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Abstract

The clinical importance of microbiomes to the chronicity of wounds is widely appreciated,

yet little is understood about patient-specific processes shaping wound microbiome compo-

sition. Here, a two-cohort microbiome-genome wide association study is presented through

which patient genomic loci associated with chronic wound microbiome diversity were identi-

fied. Further investigation revealed that alternative TLN2 and ZNF521 genotypes explained

significant inter-patient variation in relative abundance of two key pathogens, Pseudomonas

aeruginosa and Staphylococcus epidermidis. Wound diversity was lowest in Pseudomonas

aeruginosa infected wounds, and decreasing wound diversity had a significant negative lin-

ear relationship with healing rate. In addition to microbiome characteristics, age, diabetic

status, and genetic ancestry all significantly influenced healing. Using structural equation

modeling to identify common variance among SNPs, six loci were sufficient to explain 53%

of variation in wound microbiome diversity, which was a 10% increase over traditional multi-

ple regression. Focusing on TLN2, genotype at rs8031916 explained expression differences

of alternative transcripts that differ in inclusion of important focal adhesion binding domains.

Such differences are hypothesized to relate to wound microbiomes and healing through

effects on bacterial exploitation of focal adhesions and/or cellular migration. Related, other

associated loci were functionally enriched, often with roles in cytoskeletal dynamics. This

study, being the first to identify patient genetic determinants for wound microbiomes and

healing, implicates genetic variation determining cellular adhesion phenotypes as important

drivers of infection type. The identification of predictive biomarkers for chronic wound micro-

biomes may serve as risk factors and guide treatment by informing patient-specific tenden-

cies of infection.
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Author summary

Chronic, or non-healing, wounds represent a costly burden to patients, and bacterial

infection of wounds is an important driver of chronicity. A variety of bacterial species

often occur in chronic wounds, but it is unknown why certain species are observed in

some wound infections and not others. In this study, genetic variation of wound clinic

patients was compared to the bacteria observed in their infected wounds. Through these

comparisons, genetic variation in the TLN2 and ZNF521 genes was found to be associated

with both the number of bacteria observed in wounds and the abundance of common

pathogens (primarily Pseudomonas aeruginosa and Staphylococcus epidermidis). More-

over, Pseudomonas infected wounds were found to have fewer species present and wounds

with fewer species were slower to heal. Furthermore, patient genes associated with micro-

biomes commonly encode proteins known to be important for cellular structures impor-

tant to healing and to which bacteria directly interact. Experimental investigation of one

such gene, TLN2, identified genotype-dependent differences in the expression of func-

tionally different versions of TLN2 that is hypothesized to shape differences in cellular

adhesion structures. Finally, a new statistical approach is presented in which patient bio-

markers are used to predict the number of species observed during infection. Overall, our

results describe how patient genetic variation influence the types of bacteria likely to infect

an individual as well as influence healing.

Introduction

Chronic wounds, defined as wounds failing to show signs of healing within three weeks, are a

significant and increasing burden on the health care system, resulting in several billion dollars

in annual health care costs in the United States alone [1]. Elderly individuals and diabetics

have a significantly increased likelihood of developing chronic wounds [2]. Although the ini-

tial emergence of wounds has multiple etiologies, the development of chronicity is heavily

influenced by the colonization of bacteria [3, 4], and also fungi [5], which are thought to inter-

act through community ecological processes to shape individual wound microbiomes and stall

healing [4].

Multiple exploratory studies have helped to define characteristics of wound microbiomes

and highlighted relevance to healing outcomes. Wound microbiomes are compositionally dis-

tinct from contra-lateral healthy skin microbiomes and species that are observed in both

exhibit altered relative abundances, likely reflecting a switch from commensalism to opportu-

nistic pathogenicity [6]. While typically not as diverse as healthy skin microbiomes [6, 7],

wound microbiomes are normally polymicrobial; a study based on approximately 3,000

wound microbiomes reported a median of 6 bacterial species per wound occurring at greater

than 1% relative abundance. Wound microbiome composition is thought to be influenced by

ecological processes and the resulting polymicrobial infections can exhibit synergistic effects

such as enhanced tolerance to antimicrobials [8–10]. Furthermore, chronic wound micro-

biomes can be dynamic through time [11] with bacterial diversity increasing at resolution of

infection [12], and stable microbial communities being correlated with delayed healing [4, 12].

Despite these findings, the clinical importance of many taxa and the diversity of community

compositions observed among wound infections remains unclear.

A developing body of literature points to host genetics as an important determinant of com-

position of host-associated microbiomes. At a broad level the observation that the unique

physiologies of different body sites, which are genetically determined, support distinct
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microbiome communities specifies a degree of host genetic determination [7]. However, the

amount of genetic variation within populations that influence inter-individual differences in

microbiomes at body sites is not known [13]. Independent twin studies based on sampling

from different countries have reported a consensus view that gut microbiome composition has

a heritable component [14, 15]. A few recent microbiome genome-wide association studies

(mbGWAS) have identified specific loci that significantly associate with bacterial species (see

reviews by Awany et al. [16] and Goodrich et al. [13]). The currently limited understanding

about how host genetics influence microbiomes comes primarily from studies of healthy par-

ticipants, and even less is known about how host genetics influence microbiomes in disease

states.

In the context of infection, candidate gene approaches have identified differences at innate

immunity-associated loci between subjects that develop skin infections and healthy controls

[17], yet how host genetics influences types of infection is unknown. A recent mbGWAS iden-

tified loci associated with the occurrence of Staphylococcus aureus in healthy sinuses [18], loci

which may be relevant to infection given the opportunistic pathogenicity of S. aureus. Other

work reported a locus segregating among diabetic subjects who either did, or did not, develop

a foot ulcer over the course of study [19]. The rationale for the current study was that given the

previously reported diversity and variability in wound microbiomes, paired with the emerging

view of how host genetic factors shape microbiomes, inter-patient genetic variability may be

important in shaping wound microbiome composition. The identification of loci shaping the

microbiome of chronic wounds is expected to inform not only mechanistic details of host-

microbiota interactions but will guide the identification of predictive biomarkers and potential

therapeutic targets. A set of related predictions were assessed in the current study. Specifically,

that chronic wound microbiome composition significantly associates with patient loci, that

identified loci select for specific species which influence microbiome composition, that com-

positional variance is related to healing variance, and that identified loci can be used to inform

a predictive model.

Results

Loci with non-random associations to wound microbiome diversity and

composition are identified through mbGWAS

During patients’ initial clinical visit for chronic wound care, wound debridement was col-

lected, homogenized, and used to characterize individual wound microbiome composition

with 16S rRNA gene amplicon sequencing. Buccal swabs were also collected for each patient

and processed for genotyping, initially at 665,608 single nucleotide polymorphisms (SNPs).

Following quality control measures [20], the exploratory cohort narrowed to 79 individuals

with a total 317,553 SNPs (99.0% call rate). Genotypic associations with wound microbiome

alpha diversity (Hill1 diversity) were conducted naively to all available SNPs [21], controlling

for diabetes, age, sex, and population stratification (S1 Fig, S2 Fig). Eight SNPs were identified

to have suggestive associations with wound alpha diversity (p< 1.57 x 10−5; S2 Fig, S1 Table)

and were subsequently considered as candidate loci.

Following exploratory analysis, an experimental cohort of an additional 85 patients were

recruited with 316,671 typed SNPs (99.8% call rate) passing QC. The eight candidate SNPs

were tested a priori for linear associations with wound alpha diversity. Among these compari-

sons genotype distributions at rs8031916 (p = 0 .01) and rs7236481 (p = 0.01) remained signifi-

cantly associated with wound alpha diversity (Fig 1A). rs8031916 is an intronic variant within

Talin 2 (TLN2, S3 Fig), and rs7236481 is an intronic variant within Zinc Finger 521 (ZNF521;

S4 Fig).
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Because microbiome alpha diversity and composition are related, how patient genotype at

rs8031916 or rs7236481 explained variance in patient wound microbiome composition was

Fig 1. Patient genotype influences on different aspects of the chronic wound microbiome. a, Boxplot of Hill1 diversity as a function of genotype at

rs8031916 (TLN2) and rs7236481 (ZNF521), each explaining significant components of variation in the two-cohort mbGWAS. b, Distance-based redundancy

analysis based on Bray-Curtis dissimilarities with relative abundance species effects indicated by vectors. rs8031916 significantly explained beta diversity

(p< 0.01). The distribution of genotypes at rs8031916 across MDS1 and MDS2 are illustrated by boxplots. c, Boxplot illustrating how residual relative

abundances of P. aeruginosa and S. epidermidis were significantly explained by rs8031916 (p< 0.05 for each). d, Communities in which P. aeruginosa (Pa)

was present were significantly less diverse than communities in which S. epidermidis occurred (p< 0.05).

https://doi.org/10.1371/journal.ppat.1008511.g001
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next quantified. Permutational analysis of variance that incorporated samples from both

cohorts, covariates and beta diversity summarized as Bray-Curtis dissimilarities identified a

significant but small component of community compositional variation that was explained by

rs8031916 (Fig 1B, F = 2.04, R2 = 0.028, p = 0.006) but not rs7236481 (F = 1.14, R2 = 0.016,

p = 0.286). Age-related effects on wound microbiome composition were also significant

(F = 2.13, R2 = 0.015, p = 0.014).

Relative abundance of bacterial species is explained by patient genotype

The identification of significant associations of rs8031916 and rs7236481 with alpha diversity

(Fig 1A), and rs8031916 with beta diversity led to the prediction that patient genotype would

explain variance in the relative abundance of certain bacterial lineages. The rationale for this

prediction was that alternative patient genotypes may result in phenotypic differences selecting

for specific bacterial lineages through host-microbial interactions. Moreover, community

interaction among bacterial lineages may influence the diversity and composition of wound

microbiomes and would explain the association of patient genotype with diversity. Controlling

for covariates and considering bacterial species which were present in at least 10% of wounds

resulted in the identification that Pseudomonas aeruginosa (p = 0.036) and Staphylococcus epi-
dermidis (p = 0.034) relative abundances were significantly explained by rs8031916 genotype

(Fig 1C). In contrast, rs7236481 genotype marginally explained S. lugdunensis (p = 0.058) and

Finegoldia magna (p = 0.068). However, rs7236481 exhibited a sample size inequality due to a

rare genotype (GG, n = 3, i.e. 2% of patients). Repeating the analysis to the exclusion of the

rare genotype resulted in additional explanation of S. lugdunensis relative abundance variance

(p = 0.022). Additionally, age was found to be a significant predictor of S. epidermidis
(p = 0.044), Corynebacterium tuberculostearicum (p = 0.024), and Streptococcus agalactiae
(p = 0.024).

The relationship of patient genotype with wound microbiome diversity, composition and

species relative abundances was further investigated by focusing on the rs8031916 locus and

assessing how wound microbiome diversity varied depending on whether wounds were colo-

nized by P. aeruginosa or S. epidermidis. Using a Welch’s t-test significantly higher diversity

was observed for communities containing S. epidermidis as compared to those containing P.

aeruginosa (Fig 1D, t = 2.1, df = 49.3, p = 0.02). Furthermore, P. aeruginosa infected wounds

were significantly less diverse as compared to all other wounds (t = 2.3, df = 32.5, p = 0.01).

Differences in diversity depending on species’ presence indicated community interaction

dynamics may inform the relationship of patient genotype with diversity, composition and

species relative abundance. Canonical Pearson correlation and species interaction network

construction identified that P. aeruginosa, S. epidermidis and S. aureus interactions were

among the most strongly negative inferred interactions (Fig 2).

Patient genotype-associated wound microbiome parameters explain

healing outcome

Because wound microbiomes contribute to chronicity [8–10], the relationship between wound

microbiome characteristics and healing duration among individuals from both cohorts was

next investigated. Wounds of 58 patients healed during the period of study, and time in days

from first to last clinical visit was used to quantify wound duration (median healing time in

days = 217.5, Q1-Q3 = 109–1012). Weighted least squares multiple regression with backward

stepwise selection was used to determine that Hill1 diversity was negatively associated with

wound healing (Fig 3; t = -3.21; df = 1, 54; p = 0.002; R2
adj = 0.146). Supporting that patient

genetic ancestry and age additionally contribute to wound healing rate, population eigenvector
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(pe) 4 (t = 2.76, df = 1, 54; p = 0.008; R2
adj = 0.093) and patient age (t = 1.71; df = 1, 54;

p = 0.093; R2
adj = 0.001) were the next most important variables in this model.

Because above results indicated that Hill1 diversity and species composition are related (Fig

1), a separate model was developed (using backward selection, as above) to investigate how rel-

ative abundances of individual species contribute to healing outcomes. This model included

species with a minimum 10% prevalence (11 species) as potential predictors and the wounds

in which these species occurred (n = 48). Increasing P. aeruginosa abundances were positively

related with increased healing duration (t = 3.99; df = 1, 41; p< 0.001; R2
adj = 0.299), whereas

Anaerococcus vaginalis exhibited a negative relationship (t = 2.18; df = 1, 41; p = 0.035; R2
adj�

0). Patient age was more predictive in this model (t = 3.29; df = 1, 41; p = 0.002; R2
adj = 0.157),

while pe 1 (t = -2.44; df = 1, 41; p = 0.019; R2
adj = 0.02), diabetes (t = 2.04; df = 1, 41; p = 0.048;

R2
adj� 0), and pe 5 (t = -1.89; df = 1, 41; p = 0.066; R2

adj� 0) were the next most important

variables. Overall, the first and second models accounted for 18.9% and 38.3% of variation in

wound healing duration, respectively.

Genes most associated with chronic wound microbiome diversity are

functionally related

To determine whether genes linked to suggestive/significant SNPs exhibit non-random func-

tional relationships, a protein enrichment analysis was next performed [22]. Using genomic

locations of SNPs from both cohorts a list of 15 protein coding genes was developed for analy-

sis (ADGRG6, ARHGAP24, FSTL4, KALRN, KANK1, LHX8, LRP1B, MSGN1, MYOZ2, SHC3,

TLN2, TRDN, VASH1, ZNF521, ZNF558). Based on a combination of co-expression data,

Fig 2. Interspecific interactions inferred from relative abundance correlations. a, Interaction network with positive associations denoted by black edges

and negative associations denoted by orange edges. Species included had a study-wide average relative abundance greater than 5% and had at least one

correlation greater than or equal to r = 0.10. b, Barplot of summed positive and negative correlations for each species. Species key b: 1) Anaerococcus
hydrogenalis, 2) Anaerococcus lactolyticus, 3) Anaerococcus prevotii, 4) Anaerococcus vaginalis, 5) Corynebacterium tuberculostearicum, 6) Finegoldia
magna, 7) Fusobacterium nucleatum, 8) Peptoniphilus harei, 9) Porphyromonas levii, 10) Pseudomonas aeruginosa, 11) Staphylococcus aureus, 12)

Staphylococcus epidermidis, 13) Staphylococcus lugdunensis, 14) Streptococcus agalactiae.

https://doi.org/10.1371/journal.ppat.1008511.g002
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Fig 3. Chronic wound healing time is a function of the wound microbiome and demographics. Individual

regressions of predictor variables on healing duration. Predictor variables included are those that were retained

through backward selection for models of healing. For Pseudomonas aeruginosa and Anaerococcus vaginalis, only

samples in which these species were observed are plotted. Variables EV1, EV4, and EV5 are population Eigen vectors

encompassing genetic ancestry.

https://doi.org/10.1371/journal.ppat.1008511.g003
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other experimental evidence and automated text mining the list of genes was found be signifi-

cantly enriched for protein-protein interactions (p< 0.001); wherein three functional linkages

among the list of genes were expected by chance, 12 were identified. Moreover, multiple

KEGG pathways were significantly enriched in the list of genes provided. Pathway descriptions

included “focal adhesions”, “Ras signaling pathway”, “bacterial invasion of epithelial cells”,

among others. UniProt, Reactome and Gene Ontology Cellular Component terms were also

commonly enriched for terms/pathways describing cellular development/morphogenesis,

muscle structure and function, among others (Fig 4A and see S2 Table for a full list of terms).

Genotype at rs8031916 explains differences in TLN2 alternative

transcription in patient wound tissue

The location of rs8031916 centrally embedded in the 454 kb human TLN2 locus and approxi-

mately 7,200 bp upstream of the shortest of four protein-coding TLN2 alternative transcripts

(Fig 4B, TLN2-202 ENST00000472902.1, GRCh38.p13) guided a prediction that the significant

association of rs8031916 with wound microbiome characteristics relates to genotype-depen-

dent alternative transcription differences at TLN2. To test this prediction, TLN2 alternative

transcript expression levels in subjects’ wound bed was compared using a multiplexed reverse-

transcriptase quantitative PCR assay (Fig 4C). By quantifying relative isoform expression lev-

els, it was found that rs8031916 genotype explained significant variation in TLN2 isoform

expression (F = 8.71; df = 2, 10; p = 0.004). More specifically, CC-genotyped individuals

expressed significantly less of two intermediate length isoforms (p< 0.05, Fig 4D). However,

CC-genotypes were found to express relatively more of the shortest isoform (p< 0.05, Fig

4D), and the CT and TT genotypes did not differ from each other (p> 0.05). Because wound

bed biopsies were of mixed tissue it was not possible to identify the specific cell type(s) in

which alternative transcription varied by genotype. A preliminary indication of TLN2 expres-

sion in relevant cell types was provided by immunohistochemical staining of Tln2 in an

infected mouse surgical excision wound model. Here, Tln2 was localized to z-lines of skeletal

myocytes and was broadly expressed in adipocytes (Fig 5).

Structural Equation Model for predicting chronic wound microbiome

diversity

Drawing from both cohorts a total of 15 loci were identified to have significant/suggestive

associations with chronic wound microbiome diversity (S1 Table). With the intent of develop-

ing a predictive model for chronic wound microbiome diversity, the genotypes for each associ-

ated SNP in combination with genotypes of adjacent SNPs were used to create latent variables

describing each locus’ association with alpha diversity (see Methods for procedural develop-

ment). The inclusion of samples from both cohorts minimized sampling variability and maxi-

mized the potential for common variance among adjacent SNPs. The resulting latent variables

were used as predictors in a structural equation model (SEM), with the observation that SEM

routinely outperforms observed-variable regression in model prediction as the impetus for

SEM implementation. Following a backward selection procedure, six latent variables were

included in the SEM that explained 52.7% of the total observed variation in alpha diversity.

The six focal SNPs upon which the latent variables were based included rs10469593,

rs4758411, rs1436708, rs3846499, rs11984782 and rs12307988 (S3 Table). Comparative Fit

Index, Tucker-Lewis Index and Root Mean Square Error of Approximation for the final model

was 0.971, 0.955 and 0.046, respectively. How the SEM reduced model complexity and

increased explanatory power was assessed by comparison to the results of backward selection

multiple regression in which all focal SNPs were initially considered as potential predictors.
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Fig 4. TLN2, functioning in cell adhesion and structure, exhibits genotype-specific alternative transcription. a, Select ontological terms

that were enriched in this study. See S2 Table for a full list of terms. Terms involving TLN2 are colored yellow and number of included genes

(out of 15 total included in testing) per term is given in parentheses next to each term. b, Distribution of TLN2 protein coding transcripts on

human chromosome 15 with functional domains illustrated per Gough and Goult 2018. Red shading, from left to right denotes the transcript

regions amplified from either the canonical isoform, three isoform, or four isoform assay used to compare alternative transcription by

genotype (see Methods). c, Standard curve of RT-qPCR assays, with calculated efficiencies shown per assay. d, TLN2 log isoform ratios
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Whereas the SEM required six genomic loci to explain 52.7% of variation in alpha diversity,

the multiple regression equation required eight SNPs and explained 10.1% less variation.

Discussion

As predicted, chronic wound microbiome composition was significantly explained by geno-

type at specific loci. Although the rationale for this prediction was guided by recent findings in

healthy systems, the current study provides variable loci that contribute to microbiome com-

positional variation in a disease state. Importantly, genotype-associated microbiome composi-

tion was also significantly related to healing, with wounds harboring lower diversity

microbiomes having prolonged durations until wound closure. Genotypic effects could also

help explain recently observed patient-specific immunological responses to same microbial

exposure [23]. The working hypothesis that host genotype predispose individuals to infection

by specific species, as well as the microbiome compositions with which species associate,

invokes both environmental selection by host genotype and endogenous species interactions

in deterministically shaping chronic wound microbiomes.

A notable aspect of the result that microbiome diversity was inversely related to healing

time is this relationship was recovered from wound microbiomes characterized at patient’s ini-

tial clinical visit, whereas median time to wound closure was 210 days. A similar phenomenon

was recently documented where the presence of anaerobic bacteria (e.g. Peptoniphilus) at base-

line infection was associated with worse healing outcomes [24]. This relationship supports that

whereas patient genetics favors colonization of certain species, priority effects [25] may influ-

ence microbiome composition, stability and wound recalcitrance. For example, P. aeruginosa
was more likely to establish relative to S. epidermidis depending on genotype (Fig 1C), and

wounds containing P. aeruginosa were found to have less bacterial diversity (Fig 1D) and

(calculated as the log of either the three or four isoform Ct divided by the canonical Ct) were significantly associated by rs8031916 genotype.

Here, two levels of pairwise comparison are shown: above the dashed line are overall genotype comparisons, while within-genotype assay

comparisons are indicated below the dashed line. Significance annotation is as follows: ns = (p>0.05), � = (p<0.05), and �� = (p<0.01).

https://doi.org/10.1371/journal.ppat.1008511.g004

Fig 5. Microscopic localization of Tln2 in infected mouse wound bed. Tln2 was observed in adipocytes (a, b, c), and

striated muscle (d, e, f). H&E staining (a, d), IHC negative control (b, e), IHC detection of Tln2 with Alexa Fluor 488

secondary (c, f). Nuclei were stained with DAPI. Scale bars are given for each image.

https://doi.org/10.1371/journal.ppat.1008511.g005
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longer healing times (Fig 3). Complementary to these findings is the observation from recent

work examining wound microbiome trends receiving topical multi-antibiotic therapy in

which Pseudomonas dominated wound communities exhibited increased temporal stability in

comparison to Staphylococcal infections [11].

Comparison of models for healing duration help shed light on the relative importance of

individual species effects versus emergent community properties on patient outcomes (Fig 3).

The observation that variance uniquely accounted to species relative abundances (~29%, pri-

marily due to P. aeruginosa) was almost double that accounted for by microbiome diversity

alone (~15%) suggests that the presence of consequential species, and not community compo-

sition, is the primary determinant of healing outcome. While this comparison is informative,

the relationship between healing and diversity was observed despite only 12.5% of wounds

containing P. aeruginosa, potentially indicating wound healing differences also due to emer-

gent community properties. Previous work demonstrates how individual species and commu-

nities can both be consequential to pathogenicity. For example, the retention of type 3

secretion system functionality in P. aeruginosa, which is used for host substrate interaction,

was found to be a more critical requisite for infection than pathways relevant to microbial

interaction [26]. Conversely, synergy between pathogens has been demonstrated to increase

biofilm pathogenicity [10, 27]. The synthesis of existing information indicates that patient

genetics, intrinsic microbial properties which promote growth and infection [26], and inter-

specific interactions [8] all shape wound microbiomes, host responses and healing outcomes.

Patient genotype at TLN2 intronic variant rs8031916 explained significant variation in both

alpha and beta diversity (Fig 1), as well as the relative abundances of the two species most

observed in mono-infections in this particular patient population, P. aeruginosa and S. epider-
midis [3]. Talin is a fundamental component of focal adhesion (FA) formation where it is

involved in f-actin polymerization [28], integrin activation [29], FA stability [30], and is also

required for the assembly of cortical microtubule stabilizing complexes [31]. Talin regulation

is achieved through direct interactions with F-actin, β-integrins, VCL, KANK1, among others

[31, 32]. FA are essential for cell contact, movement and signaling, and aberration of FA by

loss or altered talin production results in reduced cell mobility [30], attachment [33], and heal-

ing [34]. In addition, FA are exploited by microorganisms during cellular attachment and

invasion [35, 36], and talin has been directly implicated in this process [37]. Here, comparison

of relative expression levels of TLN2 alternative transcripts in wound bed biopsies showed that

subject genotype at rs8031916 also explained significant differences in TLN2 alternative tran-

script expression, and these transcripts differ in their inclusion of β-integrin, VCL, F-actin and

KANK1 binding motifs ([31, 32], S1 File, Fig 4B). The emergent working hypothesis is that

TLN2 alternative transcript production influences focal adhesion dynamics, such as size and

stability, which may shape bacterial exploitation of FA, may alter cell mobility and healing, or

some combination of the two. Quantifying the influence of these processes should be investi-

gated in the future using techniques including fine mapping, FA imaging in different genetic

backgrounds, absolute isoform quantitation, and bacterial attachment and cell migration

assays. However, alternative transcription by tissue type is currently ambiguous; wound bed

biopsies were of mixed tissue type and the limited survey of infected mouse wound bed

highlighted TLN2 expression in both adipocytes and myocytes, and other yet-to-be surveyed

cell types may also be relevant. Tissue-specific alternative transcription could be characterized

with a follow-up transcriptome wide association study [38] to identify candidate tissues, pro-

ceeded by isoform expression measurements in pure culture in combination with crispr-medi-

ated mutagenesis of candidate SNPs.

The idea that genetically determined FA phenotypic variation selects for microbial coloni-

zation is supported by work in which FA-relevant loci were associated with the persistence of
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S. aureus in healthy sinuses [18]. Moreover, other recent work in wound infiltrated neutrophils

showed that perturbation of MiR-142, which influences FA via regulating Rac1 and RhoA pro-

tein synthesis, led to increased bacterial burden and delayed healing [39]. Here, the importance

of FA phenotypic variation in wounds is further supported by broader consideration of SNPs

that were significantly or suggestively associated. The statistical enrichment of protein interac-

tions among candidate loci was influenced from inclusion of genes known to function in FA

or otherwise in cytoskeletal and membrane interactions (Fig 4A, S2 Table). For example,

KANK1 was among candidate loci, and is known to interact directly and essentially with

TLN2 to link FA [40] and cortical microtubule complexes [31]. Notably, the TLN2 KANK-

binding domain is missing from the shortest TLN2 alternative transcript which differed in

expression depending on rs8031916 genotype. Whereas FA relationships stand out among

candidate loci, further survey indicates additional cellular processes also warranting additional

investigation. For example, while genetic variation at ZNF521 may be consequential to BMP-

signaling [41, 42] which influences cell migration and healing [43–45], ZNF521 regulation of B

cell maturation is also an important component of the immune response [42, 46].

Lastly, a structural equation model using patient genotype as indicators was developed that

accounted for more than half of the observed variance in microbial diversity, a metric associ-

ated here with healing and recently with the continuum between wounds and healthy skin [6,

12]. The prospect that patient genetics shape chronic wound microbiome composition high-

lights a new opportunity to identify biomarkers for clinically relevant predictive models. For

example, such models could inform risk for development and persistence of specific infections.

Given that wound persistence is associated with development of multiple drug resistant patho-

gens [9], such models could identify cases where aggressive targeted therapy is warranted at

onset. In general, expanded mbGWAS and experimental validation should reveal additional

genetic variants and corresponding phenotypes determining chronic infection.

Methods

Ethics statement

Human study protocol was executed after obtaining informed written consent from adult

patients for study as approved under Western Institutional Review Board protocol (Protocol

number: 20171819). This study was carried out in strict accordance with the recommendations

in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

The protocol was approved by the Institutional Animal Care and Use Committee of Texas

Tech University Health Sciences Center (protocol number 07044). Mice were anesthetized

using 0.02 ml per gram weight of Nembutal (pentobarbital sodium, 5 mg/ml) and euthanized

with 150 μl of Fatal-Plus solution (pentobarbital sodium, 390 mg/ml).

Sample collection

Subjects recruited into this study were drawn from patients visiting the Southwest Regional

Wound Care Clinic (Lubbock, TX, USA) for treatment of chronic wound infections. Patients

were candidates for inclusion on the basis that they presented with a lower extremity wound,

physician-determined wound infection which had been characterized at initial visit, and were

adults who consented to study conditions. Infection was determined by the accumulation of

excess necrotic material and persistent exudate on the surface of the wound, in accordance

with established guidelines [47]. Subjects were not selected based on wound type (i.e. diabetic

ulcer, venous ulcer, decubitus ulcer) because previous work has shown microbiome composi-

tion is not significantly influenced by wound type [3]. Following written consent, a single buc-

cal swab was collected from each subject. Manually homogenized wound microbiome
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debridement from each patient’s wound was also collected as previously described [3]. Wound

debridement samples were sent to MicroGenDX (Lubbock, TX, USA) for bacterial community

profiling (see below). Buccal swabs were immediately placed in liquid nitrogen and transferred

for cryogenic archival in the Wolcott Wound Care Research Collection at the Natural Science

Research Laboratory, Museum of Texas Tech University. Ninety-four buccal samples were ini-

tially retrieved from this archive and defined as the exploratory cohort. Following mbGWAS

(see below), an additional 96 buccal swabs were selected and defined as the experimental

cohort. Buccal samples were selected for both cohorts on the basis that they were collected

from subjects who had received wound microbiome community profiling on their initial clini-

cal visit. Healing duration was defined from day of first visit to the wound clinic until day that

physician determined complete closure of wound. Ethnic breakdown for those included in

final analysis for the exploratory and experimental cohorts was 6% and 11% Black, 33% and

25% Hispanic, and 61% and 64% White, respectively.

Wound microbiome profiling

Only wound samples from the first clinical visit (i.e., before clinic treatment effects) were

included for analysis. Depending on the date of initial clinic visit, the relative abundance bacte-

rial composition of wound samples was characterized using either a 454 Titanium Instrument

(454 Life Sciences, Roche, Brandord, CT, USA) as previously described [3, 11] or using an Ion

Torrent PGM (Thermo Fisher Scientific, Waltham, MA, USA) at MicroGenDX (Lubbock, TX,

USA). Clinical repeatability and congruence in community profile reporting between instru-

ments was previously validated during laboratory certified authorization professional (CAP)

certification of this facility. The protocol for PGM 16S sequencing has not been previously

reported and is described here in brief. Total DNA was extracted as previously reported [3,

11]. PCR reactions used primers 28F (GAGTTTGATCNTGGCTCAG) and 388R (GCTG

CCTCCCGTAGGAGT) with Quanta AccuStart II Tough Mix (Quanta bio, Beverly, MA,

USA). PCR reactions were conducted on ABI Veriti thermocyclers (Applied Biosystems,

Carlsbad, CA, USA) with a thermal profile consisting of 5-minute denaturation step at 95˚C,

35 cycles of 94˚C for 30 seconds, 52˚C for 40 seconds, and 72˚C for 60 seconds, and a final

extension step of 72˚C for 10 minutes. PCR products were grouped equal molar and selected

by size in two rounds using Agentcourt AMPure XP (Beckman Coulter, Indianapolis, Indiana,

USA) in a seven-tenths ratio of AMPure to product. Quantification of each group was carried

out using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). Down-

stream emulsion PCR, recovery, enrichment and sequencing followed PGM manufacturer

protocols. Bioinformatic processing of sequences was the same as that previously described

and employed a 1% within-wound minimum relative abundance threshold [3].

Subject genomic DNA extraction

Buccal swabs were transferred to the laboratory in liquid nitrogen, briefly thawed and 500 μL

of Sterile Longmire’s Solution (100 mM Tris, 100 mM EDTA, 10 mM NaCl, 0.5% SDS) was

added to each sample vial. Extraction of genomic DNA was accomplished using Gentra Pure-

Gene Buccal Cell Kits (Qiagen, Gaithersburg, MD, USA) incorporating 65˚C lysis for 1 hour,

RNase A treatment at 37˚C for 30 minutes, and a final elution in HyClone HyPure Molecular

Biology Grade Water (GE Healthcare Life Sciences MA, USA).

Subject genome fingerprinting

All DNA samples were concentrated, if necessary, and normalized to the range of 10–50 ng/

μL. Samples were genotyped according to the manufacturer’s protocol using the Infinium
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Global Screening Array -24 v2.0 microarray (Illumina, San Diego, CA, USA), which includes

665,608 markers focused on genome-wide tag-SNP variant coverage and clinically relevant

research loci. Data were collected using the iScan System (Illumina), and preliminary process-

ing/analysis (i.e., normalization, SNP clustering, genotype calling, call rate calculations, array-

based QC) were conducted using GenomeStudio v.2.0 (Illumina). Plink file sets were exported

using the PLINK Input Report Plug-in v.2.1.4 within GenomeStudio. Quality control (QC) fil-

tering was performed in accordance with Anderson et al., 2010. Briefly, individual level QC

was performed to remove individuals (1) based on missingness (>0.09) and observed hetero-

zygosity deviations (±3 SD from mean); (2) who exhibited a high degree of allele sharing/relat-

edness using an Identity-by-Descent threshold of 0.1875; and (3) with a high degree of

ancestral divergence assessed via principal component analysis using SNPRelate [48]. Marker-

level filtering was performed to remove markers with low genotyping rates <0.05; and minor

allele frequency <0.05. Principal component analysis via SNPRelate was performed again on

the post-quality control dataset to generate correct eigenvectors for population structure cor-

rection in subsequent analyses.

GWAS-microbiome comparison

For genomic associations microbiomes were summarized as alpha diversity represented as

effective number of species (i.e. Hill1 Numbers [49] expressed as the exponential function of

Shannon Diversity, which are more appropriate for linear models [50]). PLINK v1.9 [21] was

used to merge phenotype and covariate data with genotypes. Associations between SNPs and

alpha diversity were assessed using PLINK linear models. Sex, diabetic status, age, and the first

five eigenvectors from a PCA of the SNP data (continuous variables primarily describing

genetic ancestry) were included based on distribution of p-values [20], visualized using the R

package qqman [51]. The threshold for statistical significance was defined as p< 1.57 x 10−7

(0.05/317,553 SNPs considered), and the threshold for suggestive loci was defined as two

orders of magnitude greater (p< 1.57 x 10−5). For the exploratory cohort p-values for eight

SNPs fell within the suggestive region (S1 Table) and were subsequently considered candidate

loci. Subsequent association testing of SNPs in the experimental cohort was initially confined

to these candidate loci. Following statistical testing of candidate loci, a full list of suggestive/sig-

nificant SNPs from the experimental cohort was developed the same as for the exploratory

cohort and were used for specific downstream statistical tests (i.e. protein-protein interactions,

functional enrichment, and predictive modeling (see below)).

Patient genotype-species relative abundance relationships

Following confirmation from analysis of the experimental cohort that TLN2 and ZNF521 were

associated with wound microbiome alpha diversity, data from both cohorts were combined to

assess the relationship between an individual’s genotype at these loci and the relative abun-

dance of bacterial species. To limit the number of statistical comparisons being made, tests

were only made for bacterial species that were present in at least 10% of wound microbiomes

(11 bacterial species). The covariates described above were included as explanatory variables in

the MANOVA to assess the relationship between bacterial species abundance and subject

genotype.

Patient genotype-chronic wound microbiome beta diversity relationships

How patient genotype at TLN2 or ZNF521 explained variance in patient wound microbiome

composition was next quantified. This analysis employed a permutational analysis of variance

[52] that incorporated samples from both cohorts, covariates and beta diversity summarized as
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Bray-Curtis dissimilarities. Distance-based redundancy analysis was used to visualize sample

relationships and correlations of bacterial species relative abundances with the first two com-

ponents of variation were used to define biplot vectors.

Correlation network among bacterial species

To limit the sparsity of the community matrix, bacterial species present in at least 5% of patient

wounds were included for canonical Pearson correlation. R package geomnet was used to con-

struct an interaction network using associations greater that an absolute value of 0.1.

Microbiome-wound duration relationship

From both cohorts, a total of 58 patient wounds had healed by the time of statistical analysis

for this study. For these samples multiple Weighted Least Square (WLS) regression was used

to assess the relationship between alpha diversity at initial sampling and healing duration;

WLS regression was used due to the unequal variance structure between Hill1 and healing

duration (i.e., variance in healing rate decreased as Hill1 increased; Breusch-Pagan test for het-

eroscedasticity, BP = 15.4, df = 3, p = 0.001). Relationships between healing and species relative

abundances were also assessed but in a separate model due to the significant relationship

between alpha diversity and individual species presence. For this model, ordinary least squares

regression was used and candidate predictive taxa were defined as those exhibiting a minimum

10% prevalence across the 58 wounds. Patients with wounds containing species above this

threshold were included. For both models, backward selection was used to determine explana-

tory variable inclusion starting from all potential explanatory variables, which included covari-

ates as in the linear mbGWAS.

Immunohistochemistry of TLN2 in Mouse Wound Model

Given the consistently recovered relationship of TLN2 with different aspects of chronic wound

microbiome composition, a mouse wound model was used to evaluate if Tln2 protein expres-

sion could be detected in an infected wound bed. The mouse chronic wound infection model

used here has been previously described [53, 54]. Briefly, 8-week old female Swiss-Webster

mice (Charles River Laboratories, Wilmington, MA) were anesthetized by intraperitoneal

injection of sodium pentobarbital and administered full-thickness, dorsal excisional skin

wounds to the level of the panniculus muscle. The wounds were then covered with a semiper-

meable polyurethane dressing (Opsite dressing; Smith & Nephew), under which 104 Pseudo-
monas aeruginosa (PA01) bacterial cells were injected into the wound-bed. Bacterial biofilm

formation was allowed to proceed for 7 days, after which the wound beds were excised, fixed

in 10% buffered formalin, and embedded in paraffin.

Immunohistochemical staining of Tln2 took place after deparaffinizing the tissue in three

5-minute washes in xylene, two 5-minute washes in absolute ethanol, one 3-minute wash with

95% ethanol, and one 3-minute wash with 70% ethanol. Antigen retrieval was performed by

flooding with 20 ug/ml proteinase K for 15 minutes, and near-boiling (95˚) in 10 mM sodium

citrate buffer for 12 minutes. Tln2 was localized with a combination of 2 μl/ml Rabbit anti-

TLN2 antibody (Cat: R32413, NSJ Bioreagents, San Diego, CA) incubated overnight at 4˚C,

followed by 2 μl/ml Donkey anti-rabbit Alexa Fluor 488 (Cat: A21206, Life Technologies,

Eugene, OR) antibody incubated for 1 hour at room temperature. Controls were performed by

staining adjacent tissue slices with the secondary antibody alone. All sections were imaged

with a Nikon Eclipse 80i fluorescence microscope, under a 100x oil immersion objective.
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Protein-protein interaction and functional enrichment

A list of genes corresponding to all gene-associated SNPs from both cohorts with p-values

smaller than the suggestive cut-off were included in a search against string-db ([22], accessed

February 05, 2019) invoking a minimum required interaction score of 0.15 to indicate enrich-

ment for interacting proteins in the provided list. Pathway-term enrichment among input pro-

teins was evaluated using a false-discovery rate p-value correction. The human genome was

used as the statistical background for enrichment tests.

TLN2 alternative transcript expression assay

To investigate the effect of genotype at rs8031916 on TLN2 alternative transcription, a multi-

plexed reverse-transcriptase quantitative PCR (RT-qPCR) assay was developed. The assay was

designed such that multiplexed amplification of different regions of the TLN2 open-reading

frame expressed in different transcripts allowed comparison of relative expression levels. To

this end, cDNA sequences were downloaded from ensembl.org representing the four known

TLN2 alternative transcripts and aligned using MUSCLE [55]. Three regions of aligned cDNA

were selected as targets for assay development including 1) a region only expressed in the

canonical (it is also the longest) TLN2 isoform (ENST00000561311.5), 2) a region expressed in

the three longest isoforms (ENST00000561311.5, ENST00000636159.1, ENST00000494733.5),

and 3) a region expressed in all four isoforms (those mentioned above as well as

ENST00000472902.1). A primer combination targeting a region expressed only in

ENST00000561311.5 and ENST00000561311.5 was not created due to lack of acceptable

primer binding sites. Fig 4B provides a graphical representation of the TLN2 locus and the

approximate locations targeted by assays.

A TLN2 standard, which was used to validate the RT-qPCR assays, was created by amplify-

ing a 4.9 kb region of TLN2 from cDNAs created from total human muscle RNA (Takara Bio,

Mountain View, CA). Following manufacturer recommendations, SuperScript IV VILO Mas-

terMix (ThermoFisher, Waltham, MA) was used to create cDNAs, amplification was accom-

plished using Phire Hot Start II (ThermoFisher, Waltham, MA; 98˚C for 2 min; 30 cycles of

98˚C 20 s, 56˚C 20 s, and 72˚C 1 min 45 s), and the PCR product was purified by elution

through QIAquick columns (30 uL Buffer EB; Qiagen, Valencia, CA). A serial dilution (1:5) of

the final product was used as template to create the multiplexed standard curve (Fig 4C). Stan-

dard curve RT-qPCR reactions were carried out following IQ multiplex powermix protocol

(Bio-Rad Laboratories, Hercules, CA) with cycling conditions as follows: 95˚C for 2 min; 40

cycles of 95˚C 10 s and 56˚C 45 s. All primer sequences (S4 Table) were selected using the

Primer3 [56] tool and manufactured by IDT (Integrated DNA Technologies, Coralville, IA)

RNA was extracted from 50(±5) mg wound biopsies representing 13 individuals using the

Monarch Total RNA Miniprep kit (New England BioLabs, Ipswich, MA) and normalized to

100 ng total RNA going into VILO cDNA synthesis reactions. Wound biopsies were often

highly heterogeneous in their composition of apparent muscle, skin, and adipose tissue. cDNA

products were immediately used for RT-qPCR reactions with the conditions described above

for standard curves. Inter-sample expression comparisons were enabled by calculating the iso-

form ratios as the Ct values of either the three or four isoform assays to the Ct value of the

assay only amplifying the canonical isoform. Log-transformed ratios were analyzed by multi-

factor ANOVA, accounting for variation by subject genotype, assay, sample, as well as geno-

type-assay interaction. Genotype pairwise comparisons were conducted by Tukey’s HSD test,

and within genotype and assay pairwise comparisons using paired T-tests.
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Development of a Structural Equation Model to predict chronic wound

microbiome diversity

Structural Equation Modeling (SEM) is a general method for estimating and modeling latent

variables. Latent variables are typically unobserved or unmeasurable constructs that cannot be

directly evaluated, which are instead inferred indirectly through observed indicators. SEM has

found recent application in genomics research [57]. Here, a novel application of SEM is

employed in which latent variables are used to summarize the common variance of multiple

SNPs within a genomic region. The latent variable for each genomic region is estimated from

the correlations of a focal SNP (i.e., each of 15 suggestive/significant SNPs identified in

mbGWAS from both cohorts) with genomically-proximal SNPs that also segregated with the

outcome (i.e. alpha diversity), but to a lesser extent due to genomic recombination or reduced

effects on the outcome. The predictive capability on wound microbiome diversity of resulting

latent variables were then assessed through a model building routine. In detail, genomically-

proximal SNPs to include as candidate indicators were selected by identifying the elbow in the

distribution of p-values (from mbGWAS). For this, SNPs located either side of each focal SNP

were sorted by increasing p-value. The elbow in the distribution of p-values among 20 proxi-

mal SNPs was identified as the absolute value of the difference in p-values of sorted adjacent

SNPs. Manual adjustment of elbow locations, which had the effect of reducing the number of

retained loci, was based on visual inspection of ranked p-values.

Remaining SNPs were then integer coded based on correlation with the outcome. Alterna-

tive integer coding at the biallelic SNPs (e.g. AA, AG, GG) implied either first allele dominance

(0 0 1), heterozygote dominance (0 1 0), second allele dominance (1 1 0) or additive effects in

either direction (0 1 2 or 2 1 0). In the case of loci for which only two genotypes were observed,

directionality was coded in both directions (i.e. 0 1 or 1 0). For each SNP, Pearson correlations

with alpha diversity were calculated for each alternative integer coding, and the coding with

the strongest correlation was retained. Following integer coding, correlations amongst integer-

coded SNPs within each genomic region were calculated. From these correlation matrices, the

number of candidate-indicator SNPs was refined by retaining SNPs that typically exhibited

correlations with the focal SNP greater than 0.40 and had a correlation greater than 0.20 with

another SNP passing this criterion [58, 59]. When candidate-indicator SNPs had correlations

greater than 0.60, a new candidate-indicator was created by averaging their values. The final

list of indicators per locus was defined by up to three SNPs based on strength of correlation

with the outcome.

The relationship of each latent variable (representing each locus) with alpha diversity was

assessed using Confirmatory Factor Analysis (CFA) implemented in the R package lavaan

[60]. The R2 value of each CFA was compared to that obtained from a general linear model

(GLM). In instances where CFA outperformed GLM the latent construct was retained, other-

wise the genomic region was represented simply by the original integer-coded genotype call

from the focal SNP.

The final set of variables were specified as predictors of alpha diversity in an SEM that was

iteratively reduced by removing predictors that did not explain a significant unique compo-

nent of variation through backward stepwise selection. Performance of the SEM approach was

benchmarked by comparison to a multiple regression equation also developed through back-

ward selection with focal SNPs serving as predictors. SEM model fit was assessed with the

Comparative Fit Index (CFI), Tucker-Lewis Index (TLI) and Root Mean Square Error of

Approximation (RMSEA). The scripts used for all statistical analysis are available at https://

github.com/genotyper/mbGWAS_wounds.
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