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Abstract: Partial desiccation treatment (PDT) is an effective technology for promoting the germination
and conversion of conifer somatic embryos (SEs). PDT, as a drought stress, induces intensive
physiological responses in phospholipid metabolism, which are not well understood in the conifer SEs.
Here, we integrated lipidomics, transcriptomics and proteomics analyses to reveal the molecular basis
of lipid remodeling under PDT in Picea asperata SEs. Among the 82 lipid molecular species determined
by mass spectrometry, phosphatidic acid (PA) had a significant effect after PDT and was the most
critical lipid in the response to PDT. The transcriptomics results showed that multiple transcripts in
the glycerolipid and glycerophospholipid metabolism pathways were differentially expressed, and
these included five PLDα1 transcripts that catalyze the conversion of phosphatidylcholine (PC) to
PA. Furthermore, the enzyme activity of this phospholipase D (PLD) was significantly enhanced in
response to PDT, and PDT also significantly increased the protein level of PLDα1 (MA_10436582g0020).
In addition, PA is a key factor in gibberellin, abscisic acid and ethylene signal transduction. One
GDI1, one DELLA, three ABI1s, two SnRK2s, one CTR and 12 ERFs showed significantly differential
expression between SEs before and after PDT in this study. Our data suggest that the observed
increases in the PA contents might result from the activation of PLDα by PDT. PA not only affects the
physical and chemical properties of the cell membrane but also participates in plant hormone signal
transduction. Our work provides novel insight into the molecular mechanism through which PDT
promotes the germination of SEs of coniferous tree species and fills the gap in the understanding of
the mechanism of somatic embryo lipid remodeling in response to PDT.

Keywords: Picea asperata; somatic embryo; partial desiccation treatment; phospholipids;
phospholipid acid

1. Introduction

Somatic embryogenesis, which can store good germplasm almost indefinitely in
cryopreservation, is the most promising large-scale asexual propagation technique for some
economically and ecologically important coniferous tree species [1]. However, the efficiency
of somatic embryogenesis technology in industrial applications is seriously restricted by low
germination/conversion [2]. A prerequisite for the successful germination of spruce somatic
embryos (SEs) is mild or partial desiccation treatment (PDT) [3–5]. The positive effects of
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PDT on SE germination have been attributed to the decrease in endogenous abscisic acid
(ABA) levels and sensitivity [3,6,7]. The carbohydrate and storage protein content in SEs
have been showed to be altered during PDT [8,9]. In addition, PDT enhanced the activity of
adenine and uridine salvage enzymes. These enzymes participate in nucleotide synthesis,
which is required for the initiation of SE germination [10]. However, PDT results in a drastic
water deficit. The water content of SEs was shown to decline 76.28% on the first day of PDT [11].
Lipids are sensitive to changes in water content [12]. On the one hand, structural lipids, such
as glycerolipids and glycerophospholipids, are the major components in cell membranes. Cell
membranes are the main parts of the response environment. On the other hand, signaling lipids
mediate various physiological responses to stimuli under stressful conditions.

Phospholipids, also known as glycerophospholipids, are a class of lipids with a glyc-
erol backbone. One of the basic classes of phospholipids is phosphatidic acid (PA), which
has only a phosphate group [13]. The biosynthesis of PA occurs primarily in the endoplas-
mic reticulum, where a fatty acid chain is transferred from acyl-CoA to lysophosphatidic
acid (LPA), resulting in the formation of PA [14]. By adding choline, serine, ethanolamine,
inositol or glycerol molecules, the phosphate head group can be further modified to dif-
ferent classes of phospholipids, such as phosphatidylcholine (PC), phosphatidylserine
(PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylglycerol
(PG) [15]. These amphiphilic molecules are key structural components in cell membrane
bilayers and cell signaling messengers.

PC and PE are structural lipids with very high contents in the membrane [16,17]. The
plant membrane is at the foremost position to protect the plant from abiotic stresses, such
as freezing, mechanical wounding and drought. Maintaining the stability and integrity
of the cell membrane is the basis of regular cell metabolism and physiological processes.
The lipid composition and content of the cell membrane directly affect the cell membrane
structure stability and fluidity [18]. The physiological significance of phospholipids has
been investigated in herbaceous plants. Plants have evolved the ability to actively regu-
late lipid components to adapt to environmental stress. Gasulla et al. [19] found that in
Craterostigma plantagineum, the total lipid content was not changed under dehydration.
However, the lipid composition was changed significantly. In Arabidopsis, PC is greatly
degraded, while PE, PG, PS and PI are less degraded in response to freezing [20]. In
the leaves of winter wheat seedlings, PC, PE and PG are primary degradation targets in
response to PEG-induced water stress. Thus, PC is degraded to the largest degree [21].
In addition, two classes of galactolipids, monogalactosyl-diacylglycerol (MGDG) and
digalactosyl-diacylglycerol (DGDG), are the major components in plastidic membranes,
and their biosynthesis may be important for plant water tolerance [22,23].

PA, a signaling lipid, unlike structural lipids, can be accumulated and degrade tran-
siently [24]. Various phospholipases, lipid kinases and phosphatases are required for
their fast turnover [25]. PA can be generated via two distinct phospholipase pathways:
(I) hydrolyzing structural phospholipids (e.g., PC and PE) by phospholipase D (PLD) or (II)
phosphorylating phospholipase C produced diacylglycerol by diacylglycerol kinase [26].
PA is a key mediator in the signal transduction pathways of hormones and other biologi-
cally active compounds that ensure plant growth, development and resistance to adverse
environmental factors. Regulatory signals originating from hormones, such as auxin, brassi-
nosteroids, salicylic acid, ABA, jasmonic acid, ethylene (ETH) and gibberellins (GA), have
been found to implicate PA as a second messenger [27]. PA regulates the activity of binding
proteins by recruiting target proteins, such as protein kinases, phosphatases and vesicu-
lar transport proteins, to the plasma membrane or by directly inducing conformational
changes [28]. In Arabidopsis, PA mediates the tethering of ABI1 (a negative regulator of
ABA) to the plasma membrane to prevent it from reaching its downstream targets in the
nucleus [29]. PA could bind to GA receptor OsGID1 to promote its nuclear localization for
gibberellin response in rice [30]. PA is also involved in the process of ETH signaling by
binding to CTRI, the negative regulator in the ethylene signaling pathway, and inhibiting
its activity. PA inhibits its interaction with the ethylene receptor ETR1 [31].



Int. J. Mol. Sci. 2022, 23, 6494 3 of 16

Spruce is an important industrial timber tree in the world. Its straight trunk, light
and soft wood make it the main raw material for construction, instruments, furniture,
paper and wood fiber industry [32–34]. In addition, its root, stem and leaves are potential
sources of aromatic oils, turpentine and tannin extracts [35]. Therefore, spruce trees have
important commercial value. Picea asperata Mast is a Chinese endemic species that is one
of the most widely distributed Picea species in China [36]. We constructed a complete
somatic embryogenesis system of P. asperata and a somatic embryo germination technique
induced by PDT [11]. In this study, highly synchronized SEs from the embryogenic cell line
1931 were used for lipidomics, transcriptomics and proteomics analyses to explore (I) the
changes in membrane lipids during PDT, (II) the key lipids that change in response to PDT
and (III) the potential regulatory mechanism of the membrane lipid response to PDT. This
work provides novel insight into the molecular mechanism by which PDT promotes SE
germination from the perspective of membrane lipid remodeling.

2. Results
2.1. Lipid Profiles Significantly Changed in SEs of P. asperata after PDT

SEs of P. asperata were collected before and after 14 days of PDT (D0 and D14). The
lipid profiles of 82 lipid molecular species were determined by mass spectrometry (Table S1).
Specifically, the composition and content of nine phospholipid classes (PG, PC, PE, PI, PS, PA,
LPC, LPE and LPG) and two galactolipid classes (MGDG and DGDG) were determined.

The total lipid content was higher in the D14 group than in the D0 group (p < 0.05)
(Figure 1A). Proportion analysis of the lipid metabolites (Figure 1B,C) showed that the pro-
portions of PA, PC and MGDG changed by more than 4% between D0 and D14. Specifically,
the proportion of MGDG and PA increased by 4.04% and 6.47%, respectively, after PDT.
The proportion of PC decreased significantly (from 41.96% to 34.54%). The proportions of
PE and DGDG decreased from 12.87% and 18.18% to 10.91% and 16.72%, respectively, after
PDT. The proportions of PS, PI, PG, LPC, LPE and LPG changed nonsignificantly after PDT
(less than 1%).
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Figure 1. The total content and proportion of lipid components on P. asperata SEs. (A): The total lipid
content of SEs before and after PDT. * Indicates a 5% significant difference. (B): The proportion of lipid
components of SEs before PDT. (C): The proportion of lipid components of SEs after PDT for 14 days.

Phospholipids, crucial components of cell membranes, include PA, PC, PE, PG, PS and
PI. Most phospholipid levels increased after PDT. A significant difference was detected in
the total content of PA between D0 and D14. The total content of PAs increased by 187.87%
after PDT. Furthermore, all seven molecular species of PAs increased significantly after
PDT (Figure 2). In particular, the PA (34:2) and PA (36:4) levels in the D14 group were
significantly increased by 196.30% and 145.59%, respectively, compared with those in the
D0 group. On the other hand, the contents of PC (32:0), PC (34:4), PC (34:3), PC (34:1), PC
(36:6), PC (36:5), PC (36:1), PC (38:6), PC (38:5), PC (38:4) and PC (38:3) in the D14 group
were significantly increased by 59.94~84.31%. Twelve molecular species of PE were also
significantly more abundant in the D14 group than in the D0 group. Lysophospholipids
are the degradation products of phospholipids. The contents of four LPCs and three LPGs
were significantly increased in SEs after PDT, and the increase in total LPC and LPG was
also significant. MGDG and DGDG, belonging to galactolipids, are the major components
of plastidic membranes. The contents of MGDG (36:5) and MGDG (36:4) at D14 were
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2.43-times and 1.64-times higher than those at D0, respectively. Similarly, the contents of
DGDG (36:6) and DGDG (36:5) were significantly higher on D14 than D0. Nevertheless, the
contents of DGDG (34:6) and DGDG (34:5) were significantly decreased on D14 compared
with those on D0.
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2.2. Selection of Key Lipid Metabolites

Principal component analysis (PCA) was performed on the lipid profiles of D0 and
D14 samples to explore the key lipids than changed in response to PDT (Figure 3A). The
data showed that the six biological duplicates of D0 samples clustered together. This result
indicated highly similar lipid profiles of the SEs before PDT. The six biological replicates
of D14 samples were relatively dispersed. These results suggested dramatic changes in
lipid composition or content in the SEs after PDT. In the biplot of the principal components
(Figure 3B), the metabolites PC (36:4), PC (34:2), MGDG (36:6), PA (36:4) and PA (34:2)
were relatively far from the origin of coordinates, which indicated a stronger power of
identification between the compared groups. In addition, orthogonal partial least squares-
discriminant analysis (OPLS-DA) was conducted to further analyze the key differential
lipids between the D0 and D14 groups (Figure 3C). The variable importance in projection
(VIP) value can reflect the importance of the independent variable X in interpreting the
dependent variable Y in the model; usually, VIP > 1 is the threshold value: the greater the
VIP value is, the greater the influence of this variable on the difference between groups. In
this study, the VIP values of 15 lipid molecular species were greater than 1.25 (Table S2),
including six PAs: PA (34:2), PA (36:5), PA (36:3), PA (34:3), PA (34:1), PA (36:4) and four PCs:
PC (34:1), PC (34:3), PC (32:0), PC (34:4) (Figure 3D). Taken together, these data implied
that PC and PA, especially PC (36:4), PC (34:2), PA (36:4) and PA (34:2), might be the main
lipids involved in the physiological responses induced by PDT in P. asperata SEs.
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Figure 3. PCA and OPLS-DA of P. asperata SEs. (A): Score plots of the PCA. (B): Loading plots of the
PCA. (C): Score plots of OPLS-DA. (D): VIP values of lipid molecular species.

2.3. Glycerolipid and Glycerophospholipid Metabolism Pathways Were Enriched in the
Transcriptomes of SEs before and after PDT

To characterize the main regulators that may be involved in the metabolism of lipids
during the PDT of the SEs of P. asperata, 20512 transcripts of SE cotyledons before PDT (CD0),
20802 transcripts of SE radicles before PDT (RD0), 21867 transcripts of SE cotyledons after
14 days of PDT (CD14) and 22032 transcripts of SE radicles after 14 days of PDT (RD14) were
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downloaded from PICEAdatabase (Lu et al., 2019). According to the transcript expression
analysis (Figure S1), 4244 and 1756 transcripts were upregulated and downregulated,
respectively, in CD0 vs. CD14. In total, 3413 transcripts were significantly upregulated and
1580 transcripts were significantly downregulated in RD0 vs. RD14. Differentially expressed
genes (DEGs) were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database to identify those involved in lipid metabolic pathways.

According to KEGG pathway enrichment analysis, the 11 classes of lipids detected
in this study involve a total of seven metabolic pathways, with the glycerolipid and
glycerophospholipid metabolism pathways being enriched with three and nine detected
lipids, respectively (Figure 4). DEGs were significantly enriched in both pathways. In
CD0 vs. CD14 and RD0 vs. RD14, the glycerolipid metabolism pathway was significantly
enriched in 18 and 16 DEGs, respectively. Meanwhile, in CD0 vs. CD14 and RD0 vs.
RD14, 17 and 23 DEGs were significantly enriched in the glycerophospholipid metabolism
pathway, respectively. These findings suggested that glycerolipid and glycerophospholipid
metabolism played significant roles in the stimulus response induced by PDT in P. asperata SEs.
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Figure 4. KEGG pathways involved in lipid metabolism enrichment of DEGs in CD0 vs. CD14 and
RD0 vs. RD14. The values in parentheses are p values. The enrichment results of the former were
significant at the 5% level.

Glycerol-3-phosphate 2-o-acyltransferase (GPAT6) esterifies acyl groups from glyc-
erophosphoric acid to lysophosphatidic acid in the glycerolipid metabolism pathway. Five
and three transcripts encoding GPAT6 were found to be significantly altered in CD14 and
RD14, respectively (Figure 5). Among these, MA_185125g0010 was significantly down-
regulated in both CD14 and RD14, with log2(FC) values of −3.04 and −4.34, respectively.
The transcript levels of MA_10429049g0010 and MA_501670g0010 were increased by more
than 10- and 3-fold in CD14 and RD14, respectively. Furthermore, the transcript levels of
four AGAL genes, which catalyze the synthesis of MDDG from DGDG, were significantly
upregulated in both CD14 and RD14. Among them, MA_10428107g0010 was upregulated
19.34-times and 14.34-times in CD14 and RD14, respectively.
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In the glycerophospholipid metabolism pathway (Figure 6), five PLDα1 transcripts,
which hydrolyze PC or PE at the terminal phosphodiesteric bond to generate PA, were
significantly upregulated in CD14 and RD14. Their expression levels in CD0 vs. CD14
and RD0 vs. RD14 were both significantly upregulated by more than six-times. It is
worth noting that MA_10431913g0010, MA_10436582g0010 and MA_10436582g0020 were
significantly upregulated by 9.95, 10.15 and 10.69-times in CD0 vs. CD14, respectively,
and these increases were more significant in radicles than in cotyledons, which were 46.22,
22.23 and 47.92-times higher in RD0 vs. RD14, respectively (Table S3). In addition, the
transcription of PLA2G, which catalyzes the generation of LPC/LPE from PC/PE, was
significantly upregulated in SEs after PDT. No transcriptional changes could be found in the
phosphatidate phosphatase-encoding transcripts, which catalyze PA dephosphorylation to
1,2-diacylglycerol to produce PC and PE, in these transcriptomes. This result implied that
the change in PA content mainly came from the hydrolysis of PC and PE.

PA is a mediator in hormone signal transduction pathways. GA, ABA and ETH
signals are involved in seed dormancy and germination. This study showed that the
genes of the plant hormone signal transduction pathways changed significantly in SEs
after PDT (Figure 7). Among them, the transcriptional levels of gibberellin receptors GID1
(MA_3030g0010) and DELLA (MA_10430831g0010) were significantly downregulated in
cotyledons after PDT. The three ABI1, a kind of protein phosphatase, transcripts were
significantly differentially expressed in SEs after PDT, including MA_120757g0010 and
MA_2584g0010, which were upregulated, and MA_444738g0020, which was downregu-
lated. Notably, SnRK2, a downstream target gene of ABI1, was significantly upregulated.
Similarly, it was found that the transcription of CTR1 (MA_35694g0010) was downregulated
in SE cotyledons and radicles after PDT. Twelve ERF transcripts, the downstream genes
of the ethylene signal transduction pathway, were significantly upregulated in cotyledons or
radicles after PDT; notably, MA_6447416g0010 was upregulated 10- and 7-fold, respectively, in
the cotyledons and radicles. Studies have shown that PA can bind GID1, ABI1 and CTR proteins
to participate in plant hormone signal transduction. We hypothesized that PDT promotes
PA production and that PA further binds GID1, ABI1 and CTR to regulate downstream gene
(DELLA, SnRK2 and ERF) expression and promote somatic embryo germination.
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2.4. The Enzyme Activity and Protein Level of PLD Were Significantly Increased after PDT

Given that PLD-mediated hydrolysis makes the greatest contribution to PA formation
during drought, we examined PLD activity to explore the reason why SEs maintain high
levels of PA. Transcriptomic results showed that the expression of multiple PLDα1 genes
in SEs were significantly upregulated after PDT. To clarify the role of PLD in PDT, we
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measured the activity of the PLD enzyme before and after 1, 7 and 14 days of PDT (Figure 8).
The activity of PLD in SEs increased significantly on the first day of PDT and then remained
stable until the end of the experiment. The duration of desiccation was not the key factor
for the change in PLD activity, but the presence of desiccation could significantly change
PLD enzyme activity. This result suggested that PLD gene upregulation after PDT may
increase the content of the PLD enzyme, and finally, increase enzyme activity.
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To confirm our hypothesis, we analyzed the proteomic data of SEs after PDT, in
which 150 and 275 proteins were upregulated and downregulated, respectively, in D0 vs.
D14 [11]. The results showed that six differentially expressed proteins were involved in
glycerolipid and glycerophospholipid metabolism and were significantly increased in SEs
in the D14 group (Table 1). The protein levels of two PLDα enzymes (MA_10436582g0020
and MA_6712g0010) in the SEs of the D14 group were 5.31 and 1.39-times higher than the
SEs of the D0 group, and the difference reached a statistically significant level. Interestingly,
not only was the protein expression level of MA_10436582g0020 significantly increased, but
its transcription level was also significantly increased in the SEs of D14. Taken together, we
presume that MA_10436582g0020 is a key gene involved in the changes in phospholipid
metabolism in response to desiccation for P. asperata SEs.

Table 1. Differentially expressed proteins involved in glycerolipid metabolism and glycerophospho-
lipid metabolism in D0 vs. D14.

Protein ID Corresponding
Transcript ID

FC
(D0 vs. D14) KO ID Uniprot Annotation

Pasi_116787465 MA_138834g0010 2.666 * K12355 Aldehyde dehydrogenase 9 (Fragment)

Pasi_148910753 MA_10435526g0010 1.692 * K14085 Aldehyde dehydrogenase family 7
member B4

Pasi_148906521 MA_9944g0020 1.315 * K15918 D-glycerate 3-kinase, chloroplastic

Pasi_116786790 MA_97566g0010 1.635 * K00128 Aldehyde dehydrogenase family 3
member H1

Pita_383143100 MA_10436582g0020 5.311 * K01115 Phospholipase D alpha 2
Pasi_116787472 MA_6712g0010 1.393 * K01115 Phospholipase D alpha 1

* Indicates a 5% significance level.

3. Discussion

PDT is an effective step to enhance the germination rate of SEs in conifer species. It
has been reported that the SEs developed on the maturation medium are matured “mor-
phologically” but not “physiologically” [37]. Desiccation, as a postmaturation treatment, is
required for the “physiological” maturation of SEs [38]. Lipid metabolism, which partici-
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pates in membrane reorganization and signal transduction, is one of the most important
events during PDT. This metabolism occurs before other events and is a precondition for
most cell processes.

The total lipid content of P. asperata SEs increased significantly after PDT (Figure 1).
The lipid storage level of SEs is significantly lower than that of zygotic embryos in tamarillo
(Cyphomandra betacea) [39]. Similar results were also found in a study of soybean SE
germination [40]. These relatively low lipid levels are believed to be related to the high
frequency of abnormal development of SEs when compared with zygotic embryos. Lipid
storage can promote SE transformation to plants [41], and a higher lipid content could
promote the dehydration tolerance of embryos and, consequently, improve vitality after
germination [42].

The 11 classes of lipids detected in this study involve seven metabolic pathways, which
mainly focus on the glycerolipid and glycerophospholipid metabolism pathways (Figure 4).
Moreover, a transcriptome analysis revealed that these two pathways have multiple DEGs.
The contents of LPG and LPC increased significantly after PDT, and these increases are
due to LPT1 transcripts, which catalyze the conversion of LPG and LPC into PG and PC,
and exhibit significantly downregulated expression after PDT. The expression of PLA2G
transcripts, which catalyze the conversion of PC into LPC, was significantly upregulated
after PDT. In contrast, this study found that several phospholipids did not show an obvious
trend and their contents did not change significantly after PDT. The proportions of PC and
PE both decreased. The proportions of PS, PI and PG were less than 5%, and their changes
were less than 1%. Under PEG stress, the composition of membrane lipids in the leaves
of winter wheat seedlings showed a dynamic change. The levels of PC, PE and PG first
slightly increased, then decreased rapidly to a low level 2 days after stress, and remained
nearly stable for the following 2 days. However, the levels of PS and PI did not show a clear
downward trend [21]. This finding suggests that the response of lipids to abiotic stress
may be time dependent. Because this study did not determine the lipid content of SEs at
different PDT stages, whether the levels of PC, PE, PS, PI and PG change throughout the
PDT process remains to be studied.

PCA and OPLS-DA (Figure 3) showed that PC and PA compounds, especially PC
(36:4), PC (34:2), PA (36:4) and PA (34:2), are the major phospholipids that respond to PDT in
P. asperata SEs. PA showed the most obvious changes in our study. Not only did the content
of seven molecular species of PA increase significantly (Figure 2) but the proportion of PA
also increased by 6.47% (Figure 1). In contrast, the proportion of PC decreased from 41.96%
to 34.54% after PDT (Figure 1). It is common that abiotic stress can induce changes in
membrane lipids, especially an increase in PA content. PA, with its cone shape, is a special
membrane structure component [28]. Its continuous and massive existence in membranes is
affected by drought or desiccation [43]. The membrane transforms from the lamellar phase
to nonlamellar phases (hexagonal I or II) under water deficit [23,44]. The cone-shaped
PA predisposes the membrane to form the hexagonal II phase. In addition, the relatively
high level of PA content in the SEs after PDT could provide the basis for the change in
membrane phase and phospholipid composition. For instance, PA has been shown to
activate the MGDG synthase MGD1 [45]. The high ratio of MGDG in the chloroplast
membrane is important for the formation of thylakoids [46]. In this study, the proportion
of MGDG increased by 4.04% after PDT. Previous studies have shown that the level of
photosynthesis-related proteins increased in SEs after PDT [11]. The increase in MGDG
could promote the formation of chloroplasts in the cotyledons of SEs. A study showed that
successful germination requires the plastidic lipid MGDG and DGDG contents to increase
to allow plastids to transform into shoots [23]. The increase in PA may be an intermediate
of regulating lipid metabolism in response to PDT [47].

PA from diverse origins notably originates from the PLD-mediated hydrolysis of
extraplastidial PC. Plant PLDs can be subdivided into six classes: α (α1, α2 and α3), β
(β1 and β2), γ (γ1, γ2 and γ3), δ, ε and ζ (ζ1 and ζ2) [48]. PLD could be activated under
various abiotic stresses. Among them, PLDα1 plays a role in transpirational water loss
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and, thus, affects drought resistance at the level of the whole plant [29], while PLDδ is
also activated in response to rapid dehydration [49]. In this study, five PLDα1 transcripts
were significantly upregulated after PDT in the transcriptomes of CD and RD. In particular,
MA_10436582g0020 increased by 10.69-times in cotyledons and 47.92-times in radicles. On
the other hand, this study did not find significant changes in the gene expression of other
enzymes that catalyze the production of PA. The enzyme activity of PLD in SEs subjected
to PDT was significantly higher than that in SEs not subjected to PDT. The protein level
in SEs after PDT was 5.31-times higher than that in SEs before PDT. Thus, we believe that
PLDα1 is activated to produce PA in response to PDT.

PLD-mediated PA formation mediates various phytohormone signaling processes [50].
In this study, two SnRK2 transcripts downstream of ABI1 in ABA responses were found to
be significantly upregulated in SEs after PDT. PLDα1-derived PA has been shown to bind
to ABI1 [29]. The binding of PA to ABI1 decreases PP2C activity and tethers ABI1 to the
plasma membrane. These changes inhibit ABI1 function by reducing the translocation of
ABI1 to the nucleus. In addition, we found that 12 ERF transcripts downstream of CTR
were significantly upregulated in SEs after PDT. PA can also bind CTR protein and inhibit
its activity, which negatively regulates the ethylene signal transduction pathway [31]. This
result implied that PA may participate in the ABA and ETH signal transduction pathways
by binding with ABI1 and CTR proteins and, eventually, affecting SE germination.

4. Material and Methods
4.1. Plant Material

The plant materials used in this experiment were obtained by desiccating highly synchro-
nized SEs from the embryogenic cell line 1931 [11]. The methods of cultivation and PDT are
detailed below. Lipid content determination was performed on SEs desiccated for 0 and 14 days
(D0 and D14). SEs desiccated for 0, 1, 7 and 14 days (D0, D1, D7 and D14) were collected for
enzyme activity determination (Figure 9). All samples were collected in a cryopreservation tube,
frozen in liquid nitrogen and stored at −80 ◦C for subsequent experiments.
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Figure 9. SEs of P. asperata after different PDT times. (A): without PDT, (B): desiccated for 1 day,
(C): desiccated for 7 days, (D): desiccated for 14 days.

4.2. Cultivation Conditions and PDT

After subculturing on semisolid medium for 14 days, filamentous adherent tissues
were picked out at the edge of embryonic cell line 1931 with tweezers. Then, the cells
were placed in an Erlenmeyer flask with 80 mL of liquid medium for suspension culture to
quickly obtain many embryonic tissues [36]. Modified Litvay medium [51] with 10 µM 2,4-
dichlorophenoxyacetic acid (Sigma, St. Louis, USA), 5 µM 6-benzylaminopurine (Sigma),
1% sucrose and 0.1% enzymatic hydrolyzed casein (Sigma) was used as the proliferation
medium. Filter-sterilized glutamine (Sigma) was added to a final concentration of 0.05%.
Then, the cells were cultured in the dark on a gyratory shaker at 110 rpm and 24 ± 1 ◦C.
The vigorous embryonic tissue was transferred to fresh proliferation medium every 12 days.
Mature SEs were obtained by transferring embryonic tissue with sterile filter paper to a
differentiation medium. Using modified Litvay medium with 3% sucrose, 0.1% activated
charcoal (Sigma), 61 µM filter-sterilized (±) cis, trans-ABA (Gibco-BRL, Gaithersburg, MD,
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USA), 5% polyethylene glycol 4000 (PEG4000, Merck, Darmstadt, Germany) and 0.4%
gellan gum (Sigma) at pH 5.8. Filter-sterilized glutamine (Sigma) was added to a final
concentration of 0.05%. The cultures were kept in the dark at 24 ± 1 ◦C for 7 weeks.
Mature SEs with similar morphology were selected using the “filter paper” method to
carry PDT [11,52]. The SEs were cultured under a 16 h photoperiod with a light intensity of
~15 µmol/m2/s (LED fluorescent tubes) for 2 weeks.

4.3. Transcriptomics, Proteomics and KEGG Pathway Enrichment of DEGs

Transcriptome and proteome data were obtained from the previous research basis
of our group [53], and the detailed data were deposited into the PICEAdatabase (http:
//www.piceadb.com/) (accessed on 18 September 2020). In this study, the sequencing
data of SE cotyledons and radicles with and without PDT for 14 days were used for
subsequent analysis. We used the edge R package (http://www.rproject.org/) (accessed
on 28 July 2021) to perform quasi-likelihood F tests. The DEGs had to meet the following
conditions: fold change (FC) ≥ 2, p value < 0.05, and FPKM > 1.

KOBAS 2.0 (http://kobas.cbi.pku.edu.cn/kobas3/genelist/) (accessed on
27 August 2021) [54] was used to perform KEGG pathway enrichment analysis of DEGs
from CD0 vs. CD14 and RD0 vs. RD14. Then, the p value was corrected by the Bonferroni
method, and an adjusted p value (Q-value) ≤ 0.05 was taken as the threshold.

4.4. Lipidomics Analysis

SEs desiccated for 0 and 14 days were used for the determination of lipids. Each
group of samples contained six biological replicates. The extraction method of total lipids
referred to reference [20] and was modified as follows: The tissue samples were ground
into powder in an ice bath and transferred to a centrifuge tube. A total of 500 µL of 2:1
chloroform/methanol was added, and the lipid extract was transferred to a glass tube with
a screw cover. The above process was repeated 3 times. Then, 1 mL of 1 M KCl was added
to the mixed extract and centrifuged for 20 min at 18,000× rpm. Finally, nitrogen was used
to dry the organic phase, which was stored at −20 ◦C. A 4000 Q-Trap quadrupole mass
spectrometer with an ion trap and electrospray ionization source (Applied Biosystems
(China), China, Shanghai) was used to detect lipid compounds. The mass spectrometric
results were processed according to reference [20].

PCA and OPLS-DA were performed using the online metabolism analysis database
MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/faces/home.xhtml) (accessed on
20 March 2022) [55]. Pareto scaling (mean-centered and divided by the square root of
the standard deviation of each variable) was applied before data analysis.

4.5. Activities of PLD

The SEs after desiccation for 0, 1, 7 and 14 days were collected to measure enzyme
activity. PLD activity was detected according to reference [56] as follows: (1) 1 mL of
HEPES buffer (pH 7.0, 0.32 M sucrose, 1 mM dithiothreitol, 1 mM benzyl sulfonyl fluoride
and 1 mM ethylene glycol tetraacetic acid) were added to approximately 0.1 g of SE sample.
Then, the samples were centrifuged at 12,000× g for 45 min and the supernatant was taken
and centrifuged at 15,000× g for 1 h. PLD crude extract was obtained by dissolving the
precipitate in 1 mL of 100 mM pH 6.5 dimethylglutaric acid (DMG). The protein content
was determined by the Coomassie bright blue method. (2) The 200 µL reaction system
consisted of 0.1 mM DMG (pH 6.5), 10 mM MgCl2, 10 mM CaCl2, 5 mM linoleic acid and
50 µL PLD crude extract (control was replaced by DMG). Then, 12 mM phosphatidylcholine
was added, sealed and heated at 30 ◦C for 30 min, followed by boiling in a water bath for
10 min to terminate the reaction. After cooling, 0.8 mL of solution (45 mM pH 8.0 Tris-HCl,
0.8 U choline oxidase, 2.4 U HRP, 0.24 mg 4-ATT and 0.16 mg phenol) was added and
reacted at 30 ◦C for 90 min. Then, 1 mL of 45 mM Tris-HCl (contain 2 g/L Triton X-100,
pH 8.0) was added after the color was stable. The protein was filtered with a 0.22 µm pore
diameter filter and the absorbance was measured at 500 nm.

http://www.piceadb.com/
http://www.piceadb.com/
http://www.rproject.org/
http://kobas.cbi.pku.edu.cn/kobas3/genelist/
https://www.metaboanalyst.ca/faces/home.xhtml
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4.6. Statistical Analysis

SPSS 22.0 was used to measure significance with the independent-samples T test.
GraphPad Prism 8 and Adobe Illustrator CS6 software were used to generate the figures.

5. Conclusions

PDT will increase the overall content of lipids and change the proportion of specific
lipid components. The most significant increase was the increase in PA content. This
phenomenon will affect the physicochemical properties of the cell membrane and lipid
signal transduction. Combined with transcriptomic and proteomic data, it was found that
PDT may activate PLDα1 to promote the transformation of PC to PA. In addition, PA may
further influence the process of somatic embryo germination by mediating the hormone
signaling pathway. This study provides novel insight into the molecular mechanism by
which PDT promotes the germination of SEs of coniferous tree species and fills the gap in the
understanding of the mechanism of somatic embryo lipid remodeling in response to PDT.
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