff cells and are mediated by IL-2
signaling. IL-2 up-regulates chemokine receptors such as CCR4
and CXCR3 that improve migration into the lung, as well as
programs related to tissue intention (64). A recently published
paper further reports that these TH2-TRM cells highly express
CD44 and ST2, and can reside in lung tissue and maintain their
memory towards allergen for the whole life of a mouse (65).
Once re-exposed to allergen, TH2-TRM cells robustly proliferate
near airways, produce type 2 cytokines, enhance eosinophil
activation, and promote peribronchial inflammation. They
together with circulating memory TH2 cells perform
nonredundant function in the induction of asthma (66, 67).
LUNG TRM CELLS IN ANTI-TUMOR
IMMUNITY

Accumulating evidence suggests that TRM cells are important in
anti-tumor immunity (Figure 2). It is suggested that a part of the
tumor-infiltrating lymphocytes (TILs) isolated from several
cancers displays a similar transcriptomic and phenotypic feature
with TRM cells. Some refer to it as TRM-like TILs (9), but here we
still call it “lung tumor TRM cells”, as the consensus in most articles.
These lung tumor TRM cells predict a better survival outcome in
early-stage non-small-cell lung carcinoma (NSCLC) patients, as
well as increased intraepithelial lymphocyte infiltration (68).
Single-cell and bulk transcriptomic analysis reveals that lung
tumor TRM cells have slightly different transcriptomes compared
with other lung TRM cells. They express similar surface marker
CD103, CD69, CD49a, and they also up-regulate Notch and
Runx3. But lung tumor TRM cells express more cell cycle-related
genes, such as CD39, CXCL13, CCL3, and TNFSF4, indicating that
they belong to a new subset (22). Comparing samples from
different lung cancer patients, the TRM cells of advanced lung
cancer are mostly exhausted, while the function of early-stage lung
tumor TRM cells is relatively heterogeneous (69). Among them,
CD103+CD8+ TRM cells are found to release more cytokines,
proliferate faster, and exhibit better anti-tumor performance (70).
It is described that CD103 can connect with E-cadherin on tumor
cells, which induces cytotoxic granule polarization at the immune
synapses (71, 72). CD103 also facilitates TRM cells to reside near
tumor tissues (73). In contrast with previous studies, lung tumor
TRM cells show the diffuse expression of inhibitory receptors, but
do not exhibit the exhausted phenotype. And instead, transcription
factor Eomes is found to negatively correlate with TRM cell function
(69, 74). Single-cell analysis even discovered a PD-1+TIM-3+IL-
7R- TRM cell subset expresses high levels of inhibitory receptors,
but remains the ability to proliferate rapidly in situ and displays
enhanced capacity to express key cytotoxic molecules and effector
cytokines (22). Since TIM-3+IL-7R- TRM cells are the major cells
expressing PD-1, and CD103+CD8+ TRM cells show positive
responses towards anti-PD-1 and anti-PD-L1 monoclonal
antibodies, the researchers believe that these cells may be the
Frontiers in Immunology | www.frontiersin.org 6
major subset that reacts in anti-PD-1 therapy (22, 68, 70). In
combination with the performance of TRM cells in different stages
of lung cancer, it has been speculated that Teff cells were influenced
by tumor antigens and cytokines such as TGF-b, up-regulate CD39
and CD103, and converted into CD103+ TRM cells. They exercise
their anti-tumor function diligently. If, for one reason or another,
the tumor is not eliminated, the local microenvironment as well as
the repetitive TCR stimulation may trigger their exhaustion
program and they finally become hypofunctional TRM cells
(69, 75).
VACCINATION STRATEGIES INDUCING
LUNG TRM CELLS

The growing literature that considers TRM cells are indispensable
in eliminating infectious pathogens and controlling tumor
progression has led to increasing interest in the induction of
TRM cells by vaccination for disease treatment and prevention.
Compared with circulating T cells or B cells, activated TRM cells
are more focused in killing virus-infected cells in target tissues,
which help complement neutralizing antibodies and reduce
antibodies titer threshold needed to control virus (4, 76, 77).

There are two main strategies to establish TRM cell pool within
lung tissues. The first approach applies a one-step method to
directly induce antigen-specific lung TRM cells by vaccine vectors
(78, 79). For this approach, the route of immunization is very
important. Direct intranasal or intrapulmonary route provides
better protection compared with commonly used intraperitoneal,
intramuscular, or subcutaneous administration route (80, 81).
Intranasal administration but not injection of live-attenuated
influenza virus has shown the capacity to generate long-term
CD4+ and CD8+ TRM cells and provide heterosubtypic protection
to nonvaccine influenza strains in mice (82). Intratracheal and
intranasal rather than subcutaneous inoculation of Bacille
Calmette-Guérin (BCG) also results in generation of TEM and
TRM cells in the lung, which remedy the low efficacy of parenteral
BCG vaccination to prevent pulmonary TB (83). In a preclinical
head and neck cancer model, local TRM cells can be induced and
tumor growth can be controlled in mice immunized with the
cancer vaccine (STxB-E7) by intranasal route (84). Another
approach is a two-step method that combines conventional
elicitation of systemic T cell response with the recruitment of
these cells into target tissues, which are referred to as “prime and
pull” (85). Actually, in a very early stage, scientists have discovered
that mucosal boosting with the same vaccine after systemic priming
can elicit more CD4+ and CD8+ lung TRM cells compared with
only mucosal or systemic vaccination (80). There is also evidence
indicates that compared with the original “prime and pull” strategy
used in genital tract, the pull step applied in lung disease should use
pathogen antigens instead of proinflammatory chemokines. This is
because only pathogen antigens can maintain the recruited T cells
in airway lumen and persevere immune protection over time (86).
Intranasal administration of a novel recombinant anti-TB vaccine
(SeV85AB) after subcutaneous immunization with BCG uses this
way to provide larger immune protection for lungs than either
February 2021 | Volume 11 | Article 624411
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SeV85AB or BCG alone (87). As opposed to vaccines that directly
provide the pathogen antigens like SeV85AB, recent research
developed an “antibody-targeted vaccination (ATV)” for the pull
step. It connects antigen with antibody that targets lung DC cells,
give raise to local antigen presentation, and improve activation of
lung TRM cells (88). Pulmonary surfactant-biomimetic liposomes
containing stimulator of interferon genes that target alveolar
epithelial cells give a new way to recruit CD8+ TRM cells and
provide long term wide-spectrum protection (89). These methods
may also be used in inducing tumor antigen presentation and lung
tumor TRM cell function.

In summary, multiple studies have proved that TRM cells can
be induced by vaccination to make a difference in preventing
pathogens or controlling tumor growth. However, many
problems remained to be solved, for example, how to attract
Teff cells into target areas not close to mucosal, and how to
maintain long-term lung TRM cells (79). Systemic approaches
should also be developed to evaluate the safety and efficiency of
these vaccines and prevent overactivation of TRM cells resulting
in pathologic immune responses (90).
CONCLUDING REMARKS

It is now obvious that lung TRM cells are an important part of the
adaptive immune response within lung tissues. Although we have a
rudimentary understanding of lung TRM cells, they remain shrouded
in mystery, waiting to be discovered more. While mentioning the
migration, activation, differentiation, and maintenance of lung TRM

cells, main steps are outlined but there are still huge empties in the
details. Do lung TRM cells undergo pre-differentiation in lymph
nodes before infection (91)? Which cytokines, transcription factors,
and surface molecules are more decisive in the migration, formation,
and maintenance of lung CD4+ or CD8+ TRM cells? Are there
different subtypes of lung TRM in different lung tissue structures
(such as in interstitium and parenchyma)? To answer these
questions, more advanced techniques such as single-cell RNA-
sequencing that identifies cell-cell interaction and TCR lineage
tracking may be used.

A better understanding of these issues will undoubtedly help
better manipulate lung TRM cells to prevent or treat disease.
Therapy focusing on lung TRM cells in tumor and pathologic
immune response is still in a nascent state. Besides direct activation
or transmission of tumor-specific TRM cells, currently there are
vaccines that activate antiviral lung TRM cells near tumor tissue
Frontiers in Immunology | www.frontiersin.org 7
(92), which reverse the immunosuppressive microenvironment,
and may pave the way for later cell therapy. Drugs that prevent
lung TRM cell formation or function may also be useful in
suppressing the immune response to lung transplantations or
preventing lung sequela after respiratory infection in the elderly
(63). Of course, TRM cells in the lungs are mostly deemed to fight
off lung infections. During the COVID-19 pandemic, lung TRM

cells are particularly important in the first line of defense against re-
infection of SARS-CoV-2. Actually, influenza viruses have never
been conquered, not only because of its versatility, but also because
the immune memory only lasts for a short time in lung. To fight
them, one possible solution is to improve the “width and depth” of
the function of vaccines that induce lung TRM cells. The width
refers to the prospect that the same vaccine can induce lung TRM

cells that resist a wide range of virus strains in response to virus
variability (88). The depth hopes that the induced TRM cells can
remain in the lungs for nearly lifelong, enhancing the killing effect
and duration of protection of the vaccine (79). More insight and
precise manipulation of the fate of lung TRM cells will help to better
develop novel immunomodulators to treat lung diseases by TRM

cells, and thus to exert the rapid and powerful action in critical
illnesses such as COVID-19 pandemic.
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