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Abstract: Under the assumption of gene–environment independence,

unknown/unmeasured environmental factors, irrespective of what they

may be, cannot confound the genetic effects. This may lead many people

to believe that genetic heterogeneity across different levels of the

studied environmental exposure should only mean gene–environment

interaction—even though other environmental factors are not adjusted

for. However, this is not true if the odds ratio is the effect measure used

for quantifying genetic effects. This is because the odds ratio is a

‘‘noncollapsible’’ measure—a marginal odds ratio is not a weighted

average of the conditional odds ratios, but instead has a tendency toward

the null. In this study, the authors derive formulae for gene–environ-

ment interaction bias due to noncollapsibility. They use computer

simulation and real data example to show that the bias can be substantial

for common diseases. For genetic association study of nonrare diseases,

researchers are advised to use collapsible measures, such as risk ratio or

peril ratio.

(Medicine 95(9):e2743)

Abbreviations: AMD = age-related macular degeneration, CFH =

component factor H., OR = odds ratio.

INTRODUCTION

T he occurrences of most human diseases are the result of
complex interplay between genes and environmental

exposures. In genetic association studies nowadays, it has
become a common practice for researchers to examine
any possible interaction between genes and environmental
exposures, in addition to their respective independent
Chung Lee, MD, P

(acquired throughout life), and therefore the assumption
of gene–environment independence is often tenable among
the nondiseased subjects in the study population.6–9 Under
the assumption, unknown/unmeasured environmental factors
will not confound genetic main effects. Taking a step further,
one will believe that a simple stratified analysis which
shows heterogeneous genetic effects across different levels
of the environmental exposure under study is all that is
needed to demonstrate gene–environment interaction—there
is no need to further stratify on the levels of other environ-
mental factors, because no matter what they are they will not
confound the stratum-specific genetic effects in the study
anyway.

Unfortunately, this is not true if the odds ratio is the effect
measure used for quantifying genetic effects. Odds ratios are
well known to be ‘‘noncollapsible,’’ that is, a marginal odds
ratio, even without confounding, is not a weighted average of
the conditional (stratum-specific) odds ratios, but instead has a
tendency toward the null.10–17 Hernán et al put it this way: ‘‘... a
quantitative difference between conditional and marginal odds
ratios in the absence of confounding is a mathematical oddity
(no pun intended), not a reflection of bias.’’16 It is less well
recognized, though, that the odd behavior of the odds ratios
(again no pun intended) can cause trouble: the stratum-specific
genetic odds ratios may be homogeneous at first, but because of
the noncollapsibility property they move toward the null to
different degrees and appear heterogeneous in different levels
of the environmental exposure, creating a false appearance of
gene–environment interaction.

In this study, we derive formulae for gene–environment

o noncollapsibility. We use computer
simulation and real data example to show that the bias can
be substantial for common diseases.

METHODS
Assume that the following 3 binary factors are associated

with the disease under study (D): a gene (G) with an odds ratio
of disease association of ORGD, an environmental exposure
(E) with ORED, and an unknown/unmeasured factor (U) with
ORUD, respectively. We assume that E and U (both are environ-
mental factors) are independent of G (gene–environment inde-
pendence). The E and U themselves can be independent of each
other (OREU ¼ 1, as in Figure 1A where U is an independent
risk factor for D), or are associated (OREU 6¼ 1, as in Figure 1B
where U is a mediator, and 1C where U is a confounder, of the
relation between E and D). In addition, we assume no inter-
action between any of them.

Because U is unmeasured, the researchers can only stratify
on E to obtain the stratum-specific odds ratios of disease
ORGDjE¼1 in the E ¼ 1 stratum, and
¼ 0 stratum, respectively. To quantify

eity of the genetic odds ratios across the
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FIGURE 1. Causal diagrams showing the relations between G
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levels of E, we calculate the percent discrepancy between
ORGDjE¼1 and ORGDjE¼0:

Percent Discrepancy ¼
��ORGDjE¼1 �ORGDjE¼0

��
max ORGDjE¼1;ORGDjE¼0

� �

� 100%:

A larger value of percent discrepancy means greater
heterogeneity, and greater gene–environment interaction bias.
(Here we assume no interaction, so a discrepancy between the 2
stratum-specific genetic odds ratios indicates bias.)

Percent discrepancy is a function of ORGDjE¼1 and
ORGDjE¼0, which in turns are functions of ORGD,ORED,
ORUD,OREU and the prevalence of D, G, E, and U. The
formulas appear rather cumbersome and are relegated to Web
Appendix 1, http://links.lww.com/MD/A738, where we have
taken into account the 3 possible relations between E and U: (I)
E and U are independent of each other, (II) E and U are
associated: U is a mediator, and (III) E and U are associated:
U is a confounder. Web Appendix 2, http://links.lww.com/MD/
A738, derives a condition when an unmeasured mediator and an
unmeasured confounder produce the same magnitude of bias (as
quantified by the index of percent discrepancy).

The probability of making a false alarm of gene–
environment interaction (i.e., the type I error rate, because
we assume no interaction) is a function of the sample size
and the above parameters. This probability is difficult to derive
analytically but should be fairly easy to estimate using Monte
Carlo simulations. To be precise, data is generated according
to the parameter values given and the sample size specified.
The simulated data is to be analyzed using the model
log Oddsð ÞeGþ E þ G� E. [The true disease model is
log Oddsð ÞeGþ E þ U. But because U is unmeasured, the
model does not contain a U term, and because the gene–
environment interaction is of interest, the model explicitly
contains a G� E term.] The type I error rate is calculated as
the proportion of the simulations with the P value of the G� E
interaction term less than the significance level (a level).

Web Appendix 3, http://links.lww.com/MD/A738, pre-
sents a function (apparent.interaction) written in R code. Input
the relevant parameters and the sample sizes as the arguments to
the function, it will output the percent discrepancy and the type I
error rate automatically.

Ethical approval is not necessary for the following data
used in this study: computer generated data (simulation study)
and parameter values taken from published papers (real data
application).

RESULTS

A Small-Scale Simulation Study

(genetic factor), E (environmental factor), U (unknown/unmea-
sured factor), and D (disease).
Figure 2 shows the values of percent discrepancy under
different scenarios when PG (allele frequency) is 0.3, PE

(exposure prevalence) is 0.2, PU (prevalence of the unmeasured
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factor) is 0.5, and ORGD is 4. We consider the situations when
OREU ¼ 1 (E is independent of U) and OREU ¼ 5 (E and U are
associated; this can either mean that U is a mediator or a
confounder, see Web Appendix 2, http://links.lww.com/MD/
A738). When E is independent of U (dotted lines), the percent
discrepancy is absolutely zero for either ORED ¼ 1 (panels a, d,
and g) or ORUD ¼ 1 (panels a, b, and c). When E and U are
associated (dashed lines), the value can be nonzero even with
ORED ¼ 1. If both ORED > 1 and ORUD > 1 (panels e, f, h, and
i), the percent discrepancy increases as disease prevalence
increases. When ORED ¼ ORUD ¼ 10 (panel i), the value
increases from 5% to 10% (disease prevalence¼ 0.001) to
�20% (disease prevalence ¼ 0.01).

The type I error rates (based on 100,000 simulations) for
the gene–environment interaction under the same scenarios
depicted in Figure 2 are presented in Figures 3 (small sample
size; case ¼ 250, control ¼ 250), 4 (moderate; 500, 500), and 5
(large; 2500, 2500), respectively. With a small sample size
(Figure 3), the type I error rate is roughly at around the control
value of a ¼ 0:05 when the disease prevalence is lower. When
the disease prevalence becomes higher and if ORED > 1 and
ORUD > 1, the type I error rate is slightly elevated but remains
<0.1. With a moderate sample size (Figure 4), the inflation of
the type I error rate then becomes more severe (exceeding 0.1 at
times). With a large sample size (Figure 5), the inflation
problem becomes intolerable. The type I error rate can go so
high as to �0.4 for common disease (disease prevalence ¼
0.01); moreover, this inflation problem is non-negligible even
for rare disease (disease prevalence ¼ 0.001).

Similar results can be found when PG ¼ 0:5; PE ¼
0:2; PU ¼ 0:5, and ORGD ¼ 4 (Web Appendix 4, http://links.
lww.com/MD/A738) and when PG ¼ 0:3; PE ¼ 0:2; PU ¼
0:5 and ORGD ¼ 2 (Web Appendix 5, http://links.lww.com/
MD/A738). We also perform a logistic regression analysis with
all the G, E, and U (assuming U is indeed measured) included in
the model: log Oddsð ÞeG þ E þ U þ G � E. The type I error
rates for the G � E interaction are now close to 0.05 as expected
(results not shown).

A Real Data Application
Age-related macular degeneration (AMD) is a common

disease among the elderly population, with a prevalence of
around 1.5 %.18 Documented risk factors for the disease include
the component factor H (CFH) gene and cigarette smoking,
both with disease odds ratios of around 5.19,20 A small study
suggested that heavy alcohol use is a risk factor for AMD and
the odd ratio can be up to �10.21 However, the finding is
inconsistent in other studies.19,22

Assume that a case-control study for AMD does not
measure alcohol use—it will not confound the genetic main
effects anyway under the gene–environment independence
assumption. The question now is whether that unmeasured
factor will confound our analysis of possible gene–environment
interaction between CFH gene and smoking.

We input the following parameters and sample sizes to
the R function we developed (Web Appendix 3, http://links.
lww.com/MD/A738): ORGD ¼ 5; ORED ¼ 5; ORUD ¼ 10;
PD ¼ 0:015; PG ¼ 0:25 (allele frequency),20 PE ¼ 0:25
(smoking prevalence),23 OREU ¼ 5 (odds ratio between smok-
ing and drinking),24 and sample size ¼ 1000 and 5000, respect-
ively. The results are as follows: percent discrepancy ¼ 14.8%,
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type I error rate ¼ 0.075 (sample size ¼ 1000), and 0.173
(sample size¼ 5000). From these, we see that a large sized case-
control study for AMD, without a proper adjustment for alcohol
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FIGURE 2. Percent discrepancy under various scenarios [A:ðORED; ORUD;Þ ¼ ð1;1Þ; B:ðORED; ORUD;Þ ¼ ð5;1Þ; C:ðORED; ORUD;Þ ¼
ð10;1Þ; D:ðORED; ORUD;Þ ¼ ð1;5Þ; E:ðORED; ORUD;Þ ¼ ð5;5Þ; F:ðORED; ORUD;Þ ¼ ð10;5Þ; G:ðORED; ORUD;Þ ¼ ð1;10Þ;
H:ðORED; ORUD;Þ ¼ ð5;10Þ; I:ðORED; ORUD;Þ ¼ ð10;10Þ; dotted lines: E is independent of U; dashed lines: E is associated with U].
OR¼odds ratio.
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FIGURE 3. Type I error rate for the gene–environment interaction in case-control studies with small sample size (n¼500)
[A:ðORED; ORUD;Þ ¼ ð1;1Þ; B:ðORED; ORUD;Þ ¼ ð5;1Þ; C:ðORED; ORUD;Þ ¼ ð10;1Þ; D:ðORED; ORUD;Þ ¼ ð1;5Þ; E:ðORED; ORUD;Þ ¼
ð5;5Þ; F:ðORED; ORUD;Þ ¼ ð10;5Þ; G:ðORED; ORUD;Þ ¼ ð1;10Þ; H:ðORED; ORUD;Þ ¼ ð5;10Þ; I:ðORED; ORUD;Þ ¼ ð10;10Þ; dotted lines:
E is independent of U; dashed lines: E is associated with U]. OR¼odds ratio.

Su and Lee Medicine � Volume 95, Number 9, March 2016
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FIGURE 4. Type I error rate for the gene–environment interaction in case-control studies with moderate sample size (n¼1000)
[A:ðORED; ORUD;Þ ¼ ð1;1Þ; B:ðORED; ORUD;Þ ¼ ð5;1Þ; C:ðORED; ORUD;Þ ¼ ð10;1Þ; D:ðORED; ORUD;Þ ¼ ð1;5Þ; E:ðORED; ORUD;Þ ¼
ð5;5Þ; F:ðORED; ORUD;Þ ¼ ð10;5Þ; G:ðORED; ORUD;Þ ¼ ð1;10Þ; H:ðORED; ORUD;Þ ¼ ð5;10Þ; I:ðORED; ORUD;Þ ¼ ð10;10Þ; dotted lines:
E is independent of U; dashed lines: E is associated with U]. OR¼odds ratio.
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FIGURE 5. Type I error rate for the gene–environment interaction in case-control studies with large sample size (n¼5000)
[A:ðORED; ORUD;Þ ¼ ð1;1Þ; B:ðORED; ORUD;Þ ¼ ð5;1Þ; C:ðORED; ORUD;Þ ¼ ð10;1Þ; D:ðORED; ORUD;Þ ¼ ð1;5Þ; E:ðORED; ORUD;Þ ¼
ð5;5Þ; F:ðORED; ORUD;Þ ¼ ð10;5Þ; G:ðORED; ORUD;Þ ¼ ð1;10Þ; H:ðORED; ORUD;Þ ¼ ð5;10Þ; I:ðORED; ORUD;Þ ¼ ð10;10Þ; dotted lines:
E is independent of U; dashed lines: E is associated with U]. OR¼odds ratio.
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use, will be liable to reach an erroneous conclusion about the
CFH gene � smoking interaction.

DISCUSSION
The literature documented 2 genuine no-interaction

scenarios where apparent interaction can nonetheless arise, that
is, across different strata there exists: (1) varying measurement
errors, or (2) varying confounding effects.25–29 In either case,
the stratum-specific effect measures can be biased to varying
degrees across different strata. Such heterogeneity in stratum-
specific effect measures naturally will lead a well-trained
epidemiologist to contemplate an interaction (while there
is actually none). This study demonstrates that varying non-
collapsibility (across different levels of the environmental
factor under study) in its own right can also produce apparent
interaction.

Vanderweele et al considered only the rare-disease
scenarios (where odds ratios approximate risk ratios, and hence
are collapsible) and concluded that ‘‘... under gene–environ-
ment independence, the only way to have a nonzero interaction
parameter is for some form of gene–environment interaction to
be present, either with the environmental factor of interest or
with some confounder of it.’’30 For diseases that are more
common, our study suggests otherwise. We show that for
nonrare diseases, the apparent gene–environment interaction
can and will arise, even if the gene of interest is not associated
with, and is not interacting with, the environmental factor under
study and any other unmeasured environmental factor.

This study also shows that using the noncollapsible odds
ratios, the probability of making a false alarm of gene–environ-
ment interaction (inflation of the type I error rate) increases with
increasing sample sizes. This is as expected because a bias
arising from noncollapsibility, however small it may be, can
easily become significant in big studies. This also warns against
a fishing expedition in search of gene–environment interactions
in a large genetic association study, unless all strong environ-
mental factors have been measured and adjusted for in the study,
be they independent risk factors, mediators, or confounders
(which is of course next to impossible).

Based on the findings of this study, in genetic association
studies of nonrare diseases we advise researchers to use col-
lapsible measures, such as the risk ratio or the peril ratio.31,32

Web Appendix 6, http://links.lww.com/MD/A738 (for risk
ratio) and Web Appendix 7, http://links.lww.com/MD/A738
(for the peril ratio) show that these 2 indices will not lead us
astray regarding the gene–environment interaction in the pre-
sence of unknown/unmeasured environmental variables. Using
the peril ratio index31,32 in particular, researchers have the
additional advantage of being able to test for gene–environment
interactions under the sufficient component cause model
directly. A hybrid (part case-control, part cohort) design, the
‘‘case-base’’ study, readily produces risk ratio (or peril ratio)
estimates without resorting to the rare-disease assumption.33
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