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Abstract. Renal dysfunction is a common complication of 
sepsis. Early diagnosis and prompt treatment of sepsis with 
renal insufficiency are crucial for improving patient outcomes. 
Diagnostic markers can help identify patients at risk for sepsis 
and AKI, allowing for early intervention and potentially 
preventing the development of severe complications. The 
aim of the present study was to investigate the expression 
difference of urinary microRNAs (miRNAs/miRs) in elderly 
patients with sepsis and secondary renal insufficiency, and to 
evaluate their diagnostic value in these patients. In the present 
study, RNA was extracted from urine samples of elderly 
sepsis‑related acute renal damage patients and the expres‑
sion profiles of several miRNAs were analyzed. In order to 
evaluate the expression profile of several miRNAs, urine 
samples from elderly patients with acute renal damage brought 
on by sepsis were obtained. RNA extraction and sequencing 
were then performed on the samples. Furthermore, multiple 
bioinformatics methods were used to analyze miRNA profiles, 
including differential expression analysis, and Gene Ontology 
and Kyoto Encyclopedia of Genes and Genomes enrichment 
analysis of different miRNA target genes, to further explore 
miRNAs that are suitable for utilization as biomarkers. A total 
of four miRNAs, including hsa‑miR‑31‑5p, hsa‑miR‑151a‑3p, 
hsa‑miR‑142‑5p and hsa‑miR‑16‑5p, were identified as 

potential biological markers and were further confirmed 
in sepsis using reverse transcription‑quantitative PCR. The 
results of the present study demonstrated that the four urinary 
miRNAs were differentially expressed and may serve as 
specific markers for prediction of secondary acute kidney 
injury in elderly patients with sepsis.

Introduction

Sepsis can cause poor tissue hypoperfusion and a series of 
life‑threatening organ dysfunctions, which are common causes 
of death in hospitalized patients. Sepsis remains a significant 
concern globally, with an estimated 48.9 million cases and 11 
million deaths occurring worldwide in 2017 (1). Septic shock 
refers to sepsis with persisting low blood pressure requiring 
vasopressors to maintain the mean arterial pressure (2). It has 
been clinically confirmed that sepsis is caused by bacteria 
or foci of infection (3‑5). Sepsis is the pathological process 
through which the body responds to infectious factors (6).

Septic shock belongs to a subset of sepsis in which under‑
lying circulatory, cellular, and metabolic abnormalities are 
associated with a greater risk of death than sepsis alone (7,8). 
The underlying pathogenesis of sepsis is still not clear, and 
it involves complex systemic inflammatory network effects, 
gene polymorphisms, immune dysfunction, abnormal blood 
coagulation, tissue damage and abnormal host responses to 
different infectious pathogenic microorganisms and their 
toxins (9‑11). Sepsis is closely related to the pathophysiological 
changes of multiple systems and organs in the body, and the 
pathogenesis of sepsis still needs to be further clarified (12‑14). 
Sepsis is a systemic inflammatory response syndrome caused 
by infection and is a dangerous condition. Elderly individuals 
are prone to shock and multiple organ failure, especially acute 
kidney injury (AKI), due to their weakened immunity (15). 
Early evaluation and timely treatment of sepsis are particu‑
larly important; however, since the clinical manifestations of 
sepsis are more diverse and nonspecific compared with fever 
and tachycardia, especially in elderly patients with sepsis, the 
common signs of sepsis in the elderly are changes in mental 
status (delirium, lethargy or coma), gastrointestinal dysfunc‑
tion and shortness of breath (16,17). Fever and tachycardia are 
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relatively easy to be detected by doctors. Sepsis in the elderly 
is likely to be absent from fever and tachycardia, so sepsis 
symptoms in the elderly are atypical and more difficult to 
detect early. There are several biological indicators related to 
sepsis, such as C‑reactive protein, procalcitonin, soluble trig‑
gering receptor expressed on myeloid cells 1 (TREM‑1) and 
various inflammatory factors, including IL‑6, IL‑8, TNF‑α 
and caspase‑11; however, their specificity and sensitivity are 
not ideal (18,19). Therefore, novel biomarkers that can be used 
to diagnose sepsis and assess prognosis, as well as potential 
therapeutic targets, are required (20‑22).

AKI is a clinical syndrome characterized by a rapid decline 
in renal function. Sepsis is one of the common causes of AKI 
in hospitalized and intensive care unit (ICU) patients (23). 
Sepsis‑associated AKI increases the risk of developing chronic 
comorbidities and is associated with high mortality (24,25). A 
prospective observational study of 1,753 patients at 54 hospitals 
in 23 countries found that septic AKI had a higher in‑hospital 
case‑fatality rate compared with non‑septic AKI (70.2 vs. 
51.8%; P<0.001). After adjustment for covariates, septic AKI 
remained associated with higher risk of mortality (1.48; 95% 
Confidence Interval (CI) 1.17 to1.89; P=0.001) (26). Therefore, 
it is of great significance to find novel biomarkers for the early, 
reliable and noninvasive diagnosis of sepsis‑associated AKI.

MicroRNAs (miRNAs/miRs) are a class of noncoding 
single‑stranded RNA molecules with a length of ~22 nucleo‑
tides encoded by endogenous genes (27‑30). They are involved 
in post‑transcriptional gene expression regulation in animals 
and plants. miRNAs are involved in a series of important 
life processes, including early development (31), cell prolif‑
eration, apoptosis, cell death (32), fat metabolism (33) and 
cell differentiation (34). In 2008, it was reported for the first 
time that circulating miRNAs have the potential to become a 
novel marker of solid tumors (35). Subsequently, the nonin‑
vasive acquisition of circulating miRNAs through plasma 
or serum attracted the attention of researchers. Studies have 
reported that miRNAs can exist in a variety of body fluids, 
such as blood, urine, saliva, sweat, tears, cerebrospinal fluid, 
semen and milk  (36‑40). During organ damage, miRNAs 
are usually released into biological fluids and are stably 
expressed (41). Therefore, miRNAs in blood or urine can be 
used as noninvasive biomarkers to detect renal disease and 
toxicity, and the detection method is simple, economical 
and efficient (42). Thus, miRNA provides a novel platform 
and ideas for the diagnosis and treatment of diseases and 
may become a useful tool in the field of precision medicine. 
Studies have demonstrated that a variety of miRNAs are 
involved in the inflammatory process of sepsis, and they serve 
an important role by targeting the toll‑like receptor/NF‑κB 
signaling pathway (43,44). Circulating miR‑150 was the first 
miRNA reported as a biomarker for sepsis (45). miR‑146a, 
miR‑143 (46,47), miR‑25 (48), miR‑15a/16 (49,50), miR‑1333a, 
miR‑297 and miR‑574‑5p have been indicated to be useful as 
markers for the diagnosis of sepsis (51‑54). Currently, sepsis is 
a significant cause of death in the ICU (55‑57), and effective 
prevention and diagnostic techniques are still lacking.

However, there are few studies on the relationship between 
miRNAs and sepsis‑associated AKI in elderly individuals. In 
the present study, the differential expression of miRNAs in the 
urine of elderly patients with sepsis was screened to explore 

the value of miRNAs in the noninvasive diagnosis of elderly 
patients with sepsis‑associated AKI.

Materials and methods

Study population. Elderly patients (>65 years old) diagnosed 
with sepsis were enrolled as the research subjects. For enroll‑
ment, patients had to meet the international diagnostic criteria 
for sepsis. The diagnosis of AKI was based on the 2012 Kidney 
Disease Improving Global Outcomes diagnostic criteria (58). 
These criteria involve a sharp decline in renal function within 
48 h, manifested by an increase in serum creatinine >0.3 mg/dl 
(26.5 µmol/l) or an increase >50% (According to KDIGO, AKI 
is defined as an increase in serum creatinine levels by at least 
0.3 mg/dl within 48 h with 1.5‑fold being the baseline), patient 
age >65 years, expected survival time >3 days, and pathogen 
culture or laboratory test results showing gram‑negative 
bacteria. The diagnostic criteria for sepsis were based on the 
Third International Consensus on the Management of Sepsis 
and Septic Shock (Sepsis‑3) in 2016, which entails a joint 
diagnosis by >2 attending physicians. The exclusion criteria 
were as follows: i) Patients with tumor, acute stroke, rheu‑
matic immune system disease and mental illness; ii) patients 
with viral myocarditis; iii) patients with severe hepatitis and 
cirrhosis; iv) patients who received anti‑infective treatment 
before enrollment; v) patients with end‑stage renal diseases; 
vi) patients who died or were discharged within 48 h after 
admission; and vii) patients who do not have complete clinical 
records or do not cooperate with urine sample collection.

The control group included healthy elderly individuals 
[elderly people with no previous history of chronic disease, 
age (75.29±5.46), female (58.82%)] who underwent a physical 
examination during the same period. All subjects were recruited 
between August 2020 and December 2021. The current study 
was approved by the Ethics Committee of Huadong Hospital 
Affiliated to Fudan University (Shanghai, China). All patients 
or their family members (some older people lose the ability to 
write) signed informed consent forms before enrollment.

Collection of clinical samples. Urine samples were collected 
within 24 h after the onset of sepsis in elderly patients admitted 
to Huadong Hospital Affiliated to Fudan University (Shanghai, 
China). Urine samples were collected in the morning of 
the physical examination day in healthy subjects. All urine 
samples were centrifuged at 845 x g for 10 min at 4˚C, and 
the supernatant was aliquoted into 1.8‑ml Eppendorf tubes and 
frozen within 4 h of collection at ‑80˚C.

miRNA‑sequencing. Total RNA was extracted using the 
mirVana™ miRNA Isolation kit (cat. no. AM1561; Thermo 
Fisher Scientific, Inc.) and the samples were extracted for total 
RNA according to the standard procedure provided by the 
manufacturer, and the extracted total RNA was electropho‑
resed by an Agilent 2100 Bioanalyzer (Agilent Technologies, 
Inc.) for quality control. The samples were then prepared 
for use by Agilent 2100 Bioanalyzer (Agilent Technologies, 
Inc.). The purified total RNA was subjected to 3' end‑joining, 
5' end‑joining, reverse transcription, amplification, cDNA 
library size selection and purification according to the experi‑
mental instructions to complete the library construction of 
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the sequenced samples. Total RNA was separated using 17% 
denaturing polyacrylamide gels and small RNAs between 10 
and 60 nucleotides (nt) were collected. Then, 5'‑ and 3'‑RNA 
adaptors were ligated to the small RNAs, followed by reverse 
transcription to produce cDNAs. These cDNAs were subse‑
quently amplified by PCR and subjected to Solexa/Illumina 
sequencing by Shanghai Biotechnology Corporation. The 
libraries were created using the Qubit 2.0 Fluorometer (; Thermo 
Fisher Scientific, Inc.) for concentration and the Agilent 2100 
for library size. Cluster generation and first‑way sequencing 
primer hybridization were performed on the Illumina HiSeq 
sequencer's cBot (Illumina, Inc.) according to the appro‑
priate procedure shown in the cBot User Guide. Sequencing 
reagents are prepared according to the Illumina User Guide 
and flow cells with clusters are loaded onto the machine. 
Single‑ended sequencing was performed using the single‑read 
program. The sequencing process was controlled by Illumina's 
data collection software (Illumina, Inc.) and real‑time data 
analysis was performed. FastX software (https://anaconda.
org/biobuilds/fastx‑toolkit,fastx‑toolkit 0.0.14) was used to 
preprocess the original reads for sequencing, remove linker 
sequences and low‑quality sequences (including ambiguous 
base N sequences with a base quality <10 nt and length <18 nt), 
and provide (statistical analysis based on the processed results 
table and length distribution diagram. The sequences obtained 
through the Sanger miRBase database (https://www.mirbase.
org; such as those of known ribosomal RNA, transfer RNA and 
repeat regions), RefSeq database (https://www.ncbi.nlm.nih.
gov/refseq/) and other noncoding RNA databases, including 
the non‑coding RNA, PIWI‑interacting RNA (https://www.
smallrnagroup.uni‑mainz.de/piRNAclusterDB) and Rfam 
databases (https://rfam.xfam.org/), were compared, and the 
known miRNAs were annotated. The sequence obtained by 
sequencing was compared with the genome database corre‑
sponding to the species, the annotated reads were classified 
and counted, and the known miRNAs and various other types 
of small RNA molecules were identified and counted. The 
DEGseq R language package combined with Perl script was 
used to group samples according to the current requirements 
(such as the control and experimental groups) for comparative 
analysis of miRNA expression. In the differential analysis, the 
transcripts per million (TPM) formula (single miRNA reads x 
106/total reads) was used to present the data.

RNA isolation and reverse transcription‑quantitative PCR 
(RT‑qPCR). Total RNA was extracted using TransZol Up 
reagent (Beijing Transgen Biotech Co., Ltd.). Briefly, the 
process was as follows: A total of 1 ml TransZol UP reagent 
was added into 500 µl of urine sample, followed by mixing 
with 200 µl chloroform and centrifugation at 4˚C for 15 min at 
10,000 x g. The aqueous phase containing the RNA was trans‑
ferred to a new Eppendorf tube and the same volume (~500 µl) 
isopropyl alcohol was added. A total of 1 ml pre‑cooled (4˚C) 
75% ethanol was added, and centrifugation at 4˚C for 5 min 
at 7,500 x g. The RNA precipitate was air‑dried, followed 
by dissolution in RNA solution buffer. cDNA synthesis was 
conducted with TransScript miRNA First‑Strand cDNA 
Synthesis SuperMix (TransGen Biotech Co., Ltd.). The RT kit 
was used according to the manufacturer's protocol. The reac‑
tions were performed in a PCR instrument and the reaction 

program was set to 37˚C for 1 h and 85˚C for 5  sec. The 
Hieff qPCR SYBR Green Master Mix kit (Shanghai Yeasen 
Biotechnology Co., Ltd.) was used to perform RT‑qPCR assays. 
The qPCR cycling conditions were 95˚C for 10 sec, 55˚C for 
30 sec and 72˚C for 30 sec for 40 cycles. Relative quantifica‑
tion of hsa‑miR‑31‑5p, hsa‑miR‑151a‑3p, hsa‑miR‑142‑5p and 
hsa‑miR‑16‑5p was performed by normalization to U6 small 
nuclear (sn)RNA expression levels. The 2‑ΔΔCq method was 
used to analyze miRNA levels (59). The primer sequences 
used are presented in Table SI.

Bioinformatics analysis. Bioinformatics analysis was 
performed to preprocess sequencing data and analyze the 
results. Bioinformatics analyses included miRNA expression 
quantitative analysis, expression correlation analysis, miRNA 
differential expression analysis, differential miRNA target gene 
prediction, and Gene Ontology (GO; http://www.geneontology.
org) and Kyoto Encyclopedia of Genes and Genomes (KEGG; 
http://www.kegg.jp/kegg/pathway.html) enrichment analysis of 
different miRNA target genes. The results of the GO enrich‑
ment analysis were displayed in plots, where Rich Factor=(the 
number of miRNA target genes in a GO term/the number of 
all target genes that can correspond to the GO database)/(the 
number of genes contained in a GO term/the total number of 
genes that can correspond to the GO database). The greater the 
Rich Factor is, the greater the degree of enrichment, while the 
smaller the Q‑value is, the more significant the enrichment (60).

Statistical analysis. All the experimental results in this study 
were verified by three biological repetitions to ensure the accu‑
racy of the experimental results. Data analysis was performed 
using SPSS 23 software (IBM Corp.). Data are presented 
as the mean ± SEM. Each experiment, controlling a single 
variable and setting up two experimental groups (the AKI 
and non‑AKI group) and a control group, had at least three 
biological repetitions. EdgeR (http://www.R‑project.org/) was 
used to analyze the difference in miRNAs between samples. 
After obtaining the P‑value, multiple hypothesis test correc‑
tion was performed, and the P‑value threshold was determined 
by controlling the false discovery rate, thereby providing the 
Q‑value. Fold‑change was calculated as the differential expres‑
sion based on the TPM value. The screening conditions for 
differential genes were as follows: Q‑value ≤0.05; fold‑change 
≥2. One‑way ANOVA followed by Dunnett's multiple 
comparisons test was used to compare the groups. Receiver 
operating characteristic (ROC) curves were plotted to analyze 
the predictive value of miR‑31‑5p, miR‑151a‑3p, miR‑142‑5p 
and miR‑16‑5p for the prognosis and 28‑day mortality of 
elderly patients with sepsis. The ROC curve analysis and the 
derived area under the curve (AUC) statistic provide a global 
and standardized appreciation of the accuracy of a marker or a 
composite score for predicting an event (61). ROC curves were 
generated by plotting sensitivity against 1‑specificity. P<0.05 
was considered to indicate a statistically significant difference.

Results

Patient demographic and baseline characteristics. Patients 
were diagnosed with sepsis, and the main infection sites 
were the lung, urinary system and gastrointestinal tract. 



HAN et al:  URINARY microRNAs IN SEPSIS FUNCTION AS A MARKER4

According to the general clinical data, the 74 study subjects 
included 17 healthy elderly patients, 29 septic patients with 
AKI and 28 septic patients without AKI. The mean age 
was 81 years, with a range of 65‑97 years. After 28 days 
of follow‑up in the observation group, 18 patients of the 
57 patients with sepsis succumbed, accounting for 31.58% 
(Table SII).

Differential expression of miRNAs in the sepsis AKI vs. sepsis 
non‑AKI group. Details of the patients are provided in Table I. 
Heatmap and cluster analysis demonstrated that there were 
differentially expressed miRNAs between the sepsis AKI and 
non‑AKI groups. The sepsis AKI and non‑AKI groups were 
compared with the normal group. Among the differentially 
expressed miRNAs in the sepsis AKI group, six miRNAs 
were upregulated compared with the normal group (Fig. 1A). 
Among the differentially expressed miRNAs in the sepsis 
non‑AKI group, 28 miRNAs were upregulated compared with 
the normal group (Fig. 1C). The volcano plots show the differ‑
entially expressed miRNAs under the two different conditions 
(AKI vs. non‑AKI groups) (Fig. 1B and D).

GO function and KEGG signaling pathway analysis of differ‑
entially expressed miRNA target genes. Firstly, the number of 
target genes corresponding to the three GO elements, biolog‑
ical process, cellular component and molecular function, was 
counted. Only the top 30 GO entries are shown in Fig. 2A. 
Using the same principle as for GO enrichment analysis, 
KEGG pathway enrichment analysis was also performed for 
target genes of differentially expressed miRNAs, and the 
results are shown in Fig. 2B.

miRNAs with differentially upregulated expression in patients 
with sepsis in the AKI and non‑AKI groups. There were six 
upregulated miRNAs in the AKI group (Table II) and 27 in 
the non‑AKI group (Table SIII) compared with the control. 
Analysis of the data revealed that several miRNAs in the 
sepsis AKI and non‑AKI groups were differentially expressed 
and upregulated compared with the control. A high expression 
trend was found in the sepsis AKI and non‑AKI groups.

Differentially expressed miRNAs verified by RT‑qPCR. To 
verify the expression levels of these four miRNAs in sepsis, 
17 samples from healthy controls, 29 samples from patients 
with sepsis and AKI and 28 samples from patients with sepsis 
without AKI were collected. Details of the patients are provided 
in Table SII. Compared with those in the control group, the 
expression levels of miR‑31‑5p, miR‑151a‑3p, miR‑142‑5p and 
miR‑16‑5p were significantly increased in the sepsis AKI and 
sepsis non‑AKI groups (Fig. 3A‑D).

Clinical predictive value of miRNAs for AKI occurrence in 
elderly patients with sepsis. ROC curve analysis of miR‑31‑5p, 
miR‑151a‑3p, miR‑142‑5p and miR‑16‑5p was performed 
to assess their predictive value in the diagnosis of AKI in 
elderly patients with sepsis. Fig. 4 shows that the AUC for 
miR‑142‑5p and miR‑16‑5p expression was 0.746 and 0.820, 
respectively, indicating a good predictive value of miR‑142‑5p 
and miR‑16‑5p for patients with sepsis‑induced AKI. The 
AUC for miR‑31‑5p and miR‑151‑3p expression was 0.416 
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(P=0.274) and 0.450 (P=0.513) respectively, with no statistical 
significance.

Prognostic value of miRNAs for the 28‑day survival of 57 
septic patients. ROC curves were generated to evaluate the 
predictive value of miR‑31‑5p, miR‑151a‑3p, miR‑142‑5p 
and miR‑16‑5p for the 28‑day mortality in patients with 
sepsis (Fig.  5). The AUC for each miRNA was 0.668, 
0.747,0.714 and 0.838, respectively. These results indicated 

a good predictive value of miR‑31‑5p, miR‑151a‑3p, 
miR‑142‑5p and miR‑16‑5p in the prognosis of 57 patients 
with sepsis.

Discussion

Sepsis is an important clinical area in the emergency 
and critical care medicine field. Clinical management of 
sepsis remains a major challenge  (62). Sepsis can lead to 

Figure 1. Heat map and volcano plot of differentially expressed miRNAs. Differentially expressed miRNAs in (A) the sepsis AKI group and (B) the sepsis 
non‑AKI group. Rows represent miRNAs, and columns represent specimens. Red represents a relative increase in expression, and blue represents a relative 
decrease in expression. Volcano plots of (C) the AKI group and (D) the non‑AKI group. AKI, acute kidney injury; miRNA/miR, microRNA; FC, fold change; 
FAKI,non‑acute kidney injury.
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life‑threatening multiple organ dysfunction and has a high 
fatality rate; therefore, it is important to reduce the incidence 
and fatality rate of sepsis (63). With the in‑depth study of its 

pathogenesis, biomarkers for the prediction of the prognosis 
of sepsis have emerged (64). Circulating miRNA can be used 
as a novel candidate biomarker for the clinical diagnosis and 

Figure 3. Validation of miRNA expression levels by reverse transcription‑quantitative PCR. Expression levels of (A) miR‑31‑5p, (B) miR‑151a‑3p, (C) miR‑142‑5p 
and (D) miR‑16‑5p in the control, sepsis‑AKI and sepsis non‑AKI groups. The one‑way ANOVA was used to compare the two groups with ****P<0.0001. AKI, 
acute kidney injury; miRNA/miR, microRNA.

Figure 2. Plots of GO and KEGG enrichment analysis. (A) GO enrichment analysis and (B) KEGG pathway enrichment analysis of differentially expressed 
microRNA target genes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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treatment of sepsis (61). miRNAs have previously been consid‑
ered as biomarkers in different diseases, such as lung cancer 
and sepsis. However, several issues should be investigated 

before their use in clinical practice (65‑67). miRNA detection 
is convenient and fast and its clinical diagnostic and prognostic 
value for patients with sepsis and related complications has 

Table II. Upregulated miRNAs in the sepsis acute kidney injury group compared with the control group (partial results).

		  Average			   Adjusted	
Name	 LogFC	 expression	 t‑value	 P‑value	 P‑value	 B

hsa‑miR‑345‑5p	 5.91748	 5.52460616	 6.261657	 0.000262745	 0.007849	 ‑0.70176
hsa‑miR‑31‑5p	 4.029956	 7.20973673	 3.300482	 0.011146469	 0.139838	 ‑2.57026
hsa‑miR‑151a‑3p	 3.458328	 7.02248642	 2.87484	 0.021092684	 0.200744	 ‑3.19779
hsa‑miR‑142‑5p	 3.898493	 7.01479061	 2.682209	 0.028311824	 0.235373	 ‑3.45029
hsa‑miR‑146a‑5p	 2.308655	 10.8501514	 2.562092	 0.034059476	 0.261123	 ‑3.47134
hsa‑miR‑16‑5p	 2.04111	 16.2923015	 2.914069	 0.019872937	 0.19589	 ‑3.71548

miRNA/miR, microRNA; FC, fold change.

Figure 4. Receiver operating characteristic curve analysis of miR‑31‑5p, miR‑151a‑3p, miR‑142‑5p and miR‑16‑5p for the prognosis of patients with sepsis. 
AUC, area under the curve; miR, microRNA.



HAN et al:  URINARY microRNAs IN SEPSIS FUNCTION AS A MARKER8

gained increasing attention (68,69). The complex pathogenesis 
and diagnostic value of miRNAs in sepsis need to be further 
explored, as the identification of specific miRNAs will help to 
further clarify the pathogenesis of the disease and provide a 
way to screen novel clinical diagnostic indicators or explore 
molecular targeted therapies (70).

Previous studies show that there are distinct miRNA 
regulation models in the different cohorts of patients with 
sepsis. This is due to a lack of standardization of sample 
collection, data normalization and analysis methods. There is 
still no optimal normalization strategy for miRNA analysis 
from serum, urine or other samples. Usually, miR‑16 or 
U6 snRNA is used as an internal gene for normalization. 
However, U6 snRNA is differentially regulated between 
healthy subjects and septic patients (71). Aomatsu et al (72) 
demonstrated that the upregulation of miRNA‑5100 may 

inhibit the development of AKI at least partially by regu‑
lating multiple apoptotic pathways, and miRNA‑5100 can be 
used as a diagnostic biomarker of AKI. Zhao et al (73) found 
that inhibition of miR‑16‑5p could reduce the symptoms of 
AKI in mice with ischemia‑reperfusion‑induced AKI. In 
addition, it has been reported that serum miR‑16‑5p (74) and 
serum miR‑142‑5p (75) are downregulated in septic patients 
with AKI.

The present study screened four miRNAs in urine, name‑
lymiR‑31‑5p, miR‑151a‑3p, miR‑142‑5p and miR‑16‑5p, as 
potential biological markers in patients with sepsis‑induced 
AKI. These four miRNAs were confirmed by RT‑qPCR to 
be specific markers for predicting secondary AKI in elderly 
patients with sepsis. Therefore, the present study provides 
potential diagnostic biomarkers for the early diagnosis, 
disease staging and prognosis of elderly patients with sepsis. 

Figure 5. Receiver operating characteristic curve analysis of miR‑31‑5p, miR‑151a‑3p, miR‑142‑5p and miR‑16‑5p in predicting 28‑day mortality in elderly 
patients with sepsis. The sensitivity of miR‑31‑5p, miR‑151a‑3p, miR‑142‑5p and miR‑16‑5p was 66.7, 72.2, 72.2 and 83.3%, and the specificity was 66.7, 84.6, 
59.0 and 74.4%, respectively. AUC, area under the curve; miR, microRNA.
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Future studies are required to further examine and verify 
the accuracy and specificity of the four miRNAs as diag‑
nostic markers in sepsis, laying a foundation for clinical 
application. Originally diagnosed and treated according 
to conventional methods, our study offers the possibility 
of early diagnosis and prognostic judgement. Based on the 
present study results and ROC curve analysis, miR‑16‑5p 
showed the best diagnostic results among the four genes 
examined. Further studies will verify the regulatory mecha‑
nism of miR‑16‑5p, its relationship with the major gene of 
pyroptosis and gasdermin D and its regulatory mechanism 
in AKI.As circulating miRNAs have several advantages, 
such as the easy and noninvasive sample collection from 
patients, it is possible for them to have a wide use in the 
clinic (76). The four miRNAs examined in the present study 
can facilitate the rapid initiation of directed treatment in 
sepsis and infection.

In summary, the present study indicated that specific 
miRNAs, and especially miR‑16‑5p, represent novel candidates 
for the clinical management of patients with sepsis.
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