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Diabetic kidney disease (DKD) is the most common diabetic complication and is a leading
cause of end-stage kidney disease. Increasing evidence shows that DKD is regulated not
only by many classical signaling pathways but also by epigenetic mechanisms involving
chromatin histone modifications, DNA methylation, and non-coding RNA (ncRNAs). In this
review, we focus on our current understanding of the role and mechanisms of ncRNAs,
including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the pathogenesis
of DKD. Of them, the regulatory role of TGF-β/Smad3-dependent miRNAs and lncRNAs in
DKD is highlighted. Importantly, miRNAs and lncRNAs as biomarkers and therapeutic
targets for DKD are also described, and the perspective of ncRNAs as a novel therapeutic
approach for combating diabetic nephropathy is also discussed.
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INTRODUCTION

Diabetic kidney disease (DKD) is one of the most predominant diabetic complications and is a
leading cause of chronic kidney disease (CKD). It is reported that up to 20–50% of living diabetes,
including type 1 (T1DM) and type 2 (T2DM) diabetes, would eventually develop into DKD (Selby
and Taal, 2020), which contributes to the high mortality of patients with DKD (Braunwald, 2019).
The established DKD is characterized by the onset of persistent albuminuria and progressive decline
of estimated glomerular filtration rate (eGFR) (Magee et al., 2017). Pathologically, the histological
features of DKD include the thickening of the glomerular basement membrane (GBM), glomerular
capillary hypertension, mesangial expansion, nodular sclerosis, glomerulosclerosis, interstitial
fibrosis, inflammation, and tubular atrophy (Raval et al., 2020).

In patients with diabetes, hyperglycemia may trigger oxidative stress, renal inflammation, and
fibrosis in kidneys (Matoba et al., 2019; Patel et al., 2020). Among those pathogenic factors, renal
fibrogenesis is the major driving force in the development of DKD (Hills and Squires, 2011; Lan,
2012a). It is well-established that transforming growth factor β (TGF-β) as the master regulator for
the fibrotic and inflammatory process in CKD (Meng et al., 2016). Hyperglycemic factors such as
advanced glycation end products (AGEs) and angiotensin II (AngII) may trigger the activation of
TGF-β signaling via Smad dependent or independent pathway, therefore promoting fibrosis in
kidneys (Lan, 2011; Meng et al., 2016; Gu et al., 2020) (Figure 1).
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The emerging field of epigenetic regulation by ncRNAs has
focused on the pathogenic pathways to halt the progression of
DKD. With no function in protein-coding, ncRNAs were
implicated as therapeutic targets or biomarkers for DKD
(Loganathan et al., 2020). Interestingly, these ncRNAs could
also be regulated by TGF-β (Meng et al., 2015). In this review,
we will focus on the regulatory role of miRNAs and lncRNAs in
the progression of DKD, and their potentials as therapeutic
targets and biomarkers for DKD are highlighted. Moreover,
the mechanisms of ncRNAs on renal fibrosis and inflammation
in DKD based on the TGF-β/Smad-mediated signaling pathway
will also be discussed.

THE EMERGING ROLE OF NON-CODING
RNAS IN DKD

miRNAs are single-stranded endogenous RNAs (20–22
nucleotides in length) that regulate gene expression on the
post-transcriptional or transcriptional level (Wahid et al.,
2010). LncRNAs are RNA transcripts over 200 nucleotides in

length, which are able to modulate gene expression by binding to
either DNAs, RNAs, or proteins (Yao et al., 2019). The roles of
miRNAs and lncRNAs in kidney development and disease have
been reviewed (Kaucsár et al., 2010; Moghaddas Sani et al., 2018;
Zhou et al., 2019). Thus, we mainly focus on the roles and
underlying mechanisms of miRNAs and lncRNAs relevant to
DKD pathogenesis (as shown in Figure 2).

Non-Smad-dependent miRNAs in DKD
The functional relevance of miRNA in renal diseases has caught
our attention since the rapid development of RNA sequencing
strategy. In most cases, miRNAs hybridize to the 3’UTRs
(untranslated regions) of the target mRNAs and hence
silencing the expression of target genes. Up to date, the
function and underlying mechanisms of many miRNAs in
renal diseases have been well-demonstrated and reviewed
(Hou and Zhao, 2013). These miRNAs are of great
importance to the epigenetic regulation on DKD.

Renal tubulointerstitial fibrosis (TIF) is one of the
predominant features of DKD. A group of miRNAs have been
shown to be profibrotic in DKD (Table 1). The expression of

FIGURE 1 | The crosstalk of canonical and noncanonical TGF-β signaling pathways associated with renal fibrosis and inflammation in diabetic nephropathy. TGF-
β/Smad and NF-κB signaling pathway are highly activated under hyperglycemic conditions. AGEs, Ang II, IL-1β and TNF-α etc, may trigger these two pathways to
promote fibrosis and inflammation in diabetic kidneys. Abbreviations: AGEs, advanced glycation end products; RAGE, receptor for AGE; Ang II, angiotensin II; AT1/2,
Ang II receptor 1 and 2; BMP, bone morphogenic protein; TNF-α, tumor necrosis factor α; TNFR, TNF receptor; IL-1β, interleukin 1β; IL-1R, IL-1 receptor; ERK,
extracellular-signal regulated kinase; IκBα, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α. (Figure created with BioRender.com).
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FIGURE 2 | Potential role of miRNAs and lncRNAs in the pathogenesis of diabetic kidney disease. Under hyperglycemic conditions, the expression of TGF-β,
growth factors such as CTGF, FGF, and cytokines may induce ECM accumulation, EMT, ER stress, oxidative stress, insulin resistance, glucose toxicity, fibrosis, and
inflammatory response. These pathogenic processes are positively or negatively regulated by ncRNAs (miRNAs and lncRNAs) to promote cell apoptosis, autophagy,
hypertrophy, fibrosis, inflammation in the diabetic kidney. Abbreviations: GFs, growth factors; ECM, extracellular matrix; EMT, epithelial-mesenchymal transition;
ER, endoplasmic reticulum. (Figure created with BioRender.com).

TABLE 1 | Non-Smad-dependent miRNAs in DKD.

miRNA Target Pathological output(s) References

miR-22 PTEN Pro-fibrosis (Zhang et al., 2018)
miR-23a SnoN (Xu et al., 2018a)
miR-34a-5p SIRT1 (Xue et al., 2018)
miR-133b SIRT1 (Sun et al., 2018b)
miR-199b
miR-135a TRPC1 (He et al., 2014)
miR-184 LPP3 (Zanchi et al., 2017)
miR-370 CNPY1 (Yu et al., 2019)
miR-30c JAK1; Snail1 Anti-fibrosis (Zhao et al., 2017; Gao et al., 2020)
miR-98-5p HMGA2 (Zhu et al., 2019c)
miR-302a-3p ZEB1 (Tang et al., 2018b)
miR-342 SOX6 (Jiang et al., 2020b)
miR-379-5p LIN28B (Li et al., 2019b)
miR-455-3p ROCK2 Anti-fibrosis (Wu et al., 2018a; Zhu et al., 2019b)
miR-544 FASN Anti-inflammation (Sun et al., 2020)
miR-217 SIRT1/HIF-1α Pro-fibrosis (Shao et al., 2016)

Pro-inflammation
miR-770-5p TIMP3 Pro-inflammation (Zhang et al., 2019c; Wang and Li, 2020)
miR-15b-5p Sema3A Anti-inflammation (Fu et al., 2019)
miR-34b IL-6R (Lv et al., 2019)
miR-140-5p TLR4 (Su et al., 2020)
miR-146a NOX4 (Wan and Li, 2018)
miR-218 IKK-β (Li et al., 2020a)
miR-374a MCP-1 (Yang et al., 2018)
miR-423-5p NOX4 (Xu et al., 2018c)
miR-451 LMP7 (Sun et al., 2016b)
miR-485 NOX5 (Wu et al., 2020)
miR-874 TLR4 (Yao et al., 2018)
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miR-22 was increased in streptozotocin (STZ)-induced DKD
model and in high glucose (HG)-treated tubular epithelial cells
(TECs). miR-22 targets phosphatase and tensin homolog
(PTEN), therefore suppressing autophagy and inducing the
expression of collagen IV and α-smooth muscle actin (α-SMA)
(Zhang et al., 2018). A high level of miR-23a was also observed in
diabetic patients and HG-cultured TECs. It directly targets the
nuclear transcription co-repressor Ski-related novel protein N
(SnoN) (Tan et al., 2006), a crucial negative regulator to TGF-
β/Smad3-mediated signaling pathway, to induce fibrosis in DKD
(Xu et al., 2018a). Sirtuin 1 (SIRT1) expression in the nucleus and
the cytoplasm has also been shown as a renoprotective regulator
by inhibiting TGF-β/Smad-induced fibrosis and downstream
hypoxia-inducible factor-1α (HIF-1α). miR-34a-5p, miR-217,
miR-133b, and miR-199b may dcirectly or indirectly target
and suppress the expression of SIRT1 under hyperglycemic
conditions (Shao et al., 2016; Sun et al., 2018b; Xue et al.,
2018). The transient receptor potential cation channel
subfamily C member 1 (TRPC1) is downregulated in diabetic
patients and animal models, which may contribute to the
development of DKD (Zhang et al., 2009a). miR-135a targets
TRPC1 to promote the fibrotic process in diabetic renal injury
(He et al., 2014). Interestingly, diabetic-induced albumin triggers
the expression of miR-184 in the tubular cells to promote TIF,
which is associated with decreased expression of lipid phosphate
phosphatase 3 (LPP3) (Zanchi et al., 2017). The canopy 1
(CNPY1) is a target of miR-370 to modulate fibroblast growth
element signaling (Matsui et al., 2011). Overexpression of miR-
370 significantly increases the accumulation of extracellular
matrix (ECM) and promotes the proliferation of mesangial
cells (MCs) (Yu et al., 2019). On the other hand, the anti-
fibrotic miR-342 binds to the 3’UTR of SRY-box 6 (SOX6),
therefore inhibiting SOX6 expression and the level of fibrotic
biomarkers (Jiang et al., 2020b). miR-379 is also involved in the
pathogenesis of DKD. It is reported that miR-379 triggers miR-
let-7, which prevents ECM accumulation and proliferation of
MCs (Li et al., 2019b). Nevertheless, some miRNAs exert
protective effects by inhibiting the epithelial-to-mesenchymal
transition (EMT). Notably, miR-30c, miR-98-5p and miR-
302a-3p target the fibrosis-related JAK1, Snail1, HMGA2, and
ZEB1, respectively, thus blocking the fibrotic process in DKD by
inhibiting EMT (Zhao et al., 2017; Tang et al., 2018b; Zhu et al.,
2019c; Gao et al., 2020). Furthermore, miR-455-3p also inhibits
renal fibrosis by targeting ROCK2, together with the reduction of
anti-inflammatory cytokines such as tumor necrosis factor-α
(TNF-α) and monocyte chemotactic protein 1 (MCP-1) (Wu
et al., 2018a). Interestingly, miR-455-3p also serves as a sponge
for pathogenic lncRNA Hottip. Hottip is upregulated under HG
conditions, while miR-455-3p may reverse Hottip-mediated
fibrosis and inflammation (Zhu et al., 2019b). Fatty acid
accumulation (FAC) was also induced by DKD, fatty acid
synthase (FASN) is not only the vital lipogenic enzyme to
FAC, but also an upregulated molecule that contributes to
glomerulosclerosis and renal inflammation. miR-544 binds
to the 3’UTR of FASN thus attenuating the infiltration of
inflammatory cells, the activation of NF-κB signaling and
renal fibrosis (Sun et al., 2020). All these findings have

suggested a crucial role of miRNAs in DKD-induced renal
fibrosis based on the epigenetic regulation level.

Hyperglycemia triggers the inflammatory response by
recruiting immune infiltration and inducing the production of
pro-inflammatory cytokines. Of note, podocyte is the barrier to
maintain glomerular filtration, and it also functions as the
receptor and producer of various cytokines. The dysfunction
of podocyte is an essential event in lesion development and
glomerulonephritis. This process promotes the progression of
DKD (Lal and Patrakka, 2018). Stimulated by HG, miR-770-5p is
upregulated and promotes podocyte injury by targeting
metalloproteinase 3 (TIMP3), and Tp53 regulated inhibitor of
apoptosis 1 (TRIAP1), knocking down of miR-770-5p reverse the
apoptosis and inflammation induced by HG in kidney biopsy and
mouse podocytes (Zhang et al., 2019c; Wang and Li, 2020). On
the other hand, more anti-inflammation related miRNAs have
been identified. Overexpression of miR-15b-5p significantly
restrained HG-induced apoptosis, oxidative stress and
inflammation in podocytes, it also directly targets Sema3A,
suggesting that miR-15b-5p could be a therapeutic target for
DKD (Fu et al., 2019). miR-34b targets to the interleukin-6 (IL-6)
receptor and downstream JAK2/STAT3 signaling, thus reducing
the expression of TNF-α, IL-6, interleukin-1β (IL-1β), and
caspase-3 in TECs (Lv et al., 2019). The nicotinamide adenine
dinucleotide phosphate (NAPDH) oxidase (NOX)-derived
reactive oxygen species (ROS) may induce inflammation,
implying that NOX enzymes as novel targets for DKD
(Lambeth et al., 2008). Of note, miR-146a (Wan and Li, 2018),
miR-423-5p (Xu et al., 2018c), and miR-485 (Wu et al., 2020)
target NOX4 and NOX5, respectively, to reduce the production of
pro-inflammatory cytokines. NF-κB signaling pathway is the
classical player in inflammation, which is activated in a wide
range of kidney diseases, including DKD. miR-218 targets the
IKK-β to regulate NF-κB signaling, as well as reducing the
expression of TNF-α, IL-6, IL-1β, and MCP-1 (Li et al.,
2020a). miR-451 also targets large multifunctional protease
(LMP7) to modulate NF-κB-mediated renal inflammation,
which is confirmed by the downregulating level of pro-
inflammatory molecules (Sun et al., 2016a). In addition, miR-
140-5p and miR-874 also function as anti-inflammatory
modulators in suppressing the expression of TNF-α, IL-6, IL-
1β in TECs by directly binding to toll like receptor 4 (TLR4), the
upstream molecule of NF-κB signaling (Yao et al., 2018; Su et al.,
2020). These reports suggest that miRNA-mediated renal fibrosis
and inflammation have critical functions in DKD.

Non-Smad-dependent lncRNAs in DKD
As promising candidates, some miRNA drugs have been
approved to proceed toward phase III or IV trials in the
coming future. However, the toxicity and off-target effects of
miRNA are somehow inevitable (Seok et al., 2018; Hanna et al.,
2019). The emerging studies on lncRNAs have shed light on
their characteristics of tissue-and-cell-type-specificity and
regulation on both transcriptional and translational levels,
making lncRNA as the promising therapeutic targets and
attractive drugs for DKD treatment (Table 2) (Kato, 2018;
Guo et al., 2019).
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LncRNA zinc finger E-box binding homeobox 1 antisense 1
(ZEB1-AS1) plays a protective role in DKD by targeting
profibrotic miR-216a-5p to inhibit HK-induced EMT and
renal fibrosis. Besides, the anti-fibrotic function of ZEB1-
AS1 is also verified that it may bind to H3K4
methyltransferase myeloid and lymphoid or mixed-lineage
leukemia 1 (MLL1) and p53 in patients with DKD (Wang
et al., 2018a; Meng et al., 2020). lncRNA NR_038323 exerts an
anti-fibrotic effect by interacting with miR-324-3p. miR-324-
3p is verified to induce dual-specificity protein phosphatase-1
(DUSP1) and the activation of p38/MAPK and ERK1/2
signaling (Ge et al., 2019b). Moreover, the expression of
lncRNA 1700020I14Rik is decreased in db/db mice.
Bioinformatic method and RNA binding protein
immunoprecipitation assay have confirmed the interaction of
1700020I14Rik and miR-34a-5p, which may then modulate the
SIRT1/HIF-1α signaling to prohibit renal fibrosis (Li et al.,
2018a). Nucleolin is a nuclear protein that expresses on the
surface of endothelial cells. CYP4B1-PS1-001 is the lncRNA
that upregulated in early DKD. By direct interaction with
Nucleolin, CYP4B1-PS1-001 inhibits fibrosis in MCs (Wang
et al., 2016b; Wang et al., 2018c). Nevertheless, some lncRNAs
interact with miRNAs to trigger and promote the fibrotic
process. (Yang et al., 2019a; Jiang et al., 2020a; Fu et al.,
2020; Zhong et al., 2020). Interestingly, LINC00968 inhibits
p21 by recruiting EZH2 to enhance proliferation and fibrosis of
MCs (Li et al., 2018b). ASncmtRNA-2 is upregulated by ROS,
and it promotes the expression of TGF-β1 and other fibrotic
factors (Gao et al., 2017b).

As shown in Table 2, by direct interaction with miRNAs or
inflammatory molecules, lncRNAs play as sponges, inhibitors, or
activators to influence either fibrogenesis or inflammatory

response. All these findings have demonstrated a critical role
of lncRNAs therapeutic targets in the pathogenesis of DKD.

TGF-β/SMAD-DEPENDENT NON-CODING
RNAS IN DKD

TGF-β signaling is highly activated under diabetic conditions and
has been shown to be a major pathway leading to DKD. It has
been well established that DKD-associated fibrosis and
inflammation are mediated by TGF-β via Smad-dependent or
-independent signaling pathways (Chung and Lan, 2015; Tang
et al., 2018a). Active TGF-β1 binds and activates TGF-β receptor
II (TβRII) and receptor I (TβRI) which induces phosphorylation
of Smad2/3 to form a complex with Smad4 that translocate into
the nucleus to regulate transcription of target genes. In general,
Smad3 is pathogenic, while Smad2 and Smad7 are protective.
Smad4 plays diverse roles in renal fibrosis and inflammation,
suggesting Smad4may not serve as the ideal therapeutic target for
DKD (Chung et al., 2013; Li et al., 2014). Many ncRNAs are
induced by TGF-β to regulate renal fibrosis and inflammation via
Smad-dependent mechanisms in DKD as highlighted in Table 3.

TGF-β/Smad-dependent miRNAs in Renal
Fibrosis and Inflammation in DKD
miR-192 is the first landmark found in DKD (Kato et al., 2007).
TGF-β upregulated miR-192 in MCs and glomeruli from db/db
mice, STZ-induced mice model as well as in DKD patients (Kato
et al., 2007; Krupa et al., 2010; Putta et al., 2012; Ma et al., 2016;
Liu et al., 2018). Indeed, these studies have shown the high
correlation between miR-192 and diabetic kidneys.

TABLE 2 | Non-Smad-dependent lncRNAs and their mechanisms in DKD.

lncRNA Target Pathological
output(s)

References

ZEB1-AS1 miR-216a-5p; MLL1; p53 Anti-fibrosis (Wang et al., 2018a; Meng et al., 2020)
NR_038323 miR-324-3p; DUSP1 (Ge et al., 2019b)
1700020I14Rik miR-34a-5p (Li et al., 2018a)
CYP4B1-PS1-001 Nucleolin (Wang et al., 2016b; Wang et al., 2018c)
ENSMUST00000147869 Cyp4a12a (Wang et al., 2016c)
XIST miR-93-5p; CDKN1A Pro-fibrosis (Yang et al., 2019a)
PVT1 miR-23b-3p; WT1 (Zhong et al., 2020)
SNHG16 miR-141-3p; CCND1 (Jiang et al., 2020a)
OIP5-AS1 miR-30c-5p (Fu et al., 2020)
LINC00968 p21/EZH2 (Li et al., 2018b)
ASncmtRNA-2 ROS (Gao et al., 2017a)
MEG3 miR-181a; Egr-1; TLR4; miR-145 Pro-fibrosis (Li et al., 2019a; Zha et al., 2019)
BLNC1 NRF2/HO-1; NF-κB (Feng et al., 2019)
NEAT1 Klotho/ERK1/2; miR-23c; Akt/mTOR; miR-

27b-3p/ZEB1
(Ma et al., 2019a; Huang et al., 2019b; Wang et al., 2019b; Li et al.,
2020b; Yang et al., 2020)

MALAT1 Wnt/β-catenin; miR-145/ZEB2; SRSF1; IL-
6; TNF-α

(Puthanveetil et al., 2015; Hu et al., 2017; Liu et al., 2019a; Zhang et al.,
2019a)

Hottip miR-455-3p; Wnt2B (Zhu et al., 2019b)
Gm4419 NF-κB/NLRP3; p50 (Yi et al., 2017)
GAS5 MMP9; miR-221; SIRT1 Anti-fibrosis (Ge et al., 2019a; Zhang et al., 2020)

Anti-inflammation
Rpph1 Gal-3/Mek/Erk Pro-inflammation (Zhang et al., 2019b)
HOXA-AS2 miR-302b-3p; TIMP3 Anti-inflammation (Li and Yu, 2020)
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Mechanistically, miR-192 may promote the expression of
collagens by targeting the E-box repressor Smad-1 interacting
protein (SIP1 or Zeb2) (Kato et al., 2007; Putta et al., 2012). Also,
activation of Akt may lead to MCs proliferation and hypertrophy
in DKD. miR-192 upregulates miR-216a and miR-217, inhibiting
PTEN to induce Akt activation under diabetic conditions.
Nevertheless, miR-192 also plays a complex and diverse role
in DKD depending on different models or time points. One study
has observed a correlation between miR-192 level,
tubulointerstitial fibrosis, and eGFR. TGF-β treatment
decreases the expression of miR-192 in TECs, resulting in the
promotion of fibrosis and the decline of eGFR (Krupa et al.,
2010). Similarly, by targeting Egr1, miR-192 decreases the
expression of TGF-β1 and fibronectin in glucose-treated TECs
and Otsuka-Long-Evans-Tokushima-Fatty rats, a diabetic
murine model (Liu et al., 2018). These studies have reported
the complexity of miRNA in mediating the fibrotic process
in DKD.

miR-200 family (miR-200a, miR-200b, miR-200c) is well-
studied miRNA clusters that maintain the epithelial
differentiation in cells. Induced by TGF-β or hyperglycemia,
the expression of miR-200a are downregulated in TECs. miR-
200a functions as a suppressor to EMT, thus protecting kidney
from diabetic insults by inhibiting the TGF-β-mediated fibrotic

process. Mechanistic study has further revealed that miR-200a
downregulates TGF-β2 expression by directly targeting the
3’UTR of TGF-β2 (Wang et al., 2011). However, the
expression of miR-200b/c are elevated in glomeruli from type
1 diabetes (T1DM) and type 2 diabetes (T2DM) mice model and
in MCs treated with TGF-β1 (Kato et al., 2011b), implying that
difference on the miR-200 expression may due to cell type
specificity and individual variability. miR-200 family may serve
as the therapeutic targets specific to certain cell types response to
DKD process.

miR-21 is another well-studied miRNA in renal disease.
Although the expression of miR-21 is downregulated in early
DKD (Zhang et al., 2009b), it is upregulated in TECs and MCs
stimulated by TGF-β1 or HG and in the renal biopsies of DKD
patients (Zhong et al., 2011; Wang et al., 2013; Zhong et al., 2013;
Wang et al., 2014; Lai et al., 2015; Mcclelland et al., 2015; Kölling
et al., 2017; Chen et al., 2018). The mechanism of miR-21
participates in DKD may be related to its activation on both
canonical and noncanonical TGF-β signaling. miR-21 not only
suppresses the inhibitory Smad7 of TGF-β signaling to promote
fibrosis (Zhong et al., 2013; Wang et al., 2014) but also targeting
the Sprouty (SPRY) to activate the Ras/MEK/ERK signaling to
activate fibrogenesis of TGF-β signaling (Xu et al., 2014). In
addition, miR-21 also exerts profibrotic and pro-inflammatory

TABLE 3 | TGF-β/Smad3-dependent miRNAs and lncRNAs in renal fibrotic and inflammatory response of DKD.

miRNA Mechanism/target Pathological
output(s)

References

miR-192 p53; Zeb1/2; E-cadherin; Egr1 Anti/pro-fibrosis (Kato et al., 2007; Chung et al., 2010; Krupa et al., 2010; Kato et al., 2011b;
Putta et al., 2012; Deshpande et al., 2013; Ma et al., 2016; Liu et al., 2018)

miR-200 TGF-β1/2 (Kato et al., 2011a; Wang et al., 2011)
miR-29c Spry1; TPM1 (Long et al., 2011; Shao et al., 2019; Huang et al., 2020)
miR-21 Smad7; Spry; PPARα; PTEN; CDC25a; CDK6;

MMP9; TIMP1; TIMP3
Pro-fibrosis (Zhong et al., 2011;Wang et al., 2013; Zhong et al., 2013;Wang et al., 2014;

Lai et al., 2015; Mcclelland et al., 2015; Kölling et al., 2017; Chen et al.,
2018)

Pro-inflammation

miR-27a SFRP1; PRKAA2; PPARγ Pro-fibrosis (Hou et al., 2016; Wu et al., 2018b; Shi et al., 2020)
miR-130b TGF-β1; Smad2/3; Smad4 (Castro et al., 2014; Lv et al., 2015; Liu et al., 2019b; Ma et al., 2019b)
miR-215 CTNNBIP1 (Mu et al., 2013a)
miR-216a Ybx1; FoxO1 (Huang et al., 2019a; Meng et al., 2020)
miR-382 HSPD1; FoxO1 (Fang et al., 2017; Wang et al., 2018d)
miR-488 TGF-β1 (Sun et al., 2019)
miR-26a CTGF; Smad4 Anti-fibrosis (Koga et al., 2015; Cai et al., 2018; Dong, 2019; Gao et al., 2019)
miR-29a,b TGF-β1/2; Spry; Col; MMP; Fos; Adams;

HDAC4
(Qin et al., 2011; Winbanks et al., 2011; Lan, 2012b; Wang et al., 2012;
Chen et al., 2014; Srivastava et al., 2019; Tung et al., 2019)

miR-93 Orai1 (Ma et al., 2018; Yang et al., 2019a; Yang et al., 2019b)
miR-136 SYK; TGF-β/Smad3 (Liu et al., 2020)
miR-let-7 TβR1 (Srivastava et al., 2020)
lncRNA
Erbb4-IR miR-29b; Smad7 Pro-fibrosis (Sun et al., 2018a; Feng et al., 2018; Xu et al., 2020)
NR_033515 miR-743b-5p (Gao et al., 2018)
Arid2-IR Egr1; Smad3 Pro-fibrosis (Zhou et al., 2015; Yang et al., 2019c)

Pro-inflammation

NONHSAG053901
Egr-1 Pro-inflammation (Peng et al., 2019)

LRNA9884 MCP-1 (Zhang et al., 2019d)
TUG1 TGF-β1; PI3K/AKT; miR-21; miR-377; PGC-

1α; TRAF5;
Anti-fibrosis (Li and Susztak, 2016; Long et al., 2016; Duan et al., 2017; Lei et al., 2018;

Wang et al., 2019a; Shen et al., 2019; Zang et al., 2019)
PRINS Smad7 Anti-fibrosis (Jiao et al., 2019)

Anti-inflammation
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effects by targeting PTEN, tissue inhibitor of matrix
metalloproteinases (TIMPs), and other molecules, as shown in
Table 3.

miR-29 family is demonstrated to be protective miRNAs that
are highly expressed in kidneys but significantly reduced under
diabetic conditions. The expression of miR-29 family in various
renal cells is decreased when they are stimulated with TGF-β1 or
treated with HG (Qin et al., 2011; Chen et al., 2014). The
protective role of miR-29 family has been supported by the
evidence that overexpression of miR-29 may inhibit the
transcription of collagen genes while suppression of miR-29
promotes ECM accumulation. Many studies have identified
fibrosis-related targets of miR-29 under hyperglycemic
conditions, demonstrating the anti-fibrotic role of miR-29 in
DKD. Insterestingly, studies also revealed that miR-29c, serves as
a signature miRNA that promotes the progression of DN and
fibrosis (Long et al., 2011; Shao et al., 2019; Huang et al., 2020).
More and more studies are revealing the functions and
mechanisms of miRNAs in fibrosis and inflammation during
diabetic conditions, these miRNAs may play as potential
therapeutic targets to combat DKD.

TGF-β/Smad-Dependent lncRNAs in Renal
Fibrosis and Inflammation in DKD
Under hyperglycemic condition, the expression of profibrotic and
pro-inflammatory lncRNAs are usually upregulated, suggesting
their regulatory role in DKD. TGF-β-mediated lncRNA Erbb4-IR
is highly expressed in diabetic db/db mice and AGEs-treated
MCs. It is regulated by Smad3 as Smad3 deficiency inhibits the
transcription of Erbb4 (Feng et al., 2018; Xu et al., 2020). The
upregulation of Erbb4-IR is consistent with the elevation of
albuminuria, serum creatinine, and fibrotic biomarkers. The
mechanistic role of Erbb4-IR may be the binding of Erbb4-IR
with the 3’UTR of miR-29b, therefore suppressing anti-fibrotic
miR-29b expression. Moreover, Erbb4-IR may also bind with
Smad7 to promote renal fibrosis (Sun et al., 2018a; Feng et al.,
2018).

lncRNA NR_033515 is found to be significantly increased in
the serum of DKD patients, which has shown a positive
correlation with KIM-1 and NGAL, diagnostic markers of
DKD. The mechanistic study has further confirmed the
fibrotic role of NR_033515 by revealing the binding of
NR_033515 and miR-743b-5p, resulting in the proliferation,
EMT, and fibrosis increasing level of proliferation-related
proliferating cell nuclear antigen (PCNA), Cyclin D1, and the
fibrotic proteins during DKD (Gao et al., 2018).

Arid2-IR is regulated by Smad3, knockdown of Arid2-IR in
TECs has no effect on TGF-β/Smad-mediated fibrosis but
promotes IL-1β-induced NF-κB-driven renal inflammation in
obstructive kidney disease (Zhou et al., 2015). However, a recent
study has reported the profibrotic effect of Arid2-IR by
interacting with early growth response protein-1 (Egr1) in
high-fat-diet and STZ-induced mice. Arid2-IR induces the
expression of collagens and α-SMA in mouse MCs,
contributing to the ECM accumulation in DKD (Yang et al.,
2019c).

Interestingly, lncRNA NONHSAG053901 also targets Egr1 in
mouse MCs, but their interaction has promoted inflammation by
upregulating pro-inflammatory cytokines (Peng et al., 2019). The
pathogenic role of Smad3-regulated LRNA9884 is observed in db/
db mice with more severe albuminuria, histological injuries, and a
decline of eGFR. LRNA9884 is induced by AGEs, and it targets
MCP-1 to promote MCP-1-driven renal inflammation (Zhang
et al., 2019d).

lncRNAs taurine upregulated gene 1 (TUG1) is an anti-
fibrotic lncRNA mediated by TGF-β with multiple functions
in DKD. In response to metabolic alterations of DKD, the
expression of TUG1 is downregulated in podocytes.
Overexpression of TUG1 can reverse the mitochondrial
dysfunction in podocytes by targeting the transcription factor
peroxisome proliferator-activated receptor γ (PPARγ)
coactivator 1α (PGC-1α) (Li and Susztak, 2016; Shen et al.,
2019). In consistence with previous results, TUG1 can also
modulate mitochondrial bioenergetics in podocytes by binding
with PGC-1α (Long et al., 2016). These findings have highlighted
the connection between lncRNAs and DKD. By interacting with
TNF receptor-associated factor 5 (TRAF5), TUG1 can suppress
TRAF5-mediated podocyte apoptosis (Lei et al., 2018) and
negatively downregulate the PI3K/Akt signaling to inhibit
proliferation and ECM deposit in MCs (Zang et al., 2019).
TUG1 is also able to interact with miR-21, thus promoting the
expression of TIMP3 to alleviate renal fibrosis in HG-stimulated
TECs and in db/db mice (Wang et al., 2019a). Furthermore,
TUG1 sponges for miR-377 to regulate PPARγ and ECM in MCs
(Duan et al., 2017). All these protective effects of lncRNA TUG1
in various cell types has supported its therapeutic potential in
treating DKD. Besides, some lncRNAs may play diverse roles in
the pathogenesis of DKD. lncRNA psoriasis-susceptibility related
RNA gene induced by stress (PRINS)may exert both anti-fibrotic,
anti-inflammatory but pro-apoptotic effects by regulating Smad7
in DKD. It has been demonstrated that there is a positive
correlation between PRINS and Smad7 in DKD patients. As
overexpression of Smad7 inhibits renal fibrosis and inflammation
but also induces apoptosis in podocytes (Schiffer et al., 2001; Ka
et al., 2012), thus, overexpression of PRINS upregulates Smad7
expression and promotes apoptosis in mouse podocytes (Jiao
et al., 2019). lncRNA PRINS may be a therapeutic target of DKD-
induced renal fibrosis and inflammation. But the underlying
mechanisms of interaction between PRINS and Smad7 remain
unexplored. In conclusion, the connection of TGF-β-mediated
lncRNA and DKD is well-defined. Further studies on revealing
the therapeutic targets and underlying mechanisms of these
lncRNAs remain to be further explored.

NON-CODING RNAS AS NOVEL
BIOMARKERS FOR DKD

The diagnosis and monitoring of renal injuries in DKD are now
dependent on the detection of urinary albumin or serum
creatinine. However, some patients may not present
microalbuminuria or creatinine alterations during the
progression of DKD, suggesting that none of these measures
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can accurately indicate the severity and type of injury induced by
hyperglycemia (Magee et al., 2017; Lin et al., 2018). In addition,
urinary albumin is not specific to DKD, which may also occur in
other diseases. Besides, the diagnostic and prognostic test of renal
biopsy is invasive and may not be a reliable way to establish the
full patterns of DKD. Thus, the availability of sensitive and
specific biomarkers will provide therapeutic benefits in the
control of DKD.

Non-coding RNAs in body fluids could facilitate
communication between cells. Non-coding RNAs may exist in
a stable form in serum and urine. As biomarkers, they may form a
complex with proteins or be stored in transporters, including
exosomes, microparticles, and apoptotic bodies. Based on the
tissue- and cell type-specific characteristics of lncRNAs,
significant differences in expression of novel lncRNAs in DKD
(as shown inTables 2 and 3) havemapped the signaling pathways
in the pathogenesis of diabetic nephropathy (Guo et al., 2019).
Indeed, a recent study has reported a novel lncRNA, PANDAR,
related to T2DM DKD patients. The expression of PANDAR is
upregulated in diabetic patients and higher in DKD patients with
massive proteinuria, demonstrating its potential as biomarker
and predictor for prognosis and progression of DKD (Zhao et al.,
2020). The expression of lncRNA CASC2 is downregulated in
T2DM patients with chronic renal failure but not T2DM patients
with other complications, suggesting that lncRNA cancer
susceptibility candidate 2 (CASC2) could also serve as a renal
specific biomarker for DKD. Moreover, the study has further
followed up for 5 years and found out that serum level of lncRNA
CASC2 is negatively correlated with the incidence of chronic
renal failure, supporting that serum level of lncRNA CASC2 may
be a specific and reliable biomarker for diagnosis in DKD
progression (Wang et al., 2018b). These studies have shown
that lncRNAs are of high relevance in the development and
progression of DKD, however, further mechanistic
investigations on lncRNAs as therapeutic targets are warranted.

Some circulating miRNAs may also serve as sensitive and
useful biomarkers for early detection and diagnosis for DKD
(Zhang et al., 2016; Nascimento and Domingueti, 2019). For
instance, in the early stage of T2DMDKD, the expression of miR-
377 is positive, while miR-192 is negatively correlated with renal
function (Tayel et al., 2020). In addition, circulating miRNA of
miR-1246, miR-642a-3p, let-7c-5p, miR-1255b-5p, let-7i-3p,
miR-5010-5p, and miR-150-3p are significantly upregulated in
DKD patients compared with healthy volunteers (Kim et al.,
2019). Moreover, the expression of miR-126 is decreased in DKD
patients, which is negatively associated with albuminuria, level of
fasting glucose, and glycated hemoglobin but positively correlated
with eGFR (Al-Kafaji et al., 2016). The level of serum miR-21 is
also consistent with tissue miR-21 that closely reflects renal
function in DKD (Wang et al., 2016a). Up to date, many
studies have reported the expression profiles of circulating
miRNAs in diabetic nephropathy, making miRNAs as one of
the promising candidates for DKD diagnosis and therapeutic
targets.

The urinary exosomal miRNAs are called as “liquid biopsy”
(La Marca and Fierabracci, 2017), which are typically secreted by
cells from renal segments. They carry proteins, RNAs, and

biomarkers that may reflect renal injury and dysfunction (Xu
et al., 2018b). For example, miR-200b is a novel urinary
biomarker that negatively correlates with the degree of renal
fibrosis in CKD and DKD (Yu et al., 2018). One study has
suggested that the expression of miR-27b-3p and miR-1228-3p
in urine may be useful indicators for the degrees of renal fibrosis
of DKD patients (Conserva et al., 2019). Notably, the expression
of miR-126 in urine is increased in DKD patients compared to
diabetic patients without renal disease. Interestingly, the urinary
level of miR-126 is significantly decreased in DKD patients with a
better diabetic control, implying that miR-126 may be a
biomarker in DKD and monitor for DKD treatment response
(Liu et al., 2014).

Although the clinical relevance in urinary miRNAs have been
well studied (Lv et al., 2013; Cheng et al., 2014), there is still no
consensus on the normalization of miRNAs isolated from urine,
as the levels of urinary miRNAs may be high veriable and affected
by urinary contents and concentrations. Neverthless, the better
normalizer strategies should be encouraged (Blondal et al., 2013;
Lekchnov et al., 2016; Corral-Vazquez et al., 2017), as the
normalization of the validated data may help to provide
statistically significant results without causing unwanted bias.

NON-CODING RNAS AS PROMISING
THERAPEUTIC TARGETS FOR DKD

The regulatory role of non-coding RNAs in the pathogenesis of
DKD has highlighted their potential as therapeutic targets for
DKD. Restoring expression or inhibition of non-coding RNAs in
renal or inflammatory cells under diabetic conditions may halt
renal fibrosis and inflammation (Figure 3). Besides, rebalancing
the overactivated TGF-β signaling induced by hyperglycemia
could be another strategy that controls renal complication.

The delivery of synthetic non-coding RNA oligonucleotides,
plasmids, or inhibitors may alter pathogenic signaling pathways
related to DKD. Antagonism of miR-21 not only reduces the loss
of podocytes and albuminuria but also inhibits renal fibrotic
response by inhibition of collagen and fibronectin in vivo and
in vitro (Wang et al., 2013; Kölling et al., 2017; Roy et al., 2020).
Silencing miR-215 with specific antagomir increases the
expression of CTNNBIP1, reduces of β-catenin activity, and
accumulation of fibrotic proteins in db/db mice (Mu et al.,
2013b). We have established the non-invasive ultrasound
microbubble-mediated gene transfer to knock down renal
expression of miR-21, thus suppressing the activation of the
TGF-β and NF-κB signaling pathways by targeting Smad7 in
the diabetic mouse model (Zhong et al., 2013). In addition,
restoring the expression of miR-29b by delivery of
doxycycline-inducible pre-miR-29b into the kidney, could
significantly reverse the pathological changes of progressive
DKD (Chen et al., 2014). Moreover, kidney-specific silencing
of lncRNA Erbb4-IR and LRNA9884 with ultrasound technique
can convert plasmids into the damaged kidney to ameliorate
injuries, albuminuria, fibrosis, and inflammation (Sun et al.,
2018a; Zhang et al., 2019d). Notably, exosomes secreted by
cells contain non-coding RNAs that may have a regulatory
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role in DKD. Injection of exosomes from HG-treated
macrophages induces MCs proliferation, fibrotic, and
inflammatory factors activation in vivo as well as in vitro.
Intriguingly, exosomes from TGF-β1 knockdown macrophages
may reverse pathogenic changes in MCs (Zhu et al., 2019a),
underscoring the importance of TGF-β signaling in the
pathogenesis of DKD.

The rapid development of the field of non-coding RNAs has
helped these RNA-based biopharmaceuticals to enter clinical
trials before market approval. However, non-coding RNA
treatments remain to be explored. The low expression, low
conservation between species, time specificity, toxicity, and
off-target effect of non-coding RNA are obstacles waiting to be
solved in the development of RNA therapy (Yang et al., 2014; Ard
et al., 2017). Up to date, the number of non-coding RNAs related
to clinical trials on DKD is limited (Sankrityayan et al., 2019).
Nevertheless, some ongoing miRNA-based therapies may be the
potential next-generation medicine for DKD (Chakraborty et al.,
2017). For example, Remlarsen, a miR-29 mimic that is
undergoing in the clinical test (https://clinicaltrials.gov/ct2/
show/NCT03601052) and could be the promising drug to
combat renal fibrosis in DKD. Hopefully, new technologies

such as clustered regularly interspaced short palindromic
repeats (CRISPR) and CRISPR-associated (Cas) gene editing
may represent novel strategies to modulate the expression and
function of non-coding RNAs in DKD (Miano et al., 2019).
Further studies are needed to reveal the therapeutic potential of
ncRNAs in the clinical treatment of DKD.

CONCLUSION AND FUTURE
PERSPECTIVES

Non-coding RNAs have garnered the major attention of
researchers in the past few decades. We are now shifting
toward their regulatory role and mutual relationship in the
pathogenesis of DKD. Reports in this review and available
literature have drawn the patterns of ncRNAs profiles in the
process of diabetic nephropathy, but further investigation into the
crucial mechanisms of ncRNAs in epigenetic regulation is
warranted. Moreover, as biomarkers, the expression of renal
ncRNAs may reflect the cellular response to hyperglycemic
injuries, thus contributing to the early diagnosis and prognosis
of DKD. The discovery of miRNAs and lncRNAs also represents a

FIGURE 3 | The summary of TGF-β/Smad-dependent and non-TGF-β/Smad-dependent miRNAs and lncRNAs in diabetic renal fibrosis and inflammation. Non-coding
RNAs are classified as pro/anti-fibrosis, pro/anti-inflammation in regard with their mechanistic funcions in diabetic nephropathy. (Figure created with BioRender.com).
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new field of molecular therapy into DKD treatment. Together
these findings are expected to yield novel insights into the
complex pathogenesis of DKD and could be incorporated in
the clinical settings.
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