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Prematurity and bronchopulmonary dysplasia (BPD) increase the risk of asthma later in
life. Supplemental oxygen therapy is a risk factor for chronic respiratory symptoms in
infants with BPD. Hyperoxia induces cell injury and release of damage-associated
molecular patterns (DAMPs). Cytoskeletal filamentous actin (F-actin) is a DAMP which
binds Clec9a, a C-type lectin selectively expressed on CD103+ dendritic cells (DCs). Co-
stimulation of Clec9a and TLR3 induces maximal proinflammatory responses. We have
shown that neonatal hyperoxia (a model of BPD) increases lung IL-12+Clec9a+CD103+
DCs, pro-inflammatory responses and airway hyperreactivity following rhinovirus (RV)
infection. CD103+ DCs and Clec9a are required for these responses. Hyperoxia increases
F-actin levels in bronchoalveolar lavage fluid (BALF). We hypothesized that the F-actin
severing protein gelsolin attenuates neonatal hyperoxia-induced Clec9a+CD103+ DC-
dependent pro-inflammatory responses to RV and preserves alveolarization. We exposed
neonatal mice to hyperoxia and treated them with gelsolin intranasally. Subsequently we
inoculated the mice with RV intranasally. Alternatively, we inoculated normoxic neonatal
mice with BALF from hyperoxia-exposed mice (hyperoxic BALF), RV and gelsolin. We
analyzed lung gene expression two days after RV infection. For in vitro studies, lung
CD11c+ cells were isolated from C57BL/6J or Clec9agfp-/- mice and incubated with
hyperoxic BALF and RV. Cells were analyzed by flow cytometry. In neonatal mice, gelsolin
blocked hyperoxia-induced Il12p40, TNF-a and IFN-g mRNA and protein expression in
response to RV infection. Similar effects were observed when gelsolin was co-
administered with hyperoxic BALF and RV. Gelsolin decreased F-actin levels in
hyperoxic BALF in vitro and inhibited hyperoxia-induced D103lo DC expansion and
inflammation in vivo. Gelsolin also attenuated hyperoxia-induced hypoalveolarization.
Further, incubation of lung CD11c+ cells from WT and Clec9agfp-/- mice with hyperoxic
BALF and RV, showed Clec9a is required for maximal hyperoxic BALF and RV induced IL-
12 expression in CD103+ DCs. Finally, in tracheal aspirates from mechanically ventilated
human preterm infants the F-actin to gelsolin ratio positively correlates with FiO2, and
gelsolin levels decrease during the first two weeks of mechanical ventilation. Collectively,
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our findings demonstrate a promising role for gelsolin, administered by inhalation into the
airway to treat RV-induced exacerbations of BPD and prevent chronic lung disease.
Keywords: gelsolin, prematurity, BPD, rhinovirus, dendritic cells, f-actin, lung inflammation
INTRODUCTION

Prematurity and bronchopulmonary dysplasia (BPD), a chronic
lung disease that affects preterm-born infants, are associated with
chronic asthma-like symptoms, including recurrent wheezing
and airflow obstruction lasting into adulthood (1–4). Despite
evidence of reversible airways obstruction (5) and airways
hyperresponsiveness to methacholine in children born
premature or with BPD (6), the lack of association between
chronic respiratory symptoms and atopy (7–9) points to a
nonatopic mechanism. The histopathology of the “new”,
postsurfactant BPD includes hypoalveolarization, little or no
alveolar fibrosis and absence of airway structural changes (10,
11), but these do not fully explain persistent airway inflammation
(12) and vulnerability to respiratory viral infection in survivors
of prematurity (13, 14). Infection with rhinovirus (RV) is usually
mild and self-limited in most infants (15), but often causes severe
lower respiratory tract illness, chronic respiratory symptoms,
and increased healthcare use in infants with prematurity and
BPD (13, 16, 17). The mechanisms responsible for these
distinctive responses remain to be defined but may represent a
phenomenon of priming the lung immune system by exposures
occurring in early life.

In infants with BPD, the duration of supplemental oxygen use
is a risk factor for chronic respiratory symptoms (3, 18).
Exposure to supraphysiologic oxygen levels, i.e. hyperoxia
induces lung injury and inflammation (19). The inflammatory
response during hyperoxia could result, at least in part, from
immune mediators released from necrotic cells (20–22). Necrotic
cell debris exacerbate inflammation (23), stimulate DC
maturation and activation, and enhance antigen-stimulated T
cell responses (24, 25). Among lung DCs, CD103+ DCs are
phagocytic antigen-presenting cells that selectively express
Clec9a, a damage-associated molecular pattern (DAMP)
receptor for exposed necrotic cell cytoskeletal filamentous actin
(F-actin) (26, 27). In the presence of necrotic cells, Clec9a is
required for maximal antiviral CD8+ T cell responses and IFN-g
production (28). Co-stimulation of Clec9a and Toll-like receptor
3 (TLR3), a receptor for double-stranded RNA, enhances DC
maturation and Th1 cell differentiation (29, 30). The distinctive
capacity of lung CD103+ DCs to respond to DAMPs (F-actin)
via Clec9a and viral infection via TLR3 provides a plausible
mechanism for priming the inflammatory immune responses to
RV infection. Using a mouse model of BPD, we have shown that
early-life hyperoxic exposure increases lung IL-12-producing
Clec9a+CD103+ dendritic cells (DCs), pro-inflammatory
responses and airway hyperreactivity following RV infection
(31). We have also demonstrated that neonatal hyperoxia
increases the dead cell number and F-actin levels in
bronchoalveolar lavage fluid (BALF), and that CD103+ DCs
org 2
and Clec9a are required for hyperoxia-induced inflammatory
responses to RV (32). These results implicate necrotic cell F-actin
in hyperoxia-induced inflammatory responses to RV.

Actin release from dead cells is a marker of tissue damage and
correlates with the extent of injury (33, 34). Plasma contains two
abundant actin-binding proteins, gelsolin and Gc protein (also
known as vitamin D-binding protein), that act to depolymerize
F-actin (gelsolin) and sequester G-actin (gelsolin and Gc protein)
(33). The gelsolin and Gc protein actin-scavenger system can be
overwhelmed during conditions in which massive cell injury is
present (33, 34). Plasma gelsolin levels are reduced in patients
with acute lung injury, burn injury, Alzheimer’s disease, and
multiple sclerosis (35–40). Low plasma gelsolin levels are also
observed in preterm infants who died or developed BPD,
compared to survivors without BPD (41). Gelsolin enhances
host defense, reduces neutrophilic inflammation, and improves
survival in a mouse model of primary pneumococcal pneumonia
(42) and sepsis (43). Additionally, gelsolin mitigates against
oxidative damage due to radiation (44), thermal (45) or
chemical injury (46). Gelsolin depolymerizes F-actin decreasing
its binding to Clec9a in an in vitro system (47). Secreted gelsolin
inhibits Clec9a-dependent cross presentation of antigen and
dampens CD8+ T cell responses in a cancer model in mice
(48). However, the role of gelsolin in neonatal hyperoxia-
induced, Clec9a+CD103+DC-mediated lung pro-inflammatory
responses has not been established.

In this study, we examined the effects of gelsolin treatment on
neonatal hyperoxia-induced lung CD103+ DC expansion and
inflammatory responses to RV infection, as well as
hypoalveolarization. We found that recombinant human
plasma gelsolin blocks neonatal hyperoxia-induced expansion
of a subpopulation of lung CD103+ DCs, prevents the effects of
hyperoxia on pro-inflammatory responses to RV infection and
preserves alveolarization. Additionally, we identified a primary
role for F-actin, present in hyperoxic BALF supernatant to
promote inflammatory responses to RV infection in neonatal
mice, and for gelsolin to block these responses.
METHODS

Human Tracheal Aspirate Collection
We examined tracheal aspirates from infants admitted to the C.S.
Mott Children’s Hospital Newborn Intensive Care Unit, as
approved by the University of Michigan Institutional Review
Board. Entry criteria included gestational age at birth ≤ 32 weeks,
mechanical ventilation for respiratory distress, and age ≤ 7 days.
Aspirates were collected during routine tracheal suctioning of
mechanically ventilated premature infants in the first two weeks
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of life as described (49). Specimens were centrifuged (1,200 X g
for 5 min at 15°C) and supernatants were stored at -80°C.

Measurement of Tracheal Aspirate F-Actin
and Gelsolin Levels
Tracheal aspirates were assayed for extracellular F-actin and
gelsolin present in the supernatant using ELISA (F-actin ELISA
from MyBioSource, gelsolin ELISA from LSBio).

Animal model
The animal experiments were performed in strict accordance with
the NIH Guide for the Care and Use of Laboratory Animals
recommendations. The protocol was approved by the University
of Michigan Committee on Use and Care of Animals. Two day-old
wild type C57BL/6J, Batf3-/- (B6.129S(C)-Batf3tm1Kmm/J) or
Clec9agfp -/- (B6.Cg-Clec9atm1.1Crs/J) mice (Jackson Laboratories,
Bar Harbor, ME) were exposed to air or 75% oxygen for up to 14
days using a polypropylene chamber coupled to an oxygen
controller and sensor (BioSpherix, Lacona, NY) (50). Pups were
produced by breeding homozygous pairs of each genotype. C57BL/
6J, as the inbred strain is an approximate control for Batf3-/- and
Clec9agfp -/- mice. Dams were exchanged between air and hyperoxia
daily. In selected experiments, neonatal mice were treated with 10ul
of PBS (Sigma D6662) or recombinant human plasma gelsolin
(Cytoskeleton Inc., HPG6) 0.5mg/kg intranasally daily during
exposure to hyperoxia. Intranasal administration of the liquid to
anesthetized mice allows for inhalation into the airway. Starting on
day of life (DOL) 2, the hyperoxic exposure was continued for 10
days. On DOL 14 the mice were inoculated with 30 µl of RV1B (3 x
108 PFU/ml). Lungs were analyzed immediately after hyperoxia or 2
days after sham or RV infection. Neonatal mice of both sexes were
used in all experiments.

Generation of RV
RV1B (from American Type Culture Collection, Manassas, VA)
was grown in HeLa cells, concentrated, partially purified, and titered
as described (51). Viral titers were measured by plaque assay (52).

F-Actin and Gelsolin Levels in Mouse
Bronchoalveolar Lavage Fluid
Neonatal mice were exposed to normoxia or hyperoxia for 14 days.
On day 14 of exposure, bronchoalveolar lavage (BAL) was performed
with 0.3 mL cold PBS. BAL cells were separated from supernatant by
centrifugation. F-actin and gelsolin levels in BALF supernatants were
measured by ELISA. BALF supernatant (100 ml) was incubated with
or without human gelsolin (5 µg) in vitro in room temperature for 10
min and F-actin levels were measured by ELISA. In selected
experiments, 14-day-old wild type mice were inoculated with
hyperoxic BALF 15 µl intranasally, followed by 15 µl of RV1B (3 x
108 PFU/ml). Lungs were analyzed 2 days after RV infection.

Lung CD11c+ Immune Cells Purification,
In Vitro Treatment, and Flow Cytometry
Analysis
Lung CD11c+ immune cells were purified using CD11c
microbeads kit (Miltenyi Biotec, Auburn, CA). Briefly, single
Frontiers in Immunology | www.frontiersin.org 3
cell suspension from five lungs of wild type or Clec9agfp -/- adult
mice were each pooled, incubated with anti-CD11c antibody and
purified with the microbeads and columns. The purified lung
CD11c+ immune cells were divided into different treatment
groups with 1.5X106 cells per condition each time. The
purified lung CD11c+ cells were co-cultured with culture
medium (10%FBS-DMEM), culture medium containing 20% of
hyperoxic BALF, or hyperoxic BALF and RV1B (15 µl of 3 x 108

PFU/ml) overnight in 37°C incubator. After co-culture, the cells
were stained with flow antibodies of F4/80, CD11c, CD103,
CD11b and IL-12 (BioLengend, San Diego, CA). The fixable
live/dead staining is applied to distinguish the live cells (31). The
cells were analyzed by flow cytometry machine (BD LSRFortessa)
and results were analyzed by FlowJo software.

Quantitative Real-Time PCR
Mouse whole-lung RNA was prepared using TRIzol (Invitrogen,
Carlsbad, CA). Gene mRNA expression (IL-12p40, IFN-g, TNF-
a) was quantified using SYBR green real-time quantitative PCR
technology. Primer sequences are listed in Supplemental Table I.
The level of gene expression was normalized to mRNA of b-actin
or glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
as indicated, using the 2-DCT algorithm. For graphic representation,
normalized mRNAs for the target genes were plotted multiplied
by 10-3.

Measurement of Cytokines
Whole mouse lung homogenates in PBS were centrifuged and
supernatants analyzed for pro-inflammatory cytokines. IL-
12p40, IL-12p70, TNF-a and IFN-g were measured by ELISA
(all from R&D Systems, Minneapolis, MN).

Flow Cytometry
Lungs were perfused with PBS containing EDTA (0.5 mM),
minced, and digested with Liberase TM (100 µg/mL; Roche,
Indianapolis, IN), together with collagenase XI (250 µg/mL),
hyaluronidase 1a (1 mg/mL), and DNase I (200 µg/mL; Sigma, St.
Louis, MO) for 1 hour at 37°C (53). Cells were filtered and
washed with RBC lysis buffer (BD Biosciences, Franklin Lakes
NJ) and kept on ice in media containing 10% serum. Dead cells
were stained with Pac-Orange Live/Dead fixable dead staining
dye (Invitrogen). Lung cells were then stained with fluorescent-
labeled antibodies against various leukocyte surface markers
(CD45, CD11b, CD11c, F4/80, CD103, and IL-12).
Appropriate isotype-matched controls and Fluorescence Minus
One (FMO) controls were used in all experiments. Antibodies
were purchased from EBiosciences (San Diego, CA) or Biolegend
(San Diego, CA). Cells were fixed and analyzed on a Fortessa
(Becton-Dickinson, San Jose, CA) or FACSAria II (BD
Biosciences) flow cytometer. Results were analyzed using
FlowJo software (Tree Star, Ashland, OR). For analysis of
intracellular IL-12 or IFN-g, fresh aliquots of digested lung
tissue were stimulated for 4 h at 37°C with Cell Stimulation
Cocktail plus protein transport inhibitors (40.5 µmol/L PMA,
670 µmol/L ionomycin, 5.3 mmol/L brefeldin A, and 1 mmol/L
monesin [Invitrogen]), fixed, permeabilized with Cell
January 2022 | Volume 13 | Article 792716
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Permeabilization Buffer (Invitrogen), and incubated with anti-
mouse IL-12 clone C17.8 (BioLegend).

Lung Histology and Morphometry
Lungs were perfused with 5 mM EDTA, inflated to 30 cmH2O
pressure with 4% paraformaldehyde (Sigma-Aldrich, St. Louis,
MO), and paraffin embedded. Five mm-thick paraffin sections
were stained with Hematoxylin and eosin (H&E). To assess
alveolarization, alveolar chord length was determined as
described (54). In summary, alveolar chord length was
calculated as the mean length of line segments on random test
lines spanning the airspace between intersections of the line with
the alveolar surface was calculated. Four random images from
two sections for each animal were photographed at X200.

Statistical Analysis
Unless otherwise noted, data are represented as mean ± standard
error. Statistical significance was determined by unpaired two-
tailed t-test or one-way analysis of variance, as appropriate.
Statistical significance was defined as P < 0.05.
RESULTS

In a Mouse Model of BPD, Gelsolin Blocks
Neonatal Hyperoxia-Induced Inflammatory
Responses to RV Infection
We have previously shown that hyperoxic exposure of neonatal
mice (a model of BPD) increases the number of activated lung
IL-12-producing, Clec9a+CD103+ DCs, induces lung pro-
inflammatory responses and airway hyperreactivity following
RV infection (31). We have also shown that CD103+ DCs and
Clec9a signaling are required for hyperoxia-induced
inflammatory responses to RV (32). In addition, we have
found that hyperoxia induces airway cell death and increases
F-actin levels in BALF supernatant (32). Since gelsolin
depolymerizes F-actin decreasing its binding to Clec9a (47), we
examined the effects of gelsolin on neonatal hyperoxia-induced
inflammatory responses to RV infection.

We exposed 2-day-old C57BL/6J mice to normoxia or 75%
oxygen for 10 days and administered human gelsolin or control
intranasally. Two days after the exposure completed, mice were
inoculated with RV intranasally. We have previously published
extensive data on sham controls for normoxia- and hyperoxia-
exposed neonatal mice (32). Our goal for this study was to
compare the effects of gelsolin on normoxia- and hyperoxia-
exposed, RV infected mice, therefore we chose not to include a
sham control for this study. We found that in RV-infected mice,
prior hyperoxic exposure induced type 1 cytokine expression,
including Il12, Ifng and Tnfa mRNA. This response was blocked
by gelsolin treatment (Figure 1A). Protein expression of
IL12p70, IFN-g and TNF-a were also blocked by gelsolin
treatment compared with PBS control (Figure 1B). These
results indicate that gelsolin blocked hyperoxia-induced pro-
inflammatory response to RV.
Frontiers in Immunology | www.frontiersin.org 4
Gelsolin Inhibits Neonatal Hyperoxia-
Induced CD103+ DC Expansion and
Inflammation
Based on our previous findings that CD103+ DCs expand and
mediate inflammatory gene expression during hyperoxia (31), we
examined the effects of gelsolin treatment on lung CD103+ DCs.
Recent reports describe two phenotypically and functionally
distinct lung migratory CD103+ DC populations following
respiratory viral infection, CD103lo and CD103hi DCs (55, 56).
Both populations are absent in Batf3-/- mice, that lack CD103+
DCs in lungs and other organs, and unlike CD103hi DCs,
CD103lo DCs express lower levels of lineage and maturation
markers, including costimulatory molecules, suggesting they are
phenotypically immature and functionally limited (55, 56). We
looked for evidence of CD103hi and CD103lo DC populations in
the lungs of neonatal mice during hyperoxia. Using flow
cytometry, we examined lungs of control-treated hyperoxia- and
air-exposed neonatal mice after a 4- and a 10-day exposure. These
timepoints were designed to assess the acute and chronic
responses. After a 4-day exposure, hyperoxia-exposed lungs had
a significantly higher number of CD103lo DCs and no change in
CD103hi DCs (Figures 2A–C). After a 10-day exposure,
hyperoxia-exposed lungs had a significant increase in both
CD103lo and CD103hi DCs (Figures 2A–C). The CD103lo and
CD103hi DC populations were not present in lungs of age-
matched Batf3-/- mice, confirming that both CD103lo and
CD103hi DC populations are Batf3-dependent (Figure 2D).
Next, we examined the effect of gelsolin on the two lung CD103
+ subpopulations during normoxia or hyperoxia. Gelsolin
attenuated the effect of hyperoxia on CD103lo DC expansion
both after 4- and 10-day exposure, but it did not influence the
hyperoxia-induced expansion of CD103hi DCs after 10-day
exposure (Figures 2B, C). Taken together, these results show
that the frequency of CD103hi and CD103lo DCs in neonatal
lungs increases during hyperoxia and gelsolin treatment blocks the
effect of hyperoxia on CD103lo DCs.

We examined the effects of gelsolin on hyperoxia-induced
proinflammatory gene expression. In PBS treated mice,
hyperoxia induced the mRNA expression of Il12p40, Myd88,
Cd207, Cd103 and Clec9a (Figure 2E). Gelsolin treatment
attenuated the effect of hyperoxia on the above pro-
inflammatory gene mRNA expression (Figure 2E). This could
reflect either that CD103lo DCs are the primary mediators of
hyperoxia-induced proinflammatory responses, or that gelsolin
dampens the proinflammatory activation of CD103hi DCs
without affecting the increase in frequency during hyperoxia.
Alternatively, gelsolin treatment during hyperoxia may modulate
the functional properties of other cells that exert anti-
inflammatory properties.

Gelsolin Attenuates Hyperoxic BALF-
Induced Inflammatory Response to RV
We have previously shown that hyperoxic exposure of neonatal
mice increases F-actin levels in BALF supernatant (32). To assess
the capacity of the actin-scavenger system in the airways, we
January 2022 | Volume 13 | Article 7927
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evaluated the effect of hyperoxia on the balance of F-actin and
gelsolin protein levels in the BALF supernatant. To do this we
measured F-actin and gelsolin levels in BALF supernatants and
calculated the ratio of F-actin to gelsolin levels. The ratio of F-
actin to gelsolin levels was significantly higher in hyperoxic
BALF (Figure 3A). Next, we conducted an in vitro experiment
to assess if gelsolin can decrease the concentration of F-actin in
hyperoxic BALF. Incubation of hyperoxic BALF with gelsolin
decreased F-actin concentration (Figure 3B). We also designed
an in vivo experiment and inoculated neonatal mice with
hyperoxic BALF and RV, followed by gelsolin, all administered
intranasally on DOL14. Whole lung mRNA expression of
Il12p40, IFN-g and TNF-a was assessed 2 days later. The
expression of Il12p40, IFN-g and TNF-a was most significantly
upregulated by the combined treatment with hyperoxic BALF
and RV and gelsolin attenuated this effect (Figure 3C). All other
treatments had very small, nonsignificant effects. These results
demonstrate that hyperoxia-induced F-actin in BALF plays a key
role in mediating proinflammatory responses, especially in the
presence of RV.

Clec9a Is Required for Hyperoxic BALF-
Induced Lung CD103+ DC Activation and
IL-12 Production
To further confirm that the effect of hyperoxic BALF on
proinflammatory responses to RV is dependent on Clec9a, the
Frontiers in Immunology | www.frontiersin.org 5
receptor for F-actin, we isolated lung CD11c+ cells from wild type
and Clec9agfp -/- mice. Subsequently, we incubated the CD11c+
cells with hyperoxic BALF and RV. The population of CD11c+
cells in the lung includes both populations of conventional lung
DCs, CD103+ DCs and CD11b+ DCs, and resident alveolar
macrophages. After 24 hours the cells were subjected to flow
cytometry to quantify activation and IL-12 production in lung
CD103+ DCs (Figures 4A–C). In wild type CD11c+ cells,
hyperoxic BALF increased the frequency of IL-12+CD103+
DCs and addition of RV further increased the frequency of
these cells. In Clec9agfp -/- CD11c+ cells, the effect of hyperoxic
BALF on IL-12+CD103+ DCs was smaller and nonsignificant
and the IL-12 responses of these cells to RV were also attenuated
(Figures 4B, C). These results indicate that Clec9a expression on
CD103+DCs is required for maximal proinflammatory responses
to RV in the presence of hyperoxic BALF, though the remaining
response suggests that other signaling pathways contribute to
proinflammatory activation of the CD103+ DCs under
these conditions.

Gelsolin Prevents Neonatal Hyperoxia-
Induced Hypoalveolarization
Inflammation and hypoalveolarization are key histopathologic
features that occur in parallel in infants with BPD (10, 11, 57).
In neonatal mice, exposure to hyperoxia in early life recapitulates
the inflammatory and structural changes associated with human
A

B

FIGURE 1 | In neonatal mice, gelsolin blocks hyperoxia-induced pro-inflammatory responses to RV infection. Two-day old wild type mice were exposed to
hyperoxia or normoxia for 10 days and treated with recombinant human plasma gelsolin (GSN, 0.5 mg/kg) or equal volume BSA-PBS, administered intranasally
under anesthesia daily. On day of life 14 the mice were inoculated with RV. Whole lung mRNA expression of Il12p40, Tnfa and Ifng (A) and protein expression of
Il12p70, TNF-a and IFN-g (B) were measured 2 days later. (N = 4-6, mean ± SEM, *p < 0.05, **p < 0.01, NS, nonsignificant, ANOVA). One of two independent
experiments is shown.
January 2022 | Volume 13 | Article 792716
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BPD (31, 58). The fact that gelsolin dampened proinflammatory
gene expression during hyperoxia prompted us to examine the
effects of gelsolin on hyperoxia-induced hypoalveolarization. We
administered recombinant human plasma gelsolin (Cytoskeleton,
Inc) 0.5 mg/kg intranasally daily during hyperoxic exposure.
Hyperoxia was continued for 10 days, starting on DOL 2.
Frontiers in Immunology | www.frontiersin.org 6
Mouse lungs were assessed on DOL 16. In the BSA-PBS
(control)-treated mice, as shown previously (58), hyperoxic
exposure caused the development of fewer and larger air spaces
compared to air-exposed mice (Figure 5A). Air exposed gelsolin-
treated mice showed a normal alveolarization pattern. Unlike
BSA-PBS-treated mice, hyperoxia-exposed gelsolin-treated mice
A

B

D

E

C

FIGURE 2 | Gelsolin inhibits hyperoxia-induced CD103+ DC expansion and inflammation. Two-day old wild type mice were exposed to hyperoxia or normoxia for 4
or 10 days and treated with recombinant human plasma gelsolin (GSN, 0.5 mg/kg) or equal volume BSA-PBS, administered intranasally under anesthesia daily.
Lungs were enzymatically digested, and a single cell suspension was incubated and stained with specific cell-surface antibodies. Lung CD103+ DCs were
distinguished from other lung cells based on expression of CD45, F4/80, CD11c, CD103 and CD11b. (A) Gating strategy to identify lung DCs. (B) Conventional lung
DC populations are distinguished based on the expression of CD103 and CD11b. Following hyperoxia, two distinct populations of CD103+ DCs, CD103lo and
CD103hi DCs are observed. GSN treatment during hyperoxia decreases CD103lo, but not CD103hi DCs. (C) Quantification of the CD103lo and CD103hi DCs.
(D) Both CD103lo and CD103hi DC populations are absent in the lungs of 4-day old Batf3 null mice compared to age-matched wild type (WT) mice. *p < 0.05, **p <
0.01, ***p < 0.001, NS, nonsignificant (ANOVA). These results are representative of three independent experiments. (E) RNA was extracted from the whole lung
tissue on day of life 16 after 10 days exposure to normoxia or hyperoxia with and without daily GSN treatment. GSN attenuated hyperoxia-induced mRNA
expression of Il12p40, Myd88, Cd207, Cd103 and Clec9a. *p < 0.05, **p < 0.01 (ANOVA). N = 4 per groups. One of three independent experiments is shown.
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did not show larger air spaces (Figure 5A). Differences in
alveolarization were quantified using alveolar chord length
measurements (Figure 5B). These results show that gelsolin
treatment during hyperoxia preserves alveolarization.
In Tracheal Aspirates of Mechanically
Ventilated Human Preterm Infants With
Respiratory Distress, the F-Actin/Gelsolin
Ratio Positively Correlates With FiO2
We previously demonstrated that Clec9a+CD103+CD11c+ DCs
are present in tracheal aspirates of mechanically ventilated
preterm infants in the first week of life, and that tracheal
aspirate CLEC9A mRNA levels positively correlated with the
proinflammatory cytokine IL12B mRNA expression (32). Since
F-actin is a ligand for Clec9a, and F-actin levels are regulated by
gelsolin (47), we investigated the relationship between F-actin
and gelsolin concentrations in human preterm infant tracheal
aspirate supernatants, and the FiO2 on the day of sample
collection. We obtained tracheal aspirates from 29 premature
infants receiving mechanical ventilation for respiratory distress
in the first week of life (Table 1). We found that the ratio of F-
actin to Gelsolin protein levels positively correlated with FiO2 on
the day of sample collection (Figure 6). These results
demonstrate that F-actin levels relative to Gelsolin levels are
Frontiers in Immunology | www.frontiersin.org 7
increased in preterm infants receiving higher levels of
supplemental oxygen.

In Tracheal Aspirates of Human Preterm
Infants With Respiratory Distress, Gelsolin
Concentrations Decrease During the First
Two Weeks of Mechanical Ventilation
Cumulative supplemental oxygen exposure during the first two
weeks after a preterm birth is a risk factor for BPD development
(59). This suggests a critical exposure window that modulates
disease development and may involve deficiency of protective
mechanisms. We examined changes in gelsolin concentrations in
tracheal aspirate supernatants during the first two weeks of life in
premature infants. We found that gelsolin levels decrease between
week one and week two of mechanical ventilation (Figure 7).
These findings demonstrate that prolongedmechanical ventilation
of preterm infants is associated with relative deficiency in
extracellular gelsolin and development of F-actin-dominated
disbalance in the actin-scavenger system in the airways.
DISCUSSION

Prolonged exposure to hyperoxia and BPD are risk factors for
asthma-like symptoms in survivors of prematurity (18, 60).
A

C

B

FIGURE 3 | Gelsolin attenuates hyperoxic BALF-induced inflammatory response to RV. Two-day old mice were exposed to hyperoxia or normoxia for 14 days.
BALF was collected on day of life 16. F-actin and gelsolin (GSN) protein levels were measured in BALF supernatant using ELISA and the ratio of F-actin to GSN was
calculated and compared between samples from hyperoxia- and normoxia-exposed mice, unpaired t-test. *p < 0.05 (A). (B) 14-day old mice were exposed to
hyperoxia for 4 days and BALF was collected (H-BALF). Cell-free H-BALF was incubated with GSN (5mg) in vitro for 10min and F-actin levels were analyzed by
ELISA (paired t-test p < 0.001). (C) 14-day old mice were inoculated with H-BALF, RV, GSN, or appropriate controls and whole lung mRNA expression of Il12p40,
Ifng and Tnfa were analyzed 2 days later. *p < 0.05, ***p < 0.001 (ANOVA). N = 3-6 per group. One of two independent experiments is shown. ns, not significant
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Common respiratory viral infections, including infections with
RV often cause more severe disease and further increase the risk
of recurrent wheezing and airflow obstruction in children born
prematurely (4, 16, 17). Currently, there are no methods to
prevent severe viral-induced exacerbations or chronic respiratory
symptoms in infants with BPD, and treatment is supportive
Frontiers in Immunology | www.frontiersin.org 8
rather than curative. We previously demonstrated that hyperoxic
exposure of neonatal mice increases IL-12 production by Clec9a
+CD103+DCs and upon RV infection, hyperoxia-exposed but
not air-exposed mice show exaggerated pro-inflammatory
responses and airway hyperreactivity (31). Our recent work
shows that CD103+ DCs and Clec9a are required for
A

CB

FIGURE 4 | Clec9a is required for maximal hyperoxic BALF-induced pro-inflammatory activation of lung CD103+ DCs. CD11c+ immune cells were purified from wild
type (WT) or Clec9agfp-/- mouse lungs. Equal number of cells were co-cultured with medium and hyperoxic BALF (H-BALF) or H-BALF and RV. Subsequently the
cells were stained with antibodies for flow cytometry analysis. (A) Gating strategy to identify CD103+ DCs. (B) IL-12 expression in CD103+DCs was examined.
(C) Compared to control (C), the percentage of wild type IL-12+CD103+ DCs was increased after co-culture with H-BALF (H) and further increased after co-culture
with H-BALF and RV (H+RV). These responses were attenuated in Clec9a null cells. N = 4 per group. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 (ANOVA).
A B

FIGURE 5 | Gelsolin prevents neonatal hyperoxia-induced hypoalveolarization. Two-day old wild type mice were exposed to hyperoxia or normoxia for 10 days and
treated with recombinant human plasma gelsolin (0.5 mg/kg) or equal volume BSA-PBS, administered intranasally under anesthesia daily. Lung histology was
assessed on day of life 16. (A) Representative lung sections were stained with hematoxylin and eosin. Hyperoxia induced enlargement of the alveolar spaces
(hypoalveolarization) in BSA-PBS-treated mice. In contrast, gelsolin treatment preserved the alveolar architecture of hyperoxia-exposed mice. (B) Alveolar chord
length was significantly increased in hyperoxia-exposed, BSA-PBS-treated mice, consistent with hypoalveolarization. In contrast, alveolar chord length of hyperoxia-
exposed, gelsolin-treated mice was similar to that of normoxia-exposed mice, indicating protective effect of gelsolin on alveolarization during neonatal hyperoxia.
****p < 0.0001 (ANOVA). N = 5-12 per group.
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hyperoxia-induced pro-inflammatory responses to RV infection
and airway hyperreactivity (32). Additionally, we have found
that neonatal hyperoxia is associated with a higher number of
dead cells in BALF, and elevated F-actin levels in BALF
supernatants (32). When cytoskeletal F-actin is released or
exposed on necrotic cells, it acts as a DAMP binding Clec9a on
CD103+ DCs to trigger enhanced inflammatory cytokine
production (61, 62). Simultaneous stimulation of Clec9a and
TLR3 further increases DC co-stimulatory molecule expression
and, in the presence of antigen, enhances Th1 cell differentiation
(29, 30). Gelsolin, an abundant actin-depolymerizing plasma
protein (33) decreases binding of F-actin to Clec9a in an in vitro
system (47). In an in vivo cancer model, secreted gelsolin inhibits
Clec9a-dependent cross presentation of antigen and dampens
CD8+ T cell responses (48). In this study, we examined the role
of gelsolin in neonatal hyperoxia-induced Clec9a+CD103+DC-
mediated lung pro-inflammatory responses to RV infection and
Frontiers in Immunology | www.frontiersin.org 9
hypoalveolarization. We found that gelsolin blocks neonatal
hyperoxia-induced expansion of the CD103lo subpopulation of
lung CD103+ DCs, prevents the effects of hyperoxia on pro-
inflammatory responses to RV infection and preserves
alveolarization. Additionally, we identified a primary role for
F-actin, present in hyperoxic BALF supernatant to promote
inflammatory responses to RV infection in neonatal mice, and
for gelsolin to block these responses.

Lung CD103+ DCs selectively engulf and transport dead,
apoptotic cell debris to the draining lymph node (63). Unlike the
lung CD11bhi DCs, CD103+ DCs also selectively express TLR3, a
receptor for double-stranded RNA which is required for CD8+ T
cell antiviral responses (63, 64). Thus, together with signaling via
Clec9a, the lung CD103+ DCs have a unique functional property
to respond to dead, necrotic cells and viral infections
simultaneously (29, 30). Two phenotypically and functionally
distinct lung migratory CD103+ DC populations, CD103lo and
CD103hi DCs have been identified following neonatal
respiratory viral infection (55, 56). CD103lo DCs, induced after
neonatal RSV infection, have lower expression of lineage-
defining markers, costimulatory molecules CD80, CD86, and
CD24 expression and display a lower ability to take up and
process antigen or stimulate specific CD8+ T cells (56). We
found that the frequency of CD103lo and CD103hi DCs was
differentially affected during neonatal hyperoxic exposure.
Additionally, we found that gelsolin attenuated the hyperoxia-
induced increase in CD103lo, but not CD103hi DCs. Our results
TABLE 1 | Patient characteristics.

n 29

Male gender, n (% of total) 17 (59)
Gestational age, mean ± SD, wk 26.4 ± 2.3
Birth weight, mean ± SD, g 968 ± 406
Died, n (% of total) 3 (10)
BPD or death, n (% of total) 24 (83)
BPD, (% of patients evaluated at 36 wk postmenstrual age), n 21 (81)
FiO2 on day of sample collection, median (IQR) 0.27 ± 0.11
Day of sampling, median (IQR) 3 ± 3
FIGURE 6 | F-actin/Gelsolin ratio in tracheal aspirates of mechanically
ventilated human preterm infants with respiratory distress and FiO2 on day of
sample collection. Tracheal aspirates were collected in the first week of life.
F-actin and gelsolin levels were measured by ELISA in the supernatant. The
association between the ratio of F-actin to gelsolin and the FiO2 on the day of
sample collection was determined by Pearson’s correlation analysis.
FIGURE 7 | In tracheal aspirates of human preterm infants with respiratory
distress, gelsolin concentrations decrease during the first two weeks of
mechanical ventilation. For preterm infants who remain endotracheally intubated
receiving mechanical ventilation tracheal aspirates were obtained during week 1
and week 2 of mechanical ventilation and gelsolin levels in the supernatant were
quantified. Statistical significance was pointed by paired t-test.
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also demonstrate that gelsolin inhibited the hyperoxia-induced
pro-inflammatory responses in whole lung. Our future studies
will focus on examining the effect of hyperoxia on the phenotypic
and functional properties of CD103lo and CD103hi DCs in the
neonatal lung, as well as the effect of subsequent RV infection on
these cells.

We are employing RV infection as a non-specific but
physiologic and clinically relevant stimulus to probe the
hyperoxia-induced activation of CD103+ DCs, the primary DC
subset responsible for TLR3-mediated antiviral responses. We
have previously demonstrated that neonatal hyperoxic exposure
increases whole lung inflammatory responses to the TLR3 agonist
poly(I:C) (31), consistent with the notion that the responses are
not specific to RV. Additionally, other TLRs and immune cells
have been implicated in the inflammatory responses to viral
infections. CD11bhi DCs can induce CD8+ T cell proliferation
after influenza virus infection in mice (65). Unlike CD103+ DCs,
CD11bhi DCs express TLR2 (63). TLR2 is required for early
inflammatory responses to RV and RV-induced inflammasome
priming (66, 67). However, these studies were in adult mice and
not in neonatal mice. Furthermore, age-dependent differences in
the immune responses to RV during the first two weeks of life
(68), in the context of developing innate immune cell milieu in
the lung, could modify the role of CD103+ DCs in the
inflammatory responses to RV.

While studying the effects of gelsolin on hyperoxia-induced
inflammation and enhanced responses to RV, surprisingly, we
found that gelsolin preserves the alveolar architecture during
neonatal hyperoxic exposure. Inflammation is a key feature of
evolving and established BPD (57, 69). Thus, this finding is a
further affirmation about the link between inflammation and
impaired alveolar development and broadens the potential about
therapeutic use of gelsolin to prevent BPD development.

We have recently found a significant positive correlation
between CLEC9A and IL12B expression in tracheal aspirates of
mechanically ventilated premature infants with respiratory
distress (32). In the present study the ratio of F-actin to
gelsolin in tracheal aspirates of mechanically ventilated
premature infants in the first week of life positively correlated
with FiO2 on the day of sample collection, and gelsolin levels
decreased between week 1 and week 2 of mechanical ventilation.
There results indicate that with increasing FiO2, the balance
between F-actin and gelsolin is skewed towards F-actin. Also,
prolonged mechanical ventilation can result in a deficiency of
gelsolin in the airway, thus decreasing the capacity to neutralize
F-actin. While our results do not confirm a causal inference, they
further implicate F-actin-Clec9a-mediated inflammatory
responses and a role for gelsolin deficiency in the development
of BPD. The human study has several limitations. FiO2 on the
day of sample collection may underestimate the amount of
oxygen used since birth. Cumulative oxygen exposure may be a
better indicator to assess the relationship, however this data was
not available to us. When examining changes in tracheal aspirate
gelsolin concentrations during the first two weeks of mechanical
ventilation, we may have a selection bias, as only samples from
Frontiers in Immunology | www.frontiersin.org 10
infants who remain intubated are available. The natural course
and day to day variability in gelsolin concentration in human
preterm airways are unknown.

It is possible that gelsolin preserves alveolarization during
hyperoxic exposure through a Clec9a- and CD103+ DC-
independent mechanism. In addition to depolymerizing actin,
gelsolin binds and modulates the effects of bacterial endotoxin
(70). Early-life bacterial infection, such as chorioamnionitis and
sepsis are major risk factors for BPD development (71–73).
Furthermore, postnatal airway gram-negative bacterial dominance
is associated with BPD development (74–76). We recently found
that neonatal hyperoxia alters the bacterial communities in the lung
with predominance of gram-negative bacteria, a change that
correlated with inflammation (77). Our future studies will focus
on understanding the mechanism by which gelsolin preserves
alveolar structure during neonatal hyperoxia.

Gelsolin, administered systemically, enhances host defense,
reduces neutrophilic inflammation and improves survival in a
mouse model of primary pneumococcal pneumonia (42), and
also mitigates against acute hyperoxic lung injury (78). We
administered gelsolin intranasally to anesthetized mice to allow
for inhalation of the liquid into the airway, the primary site of cell
damage and F-actin release. This mode of delivery ensures
achieving maximal concentration of gelsolin at the site of cell
injury and F-actin release.

We used recombinant human plasma gelsolin to depolymerize
and block the effects of mouse F-actin in vivo and in vitro. Both
actin and gelsolin are highly conserved proteins (79, 80),
permitting cross species interaction. During in vivo exposure to
hyperoxia and with use of hyperoxic BALF, gelsolin may exert
other functions not related to regulation of actin structure (81).
Furthermore, hyperoxic BALF likely contains multitude of
proinflammatory medicators, i.e., cytokines, chemokines, or
DAMPs. Our results demonstrated that Clec9a is required for
maximal pro-inflammatory activation of lung CD103+ DCs in
response to hyperoxic BALF alone or in combination with RV.
This confirmed a role for F-actin-Clec9a-induced immune
responses during hyperoxia and RV infection.

We conclude that recombinant human plasma gelsolin blocks
neonatal hyperoxia-induced inflammatory responses to RV
infection and preserves alveolarization in mice. These data
provide a new mechanism to block the priming effect of
neonatal hyperoxia for enhanced inflammatory responses to
RV infection and preserve alveolarization. Inhaled recombinant
human plasma gelsolin may be an attractive new treatment for
RV-induced exacerbations of BPD or preventive therapy for
chronic lung disease of prematurity.
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