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Simple Summary: Mosquitoes are one of the greatest threats to human lives; they transmit a wide
range of pathogens, including viruses that cause lethal diseases. Mosquitoes are found in both
aquatic (as larvae or pupae) and terrestrial (as adults) environments during their complex life cycle.
For decades, insecticides have been systematically used on mosquitoes with the aim to reduce their
population. Little is known about how the stress resulting from the exposure of mosquitoes to
insecticides impacts the tri-partite relationship between the mosquitoes, their vertebrate hosts, and
the pathogens they transmit. In this work, we review existing experimental evidence to obtain a
broad picture on the potential effects of the (sub)lethal exposure of hematophagous mosquitoes to
different insecticides. We have focused on studies that have advanced our understanding of their
physiological and behavioral responses (including the mechanisms behind insecticide resistance)
and the spread of pathogens by these vectors—understudied but critically important issues for
epidemiology. Studying these exposure-related effects is of paramount importance for predicting
how they respond to insecticide exposure and whether this exposure makes them more or less likely
to transmit pathogens.

Abstract: For many decades, insecticides have been used to control mosquito populations in their
larval and adult stages. Although changes in the population genetics, physiology, and behavior
of mosquitoes exposed to lethal and sublethal doses of insecticides are expected, the relationships
between these changes and their abilities to transmit pathogens remain unclear. Thus, we conducted
a comprehensive review on the sublethal effects of insecticides and their contributions to insecticide
resistance in mosquitoes, with the main focus on pyrethroids. We discuss the direct and acute effects of
sublethal concentrations on individuals and populations, the changes in population genetics caused
by the selection for resistance after insecticide exposure, and the major mechanisms underlying
such resistance. Sublethal exposures negatively impact the individual’s performance by affecting
their physiology and behavior and leaving them at a disadvantage when compared to unexposed
organisms. How these sublethal effects could change mosquito population sizes and diversity so
that pathogen transmission risks can be affected is less clear. Furthermore, despite the beneficial and
acute aspects of lethality, exposure to higher insecticide concentrations clearly impacts the population
genetics by selecting resistant individuals, which may bring further and complex interactions for
mosquitoes, vertebrate hosts, and pathogens. Finally, we raise several hypotheses concerning
how the here revised impacts of insecticides on mosquitoes could interplay with vector-mediated
pathogens’ transmission.
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transmission
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1. Background

Vector-borne diseases can cause severe harm to human health, including morbidity
and mortality depending on the pathogen infection, diagnosis, and treatment quality
available for infected individuals [1,2]. For years, the scientific community has worked
to develop ways to mitigate the effects of these diseases, and one of the main approaches
used is the reduction of vector populations [2,3]. The principal vectors of many human
pathogens are mosquitoes. For example, the mosquito Aedes aegypti (Diptera: Culicidae) is
capable of transmitting multiple pathogens, including the Dengue, Zika, and Chikungunya
viruses [4,5]. Furthermore, several mosquito species of the genus Anopheles are responsible
for transmitting the protozoan Plasmodium, which causes malaria, as well as the worms that
cause lymphatic filariasis. These worms are also transmitted by other mosquito species,
including Culex quinquefasciatus (Diptera: Culicidae). The abilities of these pathogens to
be transmitted by widely distributed vectors explain their worldwide distributions. For
instance, the Dengue virus is now present in at least 129 countries and was estimated
to infect around 390 million people every year [1]. Furthermore, the Plasmodium-caused
disease malaria was considered endemic in at least 87 countries, with 229 million cases
reported for 2019 in the latest 2021 report [2].

Several approaches have been used to reduce vector populations, which spans from
the reductions of breeding sites up to the use of insecticides to control the abundances of
both the vector’s immature and adult stages [6–8]. Pyrethroids, synthetic analogs derived
from pyrethrins (naturally occurring compounds present in the flower buds of certain
Tanacetum species), are the most widely used group of insecticides, [9,10]. Pyrethroids
and pyrethrins act by disrupting the functioning of voltage-gated sodium channels in
insects. Pyrethroids are stabler and more toxic to insects than pyrethrins are and cost less to
produce [8,11,12]. Organophosphates and carbamates are two other nerve-active insecticide
groups that target acetylcholinesterase enzymes, and consequently are as quick-acting as
pyrethroids [13]. Finally, two other relatively slow-acting groups of insecticides commonly
used against mosquitoes are insect growth regulators (e.g., pyriproxyfen, which attacks the
hormonal balance to disrupt growth and development) and biorational insecticides (e.g.,
Bacillus thuringiensis var. israelensis (Bti), which targets the midgut) [14,15].

To control adult mosquitoes, several insecticide application techiniques can be used,
such as indoor residual sprays (IRS), long-lasting insecticidal nets (LLIN), aerosol sprays,
and fumigations [7,8,16]. The IRS and LLIN are the most commonly used methods for the
control of Anopheles spp., and were responsible for significant decreases in the number
of malaria cases in Africa from 2000 to 2019 [2,6,8,17]. However, successive reports of
insecticide resistance, especially to pyrethroids, have caused uncertainty regarding the
current progress in vector control and put the sustainability of the continuous use of IRS
and LLIN in doubt [6,8,16]. Despite the promising launch of a large-scale pilot vaccination
program with a first vaccine candidate for malaria in 2019 [17], the report of an increase
of 12 million malaria cases per year from 2014–2019, is an indication of delayed progress
in malaria control [2]. Pyrethroids are also used to control Ae. aegypti and other culicid
mosquitoes, and this has unsurprisingly imposed strong pressure for the selection of
resistant populations [18–22]. Resistance has also been reported against other insecticide
groups, including organophosphates, insect growth regulators, and Bti [23,24]. However,
since research on the effects of these compounds has been scarce, they have been discussed
to a lesser extent than pyrethroids in this review. Interestingly, despite growing reports of
pyrethroid resistance globally and the intensive use of insecticides against mosquitoes, the
ways in which sublethal exposure to these compounds and resistance-associated population
genetic changes affect the transmission of pathogens have remained elusive [25,26].

In the current review, the multiple facets of insecticide exposure effects on mosquitoes
(Culicidae) that can interplay with their vector competence (i.e., the ability of a vector
to transmit a pathogen [27], correlated with overall pathogen transmission risks) were
highlighted (Figure 1). The main text is divided into Sections 2 and 3. Section 2 contains
information on the direct and acute effects of sublethal concentrations on individuals and
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populations; it is further divided into two parts, each dedicated to effects of exposure on
adult and larval mosquitoes. Section 3 reviews the effects of changes in population genetics
caused by selection for resistance after exposure to high doses of insecticides. Section 3
is organized into three subsections, each discussing one of the three major resistance
mechanisms: target site mutations, metabolic resistance, and behavioral resistance. Un-
derstanding both the sublethal and lethal effects of insecticide exposure on the biological
and behavioral responses of mosquitoes, especially those impacting their blood meal-
related activities—a key point in pathogen transmission—can lead to the development of
novel approaches that provide comprehensive conclusions linking control strategies to
epidemic risks.
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Figure 1. Summary of potential impacts of different insecticide concentrations on mosquito physiology and behavior.

2. Changes in Pathogen Dissemination by Mosquitoes That Survived an
Insecticide Exposure

Insecticides, like any other xenobiotics, can directly impact both the biology and
behavior of mosquitoes, after non-lethal exposures. Upon contact with the insects, insecti-
cide molecules can induce behaviors, or cause energy-consuming biochemical reactions
before causing lethality [28]. These behaviors or energetic costs can reduce insect fitness
by disturbing feeding or reproductive behaviors, and thus interfere with the vector com-
petence [29,30]. For example, only sufficiently “aged” female mosquitoes can transmit
the malaria-causing protozoan Plasmodium falciparum, which takes about 10 to 15 days
to complete its life cycle within the vector and be ready for transmission to humans [26];
therefore, decreases in vector survival time resulting from sublethal insecticide exposure or
lower blood meal volumes would reduce pathogen transmission [29,31].

Herein, we structured separate sections for different responses of the immature and
adult life stages. In the case of adults, two different situations resulting in sublethal
exposures have been considered: (a) reduced exposure on treated surfaces because of
irritability (i.e., stimulus-dependent repellency) [32–34]; and (b) exposure to low insecticide
concentrations due to the expected reduction of insecticide residuals in IRS and LLIN [35].
Regarding the sublethal exposure of larvae, sublethal exposures are results from the
direct application of insecticides that dilute in water bodies [36,37] or through indirect
contamination of aquatic systems by insecticides in runoff [38]. Nevertheless, for both
cases (i.e., larvae and adults), most of the impacts of exposures to sublethal concentrations
occurred through the toxicity of the insecticide itself and its cascading effects on subsequent
generations [39,40]. These sublethal responses contrast with the impacts of lethal exposures,
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which selected for resistant populations (discussed in Section 3) and thus had presented
long-term and stable population genetic effects, even if insecticide use is suspended [32,41].

2.1. Sublethal Exposure of Adults to Insecticides

As mentioned above, pyrethroids in IRS and LLIN have been the most commonly
used methods for controlling adult mosquitoes. Pyrethroids target voltage-gated sodium
channels in insects. They act by prolonging their opening state and causing repetitive
firing (type I pyrethroids) or long membrane depolarization (type II pyrethroids); both lead
to convulsions, subsequent paralysis, and eventually death [11,12]. Structurally, type II
pyrethroids harbor an α-cyano moiety at the phenyl benzyl alcohol position that is absent
in type I pyrethroids. The presence of this α-cyano moiety confers type II pyrethroids
higher toxicity than type I pyrethroids [9].

In addition to the pyrethroid lethal effects, several mosquito species (e.g., Anopheles
spp. and Ae. aegypti) are irritated by contact with pyrethroid molecules [34,42–44]. Studies
showed that certain populations of Anopheles species also respond to the presence of
pyrethroids (especially type I, which are often more volatile than type II) before making
physical contact with a treated surface, suggesting their ability to recognize volatile particles
by olfaction [33,45]. These excito-repellent behaviors allow sublethally exposed mosquitoes
to escape from insecticide residues [43]. This escape behavior could lead to the reduction
of human bites inside homes, which would reduce pathogen transmission rates. However,
the outcome of this irritability on mosquito physiology and the potential risk of mosquitoes
being present in greater numbers outside of homes, where people cannot be protected by
bed nets or IRS, should also be considered as potential factors increasing the transmission
risks [44].

Mosquitoes’ foraging and learning abilities depend on the normal functioning of their
neural system, which can be modulated by both their physiological status and environ-
mental cues [46–50]. Therefore, the direct impacts of sublethal exposures to pyrethroids
on most of the insect’s abilities is expected to be dependent on their sensory and neural
systems, especially considering that not only pyrethroids but also several other insecticides
target the mosquito nervous system [8]. Cohnstaedt and Allan [51] demonstrated that
female mosquitoes of Ae. aegypti, Cx. quinquefasciatus, and Anopheles albimanus needed
more time to initiate a flight response to host cues, flew slower, and had higher flight
turning rates after being exposed to two pyrethroids (i.e., deltamethrin and permethrin,
type II and I, respectively). This impaired flight ability is expected to interfere with insect
mobility and reproduction, but it is not known to what extent this impairment may affect
the transmission of pathogens.

When considering the reproductive and olfactory abilities of insects, the impacts of
sublethal concentrations of insecticides were usually reported to be negative for their
fitness [52–55]. However, studies had also reported the absence of these negative impacts,
and in less common circumstances, the occurrence of beneficial effects for the insect’s fit-
ness [56–60], the latter which is termed ‘hormetic effect’, and are usually but not exclusively
related to pyrethroids [61,62]. Interestingly, the majority of the records of sublethal effects
in mosquitoes have demonstrated only negative results after insecticide exposures, with
no hormesis identified [35,63]. The fact that there are few studies reporting impacts of
pyrethroid sublethal exposure in mosquitoes, and that even in these studies the doses used
are high enough to cause mortality of at least part of the exposed individuals (e.g., LD10 or
higher [63]) might explain the lack of evidence for pyrethroid mediated hormetic effects,
which is usually reached at much lower and narrow concentration ranges.

Several species have been found to constitutively overexpress detoxifying enzymes
as a tolerance or resistance mechanism [64–67]. However, the overexpression of such
enzymes can also occur only after contact with sublethal concentrations of insecticides in
susceptible individuals. This phenomenon of increased expression of detoxifying enzymes
was observed in a susceptible population of Anopheles coluzzii after sublethal exposure
to pyrethroids [68], and this is probably a common response among insects [69–71]. This
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overexpression of enzymes leads to energetic costs that may negatively impact several life-
history traits related to fitness. However, the fitness costs of induced metabolic responses in
mosquitoes have only been assessed for constitutive metabolic resistance, as mentioned in
the next section (i.e., Section 3.2) [72,73]. Additionally, an impaired mosquito would proba-
bly have its flight abilities reduced, as it had been shown for other insect species [51,74–76],
and have most of their biological and physiological parameters impacted.

Pathogens, such as the Dengue and Zika viruses, need to overcome the midgut
barrier to disseminate throughout the insect hemolymph and eventually reach the salivary
gland before they can be transmitted. Sublethal exposure to a pyrethroid insecticide
(i.e., bifenthrin) increased the amount of Zika virus that passed through the midgut of
Aedes albopictus females [77]. The higher dissemination ability in exposed females may
be related to differential energy resource allocation caused by insecticide exposure that
reduces the insect imme response, facilitating the dissemination of the virus. Another
study showed that this increased dissemination of pathogen happens in the early days
after the ingestion of infected blood, but in later days after an infected blood meal, the viral
dissemination in the control infected mosquitoes also increases, and both mosquito groups
end up presenting 100% viral dissemination [78]. Further studies are needed to confirm the
underlying mechanisms that drive the observed differential pathogen dissemination rate
found by these studies and to assess how would insecticide exposure impacts pathogen
dissemination within mosquito and transmission risks.

Finally, Bti, which is normally used in larval control, appears to influence adult Ae.
albopictus to detect cues in the water body to which Bti is added, since its presence induced
an increase in the oviposition behavior of this mosquito [79]. However, in the same study,
it was demonstrated that the toxicity of Bti to emerging larvae could be maintained for
several days without any change in efficacy [79].

2.2. Sublethal Exposure of Larvae to Insecticides

Many studies that investigated the effects of sublethal concentrations of pesticides
on larval mosquitoes have reported that the physiology of an individual is not reset
during metamorphosis to enable it to negate these effects in adults [80,81]. The effects of
physiological stressors during the immature developmental stage on the adult can also be
difficult to interpret, as they may have multiple outcomes, such as longer development
times, male-biased sex ratios, and higher emergence rates and body sizes [82–85] or they
offer null impacts, depending on the xenobiotics [86,87].

Sublethal exposures to both pyrethroids or organophosphates in the fourth larval
instar caused reductions in adult longevity, fecundity, and wing length in Cx. quinquefascia-
tus [82]. Furthermore, in this case, the fewer eggs laid by treated females were also smaller
than the eggs of control females [82], which would impact the next generation’s fitness as
well. These impacts may be mediated by changes in larval swimming behavior induced by
sublethal exposure to these pesticides, as was demonstrated in Ae. aegypti [37]. In addition
to energy loss due to faster wriggling movements, the impact on the feeding ability of
these insects would also explain the longer developmental period necessary to reach the
pupal stage [37]. On the other hand, sublethal exposure to malathion in first-instar larvae
of Ae. aegypti resulted in larger adult females at 20 ºC, but not at 30 ºC, demonstrating that
other environmental factors during exposure can also shape the nature of the effects of
sublethal insecticide exposures [88]. In this case, the reduced competition resulting from
the elimination of small or more susceptible larvae was proposed as an explanation for
the larger-sized females that developed from larvae grown at the lower temperature [88].
Nonetheless, the vector competence of the larger adult females originating from larvae
grown at the lower temperature was not modified compared to that of the control, while
the females originating from exposed larvae grown at the higher temperature presented a
significantly higher vector competence for the tested Sindbis virus (MRE16-strain) infection
and dissemination rates than the control females [88]. The mechanism underlying the
higher adult vector competence of these sublethally exposed larvae could not be assessed
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in that study, but it was speculated that impairment of the immune system was involved
in the increased vector competence in smaller adults [88].

Lingering damage to tissues—such as those of the midgut, as a result of larval or adult
sublethal exposures to insecticides—is common in insects, including mosquitoes [81,89–91].
Because the insect midgut is a port of entry for most pathogens and is thus a barrier to
be overcome before the pathogen can infect new hosts [92], any damage to the midgut
or the peritrophic matrix (an extracellular matrix that surrounds the food bolus and is
synthetized by the posterior midgut after a blood meal) could change a pathogen’s ability
to disseminate throughout the insect’s body. Bti-based insecticides are normally used for
larval control; upon ingestion, these insecticides damage midgut cells. Sublethal exposure
to Bti-based products increases the susceptibility to dengue virus infections, but not to
chikungunya in Bti-resistant Ae. aegypti [93]. It remains to be elucidated as to whether this
is a common effect and related to the sublethal damage by Bti on the midgut, or is linked
to genetic factors (since it was observed in a Bti-resistant mosquito population). On the
other hand, the damaged midgut impairs the mosquito’s digestion ability, inducing it to
take smaller blood meals [81,89], which conversely reduces the likelihood of mosquitoes
initially acquiring the pathogens.

Studies have been carried out considering the interaction between adult mosquitoes
derived from exposed larvae and malaria-causing parasites [86,87,94]. For instance, the
exposure of Culex pipiens to the neonicotinoid imidacloprid did not affect the life history
traits of individuals nor the susceptibility of adults to infection by avian malaria parasite
(Plasmodium gallinaceum) [86]. The exposure of larvae of Cx. pipiens to field-realistic doses
of glyphosate, the most used herbicide worldwide, did not affect the individual survival,
adult size, and female fecundity. Conversely, females derived from exposed larvae with
the herbicide increased the probability of female infection by Plasmodium relictum [87]. The
sublethal exposure to permethrin at larvae or adults of An. gambiae reduced the infection
prevalence by Plasmodium berghei [94]. These studies with laboratory-consolidated models
pointed that the level of interference of the exposure of the larvae to insecticides in the
process of infection of mosquitoes depends on the species of both vector and pathogen and
the mode of action of the compounds. Nevertheless, more realistic field studies are needed
to better understand how larval exposure can interfere with the life cycle of pathogens in
adult mosquitoes.

3. Changes in Pathogen Dissemination in Insecticide-Resistant Mosquitoes

Insecticides often do not reach 100% efficacy at controlling any given target species.
Even when applied at recommended field rates, some compounds fail to reach the targeted
insects because of biotic and abiotic factors associated with a surface covering failures,
compound degradation, or runoff after heavy rainfalls [95,96]. Furthermore, it is not un-
common in any species that there are individuals capable of behaviorally avoiding such
compounds or equipped with physiological tools capable of mitigating these compounds’
actions. The result of these factors is that the applied insecticides will almost always leave
some survivors. The individuals that survive such insecticide exposures by behavioral
means or physiological mechanisms will then reproduce and transfer the traits that permit-
ted their survival to their offspring, increasing the percentage of resistant individuals in
the population across generations [32].

The two main classes of insecticide resistance mechanisms are alterations of target
sites (e.g., the mutation in the voltage-gated sodium channel gene, for pyrethroids, or in the
acetylcholinesterase gene, for organophosphates and carbamates), which generally reduces
the binding rate of the insecticide and its target [19,97], and modifications of the insect’s
metabolism, which can occur via a variety of detoxification and excretion processes [98].
Both of these insecticide resistance mechanisms (i.e., target site modification and changes
in metabolism) occur in mosquitoes. Furthermore, as already described for other insect
groups [99–103], attention has recently been paid to behavioral resistance mechanisms to
insecticides in mosquitoes [6,104,105]. The selection of resistance through any of these
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mechanisms will shape the genetics of mosquito populations and could impact insect
physiology and behavior, and therefore transmission abilities.

3.1. Target Site Insecticide Resistance

Most known cases of insecticide resistance related to target site alterations in mosquitoes
involves knockdown resistance (kdr) mutations in the insect sodium channels, which are
the major targets for the actions of pyrethroids [8,97,105,106]. The occurrence of kdr mu-
tation, which reduces the action of insecticide molecules targeting voltage-gated sodium
channels, was shown to also cause changes in the gating properties of such ionic chan-
nels [97,107–109]. Therefore, it is reasonable to expect modified firing activities (i.e., low
action potential frequency) in some neural circuits of individuals carrying kdr mutations,
potentially resulting in differential sensitivity to environmental cues.

Considering that a large part of a mosquito’s host-seeking behaviors depends on
olfactory sensory neurons [48,49], and that blood meal intake behavior has also been sug-
gested to be modulated by specific sensory neurons in the tip of the mosquito stylet [110],
modified neural activities in kdr-mutant mosquitoes could have important impacts on
insect fitness. Diop et al. [111], for example, demonstrated that L1014F kdr homozygous An.
gambiae had an impaired ability to locate holes in bed nets, suggesting a decrease in their
overall sensory abilities due to this mutation. Another study also showed that an L1014F
kdr insecticide-resistant strain of An. gambiae preferred hosts under insecticide-treated
nets more than those under untreated nets, while isoline-susceptible mosquitoes did not
discern between both netting options [112]. This preference for insecticide-protected hosts
suggests that the L1014F kdr mutation in the voltage-gated sodium channels modulates the
mosquitoes’ host preference towards insecticide presence.

Differential susceptibility to pathogen infection has been reported in mosquitoes
harboring kdr mutations, independently of insecticide exposure [113–115]. These studies
indicated greater susceptibility of L1014F and L1014S kdr mutants of An. gambiae to infection
by P. falciparum, which in turn represents a worsening scenario for malaria control in regions
where pyrethroid insecticides are used heavily and mosquitoes have already evolved
pyrethroid resistance [113–115]. Nonetheless, another study showed that even though
L1014S kdr increased the susceptibility of mosquitoes to P. falciparum when pyrethroids
were present, the insecticide had toxic effects directly on the pathogen, thus reducing the
overall infection risk [116]. This suggests that the higher mosquito susceptibility to parasite
infection is compensated for by the toxicity of the insecticide to the parasite itself.

When a mosquito harboring a given kdr mutation is selected, several other polymor-
phisms located in the vicinity of the voltage-gated sodium channel locus might also be
selected for, even under weak selective pressure, and thus exponentially increase in the
population [117]. These new frequencies of a certain haplotype might cause slight to strong
changes in the mosquito’s physiology (including its vector competence) or behavior. Previ-
ous investigations reported a positive correlation between high frequencies of a specific
haplotype for the immune gene ClipC9 and high frequencies of the L1014F kdr mutation,
indicating that linked selection could be playing a role in shaping genetic traits other than
the one under direct selective pressure [115]. When this immune gene was inhibited in the
L1014F kdr-mutant An. gambiae, their susceptibility to P. falciparum increased, demonstrating
the immune gene’s direct role in controlling the mosquito’s susceptibility to this pathogen.
This immune gene was also shown to be located in a locus very close to the voltage-gated
sodium channel gene [115]. This would, therefore, explain the multiple different outcomes
of kdr mutations observed in several different populations, as these might be linked to
different haplotypes of other genes that have indirect positive or negative impacts on the
transmission rates, thus making the nature of these impacts hard to predict.

Another set of studies have also investigated a target-site mutation in the acetyl-
cholinesterase gene (i.e., Ace-1 G119S) that confers resistance to organophosphates and
carbamates [22,118]. Given the involvement of this enzyme in the neural signaling, the
same broad scenario of impacts of altered activity as results of mutations that were dis-
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cussed for kdr resistance could be expected. However, at least one study provided evidence
that the biochemical activity levels of this enzyme do not change with the mutation [119].
This is the only mutation found in this gene in both Anopheles and Culex and the selection
process seemingly selected a single haplotype (Ace-1R) with signals of linkage selections
across at least two megabases in the genome of An. gambiae [120]. The reduced diver-
sity across the genome of the resistant individuals therefore suggests a source for the
several fitness costs and adult behavioral disadvantages reported by literature [120,121].
Although the specific pathways in which the selection for Ace-1R allele can impact vector
competence is not well known yet, its negative impact on fitness does not necessarily
imply a lower transmission risk since higher P. falciparum infection prevalence was also
described to occur in the resistant individuals compared with susceptible ones of same
genetic background [122].

Insecticide resistance could also indirectly interfere with overall vectorial capacity,
which is influenced by variables such as vector density and longevity as well as transmis-
sion of pathogens ([123] and references therein), by causing changes in insect fecundity,
mainly through modulations to reproductive abilities by modifying mating or blood meal
feeding abilities in resistant individuals. The previously mentioned changes in neural ex-
citability may also directly impact the female-male communications and mating success of
kdr or Ace-1R-expressing individuals, or even impact the blood volumes that these females
take to produce mature, viable eggs. Platt et al. [124] showed that a L1014F kdr mutation in
Anopheles spp. benefitted mating competitiveness when in heterozygosis, but in homozygo-
sis this mutation reduced mating competitiveness. Another study also showed the mating
disadvantage for An. gambiae males carrying the Ace-1R allele [121]. This observed effect
on mating success could be caused by changes in neural olfactory perception of sexual
aggregation pheromones, as previously demonstrated in Ae. aegypti [125], but further
investigations are needed to confirm this hypothesis.

3.2. Metabolic Insecticide Resistance

Metabolic resistance in mosquito species usually involves increased expression of
enzymes (e.g., esterase or monooxygenases dependent on cytochrome P450) associated with
detoxification processes [64–67,126]. Unlike target-site mutations, the genetic mechanisms
underlying metabolic resistance are more easily and logically linked to direct energy losses,
since in most cases resistant insects possess higher expression levels of resistance enzymes,
which surely consumes energy [73,127]. These energetic costs could indirectly or directly
affect components of insect fitness (e.g., fecundity and longevity), pathogen transmission
rates, and overall population densities [128,129]. Additionally, the regulatory mechanisms
involved in the overexpression of detoxification genes could also select for other linked
gene variants, as was discussed in the previous section [115].

The studies on the fitness costs of metabolic resistance in insect pests showed mul-
tiple different outcomes, which could be explained by differences in experimental de-
signs or laboratory versus field conditions [41]. Nevertheless, the overexpression of both
esterase and cytochrome P450 conferring resistance to two different insecticide groups
(i.e., organophosphates, and pyrethroids) in Cx. pipiens reduced its energy reserves (e.g.,
glycogen, glucose, and lipids) by up to 30% [72,73]. In P450-overexpressing insects, smaller-
bodied females and lower female emergence rates [72] were observed, which is sugges-
tive of lower fecundity and potential population decreases, similarly to those demon-
strated in organophosphate-resistant beetles overexpressing esterase enzymes [130]. These
lower energy resources could also cause shorter adult lifespans, which could reduce the
pathogen transmission risks, as was demonstrated for Cx. pipiens overexpressing esterase
enzymes [131].

The effects of the overexpression of detoxification enzymes on the transmission rates
of pathogens are still controversial. It has been suggested that esterase overproduction can
interfere with P. relictum development in Cx. pipiens [132]. However, more recent studies
have suggested that this resistance mechanism decreased the susceptibility of Cx. pipiens to
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infection by this pathogen [133]. This reduction in infection rates more likely resulted from
the increased expression of multiple immunity-related genes than from changes in energy
costs [133]. This linked overexpression of multiple immune-related and detoxifying genes
indicates that the same regulatory mechanisms and gene expression profiles are shared
between these gene groups [117,133], suggesting that metabolic resistance can indirectly
cause other physiological changes, including changes in vector competence.

The mechanisms involved in regulating the expression of detoxifying enzymes by the
downregulation of microRNAs (i.e., short RNA sequences that bind to specific regions of
their target mRNA to prevent protein synthesis) have recently been elucidated [134]. The
downregulation of four of these post-transcriptional specific inhibitors of enzyme synthesis
leads to higher levels of the cytochrome P450 enzymes that confer resistance to pyrethroids
in Cx. pipiens [135,136]. These microRNAs are present in the genome in clusters, and their
downregulation could impact several other physiological systems in the mosquitoes and
interfere with their pathogen transmission abilities.

The overexpression of detoxifying enzymes might also interfere with mosquito host-
seeking behaviors by disrupting their olfactory abilities. It is well-known in insects that
for correct flight navigation towards an odorant source, every odorant molecule must be
degraded after targeting its odorant receptor to allow the signal to be interrupted and new
molecules recognized [137]. These processes are largely performed by enzymes, which are
mainly esterase and cytochrome P450 enzymes [137,138]. Interestingly, members of a large
class of cytochrome P450 genes (e.g., CYP3 and CYP4) that are strongly related to insecticide
and other plant xenobiotic detoxification processes were also shown to be expressed at
high levels in the antennae of herbivorous pests [138], suggesting a link between these
two physiological functions (i.e., metabolism of insecticides and odorant compounds).
Therefore, it is not known if high expression levels of esterase or cytochrome P450 enzymes
could also metabolize odorant molecules faster in insecticide-resistant mosquitoes. The
potential interference with host-seeking behavior in metabolically resistant mosquitoes
would reduce their blood feeding frequency, fitness, and thus, pathogen transmission rates.

3.3. Behavioral Insecticide Resistance

The behavioral resistance discussed in this section relates to the failure of the in-
secticide to control the mosquito population because the mosquitoes are repelled by the
insecticide and avoid exposure to it. This concept of behavioral resistance in mosquitoes
has become a topic of concern due to the long-term, intensive use of IRS and LLIN over the
last decades. Mosquitoes have recently been reported to show stronger repellent behaviors
to pyrethroids than previously observed [6,33,139].

Since repellent behaviors to an insecticide directly change the exposure rate/time,
their potential impacts on vectorial capacity through interactions with insecticides are very
complex. Repellent behaviors can easily modulate the amount of insecticide to which
an insect is exposed, therefore changing the dose it experiences from lethal to sublethal,
and can also modulate the selection dynamics of physiological resistance to insecticides
in different ways. We propose the following three main scenarios, considering the target
site for the repellency is different than the one for lethality: (1) If a genotypic variant
conferring insecticide repellence is already present in a population at a high frequency, this
will decrease the likelihood of a physiological resistance mechanism being selected, since
many susceptible individuals will survive exposure by being repelled. (2) If physiological
resistance was selected before a repellent genotype arose in the population, then repellence
is less likely to be selected since many resistant but non-repelled insects also survive.
(3) Finally, when both variants are present in the population but not yet at high frequencies,
they would reduce the selection pressure for each other, slowing down the selection for
both genotypes, keeping their frequencies more stable until other factors disrupt such an
equilibrium [32,140,141].

Transfluthrin, a pyrethroid, can cause behavioral repellency in susceptible Ae. aegypti
adults by acting solely on the voltage-gated sodium channels. Transfluthrin-mediated
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repellency is a likely result of insecticide actions in selected neuronal circuits [142]. Similar
repellency mediated by the activation of sodium channels has also been demonstrated
for natural pyrethrins [143]. The presence of the two kdr mutations (S989P and V1016G)
in the sodium channel gene reduced pyrethroid-mediated repellency without impairing
olfaction [143,144]. Other studies that used unrelated field-resistant populations have
observed indirect effects of apparent linked or fitness-related alterations in repellency
behavior to pyrethroids or other repellents in both Ae. aegypti and An. gambiae [144,145].
Nonetheless, further research is required on whether the observed increase in Anopheles
repellency behavior to pyrethroids in the field is a direct or linked effect of kdr or metabolic
pyrethroid resistance (with respect to lethality).

In addition to direct repellence behavior, the foraging period patterns of mosquitoes
after the introduction of IRS and LLIN have also received special attention. Higher rates
of mosquito bites in humans reported after the use of residual sprays and treated nets
occurred through a temporal shift in mosquito foraging from late night to early evening
(Figure 2) when people are still out of their beds or homes [139,146–149]. This shift could
be a result of selections acting on trait variants and/or changes in ecological interaction
among closely related species, especially in the case of the An. gambiae sensu lato species
complex.

The existence of selective trait variants in a species leading to differences in endo/
exophagy preferences was suggested in a study that detected changes in this foraging
preference before and after the use of IRS and LLIN within a single species (i.e., An. gambiae
sensu stricto) [150]. The behavioral trait that these selected phenotypes variants harbor
(endophagy or exophagy) could be a result of single or multiple mutations in specific
genes related to the circadian rhythms that influence time-specific behaviors, as has been
observed in butterflies and drosophilids [151,152]. Additionally, changes in ecological
interactions as a result of decreases in the density of one sibling species in the community
that was lethally exposed to an insecticide, which benefitted and increased the prevalence
and success of other species, were suggested by several studies. For instance, changes in
species composition of An. gambiae s.l. occurred with a reduction in the density of more
endophilic species (e.g., An. gambiae s.s.) and an increase in the density of more exophilic
ones (e.g., Anopheles arabiensis) [147,153–155]. Similar shifts toward exophilic behavior at
both the inter- and intraspecies levels have also been reported for the Anopheles funestus s.l.
complex [147,156,157].

The above-mentioned ecological selectivity of insecticides for species with higher
relative numbers of exophilic mosquitoes would benefit the adults of the exophilic species
by reducing the overall larval density, and therefore, the competition stress experienced
by its larvae. In turn, this could also cause an increase in the absolute number, size, and
fitness of the adults of the remaining exophilic species [159]. The larger size of adults is
related to there being longer-lived females in the population, which increases the pathogen
transmission risks [31,160]. Therefore, the ecological selectivity of an insecticide, in addition
to shaping the species assemblage towards individuals that are more exophilic or exophagic,
may also induce higher mosquito fitness and pathogen transmission risks.

A higher prevalence of host-seeking in the early morning hours represents a greater
risk of exposure of humans to biting mosquitoes [6,139,150]. Independently of the specific
mechanism involved (e.g., inherited behavioral resistance, species assemblage changes,
etc.), these behavioral changes could increase the pathogen transmission rates to similar
or higher levels than target-site or metabolic insecticide resistance would, as has been
demonstrated by two different mathematical models (i.e., Imperial and OpenMalaria
models [161,162]) of malaria transmission. These two models predicted the effects of the
increasing frequency of exophagy after the use of IRS and LLIN on mean entomological
inoculation rates (infectious bites per person) (Figure 3) [6]. Therefore, more studies are
needed to understand the very complex scenario resulting from the multiple species and
multiple effects of the lethality of insecticides in these vectors in the real world.
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Figure 2. Time-related foraging behavioral changes potentially reducing the efficacy of Anopheles
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5:30 a.m. (5:30), as no data for other periods of the day were available. Adapted from Dukeen [158]
and Yohannes [149].
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4. Conclusions

A broader understanding of the effects of insecticides on vectors of human pathogens
is needed to support continuous efforts aimed at epidemic reductions. Every year, new
disease outbreaks occur, such as the Zika epidemic outbreak in 2015 in South America and
the increasing number of cases of Dengue infection worldwide. These outbreaks point
out the fact that, despite causing high mosquito mortality, the sublethal effects mediated
by insecticides on the behaviors and physiology of mosquitoes can also influence their
transmission of pathogens. A large number of studies have suggested that insecticide
resistance has modified the physiology, blood-feeding behavior, and reproduction of
mosquitoes, and to some extent the dynamics of many diseases that vector mosquitoes can
spread. The present comprehensive review and discussion on how unintentional selection
for insecticide resistance can drive the overall transmission risks of pathogens by different
heritable traits and mechanisms in mosquitoes could help us to better predict, understand,
and mitigate common and unexpected epidemics like those that have occurred recently.

The effects of sublethal exposures, on the other hand, involve even more dynamic
environmental and ecological interactions that are much less tractable and reproducible
by studies when compared with the effects of insecticide resistance in terms of population
genetic changes. Thus, even though numerous studies have been done on these sublethal
effects, establishing comprehensive and predictable links between the effects of sublethal
exposures and changes in vector competence is still a challenge. Therefore, the sublethal
effects of insecticides on mosquito vector competence might still be considered a large
research gap, with there being a long way to go before we can obtain a more comprehensive
understanding of their effects and mechanisms.
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