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Abstract: The present study aims to evaluate and contrast the function of the rotational speed of NiTi
alloy endodontic rotary files on how resistant they are to dynamic cyclic fatigue. Methods: A total of
150 NiTi alloy endodontic rotary files with similar geometrical design and metallurgical properties
were randomly divided into study groups: Group A: 200 rpm (n = 30); Group B: 350 rpm (n = 30);
Group C: 500 rpm (n = 30); Group D: reciprocating movement at 350 rpm with 120◦ counterclockwise
and 30◦ clockwise motion (350 rpm+) (n = 30); and Group E: reciprocating movement at 400 rpm
with 120◦ counterclockwise and 30◦ clockwise motion (400 rpm+) (n = 30). A dynamic device was
designed to carry out dynamic cyclic fatigue tests using artificial root canal systems made from
stainless steel with an apical diameter of 250 µm, 5 mm radius of curvature, 60◦ curvature angle, and
6% taper, and 20 mm in length. A Weibull statistical analysis and ANOVA test were used to analyze
the results. Results: The ANOVA analysis showed differences in time to failure among all the study
groups that were of statistical significance (p < 0.001). Conclusions: NiTi alloy endodontic rotary files
using reciprocating movement at 350 rpm with 120◦ counterclockwise and 30◦ clockwise motion
exhibit greater resistance to dynamic cyclic fatigue than files used with a reciprocating movement
at 400 rpm with 120◦ counterclockwise and 30◦ clockwise motion, continuous rotational speed at
200 rpm, continuous rotational speed at 350 rpm, or continuous rotational speed at 500 rpm; it is
therefore advisable to use reciprocating movements at a low speed.

Keywords: continuous rotation; cyclic fatigue; endodontics; endodontic rotary file; reciprocating;
speed; resistance

1. Introduction

Chemical disinfection and mechanical instrumentation of the root canal system are
crucial in the prevention of apical periodontitis that arises due to treatment, or to cure it if
already established [1]. However, the failure of nickel–titanium (NiTi) alloy endodontic
rotatory files remains a major dilemma for endodontists during root canal treatment,
despite the NiTi alloy undergoing continuous chemical and mechanical enhancements by
manufacturers so as to help prevent complications during endodontic therapy [2]. The
fracture of NiTi alloy endodontic rotary files can be caused by torsional fatigue, cyclic
fatigue, or some combination thereof [3]. Torsional failure happens when the end of a NiTi
alloy endodontic rotary file has become trapped on one of the root canal walls while the
instrument is still rotating, causing the file to fracture once the elasticity of the material
has been exceeded [4,5]. Flexural bending fatigue is caused by the repeated application of
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compression and traction cycles that the NiTi alloy endodontic rotary file experiences at
the site of maximum curvature of the root canal; these stresses subsequently lead to plastic
deformation, which can result in unexpected file fracture [3,6].

Several studies have reported that a fractured fragment of the NiTi alloy endodontic
rotary file may block the curved canal, negatively affecting the treatment outcome, as
disinfecting agents can no longer reach the infected root canal areas [1,7,8]. Additionally,
root canal systems that have not been properly disinfected may have a lower likelihood of
healing in teeth with periapical lesions [9].

Several additional factors have been linked to the fracture of NiTi alloy endodontic
rotary files, including instruments with a cross-section design [10], taper and apical diame-
ter [11], flute length, pitch, and helix angle [12]. In addition, the dynamics of the instrument,
such as torque [13] and canal geometry [8], as well as the manufacturing process, whether
electropolishing, heat treatment, or ion implantation [14], can influence the risk of fracture.

It remains unclear whether or not rotational speed affects the resistance to cyclic
fatigue of NiTi alloy endodontic rotary files. Yared et al. and Martín et al. have found that
rotational speed does indeed influence the prevalence of fracture in NiTi alloy endodontic
rotary files [15,16]. However, Pruett et al. showed that rotational speed had no significant
impact on the risk of fracture of NiTi alloy endodontic rotary files [8]. Additionally, some
studies have reported that reciprocating motion may overextend the cyclic fatigue life of
NiTi alloy endodontic files in comparison to continuous motion [17,18].

The present study aims to evaluate and assess the effect of the rotational speed of
NiTi alloy endodontic rotary files on their resistance to dynamic cyclic fatigue, with a null
hypothesis (H0) postulating that rotational speed has no effect on how resistant NiTi alloy
endodontic rotary files are to dynamic cyclic fatigue.

2. Materials and Methods
2.1. Study Design

One hundred and fifty (150) sterile, brand new endodontic rotary files with a paral-
lelogram cross-section design, 6% taper, and 250 µm apical diameter (Ref.: IRE 02506, D,
Endogal, Galician Endodontics Company, Lugo, Spain) were randomly distributed among
different study groups: Group A: continuous rotational speed at 200 rpm (200 rpm) (n = 30);
Group B: continuous rotational speed at 350 rpm (350 rpm) (n = 30); Group C: continuous ro-
tational speed at 500 rpm (500 rpm) (n = 30); Group D: reciprocating movement at 350 rpm
with 120◦ counterclockwise and 30◦ clockwise motion (350 rpm+) (n = 30); and Group E:
reciprocating movement at 400 rpm with 120◦ counterclockwise and 30◦ clockwise motion
(400 rpm+) (n = 30). The final total of experimental units included was 150, with these
being assigned to one of the five study groups in keeping with the proportions determined
by the researchers. The power was set at 80% and testing the null hypothesis H0 resulted
in an effect size of 0.606. A single-factor ANOVA test for independent samples was used to
make equal the mean values of the five groups, and the significance level was set at 5%. A
microscope (OPMI pico, Zeiss, Oberkochen, Germany) was used to examine all NiTi alloy
endodontic rotary files (Ref.: IRE 02506, D, Endogal, Galician Endodontics Company, Lugo,
Spain) prior to use, with no files discarded. Between January and July 2022, this controlled
experiment was conducted at the Department of Stomatology of the Faculty of Medicine
and Dentistry at the University of Valencia (Valencia, Spain).

2.2. Analysis with Scanning Electron Microscopy

A scanning electron microscope (SEM) (HITACHI S-4800, Fukuoka, Japan) was used
at ×30 and ×600 for the initial inspection of the NiTi alloy endodontic rotary files (Ref.:
IRE 02506, D, Endogal, Galician Endodontics Company, Lugo, Spain). This analysis was
conducted at the Central Support Service for Experimental Research of the University of
Valencia in Burjassot, Spain. The analysis was carried out with the following exposure
parameters: 20 kV acceleration voltage; magnification from 100× to 6500×; and resolution
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ranging from −1.0 nm at 15 kV to 2.0 nm at 1 kV. Researchers did this to evaluate the
surface characteristics and ensure there were no manufacturing surface defects.

2.3. Analysis with Energy-Dispersive X-ray Spectroscopy

In addition, energy-dispersive X-ray spectroscopy (EDX) was also used to analyze all
the NiTi alloy endodontic rotary files (Ref.: IRE 02506, D, Endogal, Galician Endodontics
Company, Lugo, Spain). This was conducted at the Central Support Service for Experimen-
tal Research at the University of Valencia in Burjassot, Spain. This inspection used these
exposure parameters: 20 kV acceleration voltage; magnification from 100× to 6500×; and
resolution ranging from −1.0 nm at 15 kV to 2.0 nm at 1 kV. These parameters were used to
assess the elemental makeup of the chemicals in the files used to test their resistance to static
fatigue. The researchers also evaluated the atomic weight percent, taking measurements
from three different sections (apical third, medium third, and coronal third of the NiTi alloy
endodontic files).

2.4. Experimental Model Simulating Dynamic Cyclic Fatigue

The researchers conducted tests of resistance to dynamic cyclic fatigue at room tem-
perature (20 ◦C) to evaluate the mechanical behavior of the instruments, according to
Martins et al. [19], using the aforementioned customized device (Utility Model Patent
No. ES1219520) [20]. CAD/CAE 2D/3D software (Midas FX+®, Brunleys, Milton Keynes,
UK) was used to design the structure of the device, which was subsequently created with
3D-printing software (ProJet® 6000 3D Systems©, Rock Hill, SC, USA) (Figure 1).
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Figure 1. (A) Front, (B) back, (C) right, and (D) left sides of the dynamic cyclic fatigue device.

The customized artificial root canals were performed using Schneider’s measuring
technique, with a curvature of 60◦ [21] and a 5 mm curvature radius. The inverse engi-
neering software used for this purpose was CAD/CAE 2D/3D. Molybdenum wire-cut
technology (Cocchiola S.A., Buenos Aires, Argentina) was used with electrical discharge
machining (EDM) to create the artificial root canal from stainless steel. Researchers also
ensured that the NiTi files were flush with the walls of the artificial root canal. This newly
created artificial canal was then positioned on its support, and a light-dependent resistor
(LDR) sensor (Ref.: C000025, Arduino LLC®, Ivrea, Italy) placed at the apex of the canal
was used to identify any failures in the endodontic rotary instruments (Ref.: IRE 02506, D,
Endogal, Galician Endodontics Company, Lugo, Spain). This device works by measuring
the light source continuously generated by a very strong white LED (20,000 mcd) (Ref.:
12.675/5/b/c/20k, Batuled, Coslada, Spain). The LED was positioned opposite the artifi-
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cial root canal. An LED LDR sensor (Ref.: C000025, Arduino LLC®) at 50 ms was used to
interpret the LED signals so as to identify the precise time of failure.

A roller bearing system (Ref.: MR104ZZ, FAG, Schaeffler Herzogenaurach, Herzoge-
naurach, Germany) was used to apply the movement direction and speed indicated by
the operator (Ref.: DRV8835, Pololu® Corporation, Las Vegas, NV, USA) and created by
the brushed DC gear motor (Ref.: 1589, Pololu® Corporation, Las Vegas, NV, USA) to the
artificial support. The support was maneuvered in an exclusively axial motion with the help
of a linear guide (Ref.: HGH35C 10249-1 001 MA, HIWIN Technologies Corp. Taichung,
Taiwan). A torque-controlled motor and 6:1 reduction handpiece (X-Smart plus, Dentsply
Maillefer, Baillagues, Switzerland) were used in conjunction with the NiTi endodontic
rotary files.

A frequency of 60 pecks per minute was used for the NiTi endodontic files within the
dynamic cyclic fatigue device, following the parameters of a prior study [19]. Researchers
also applied a high-flow synthetic oil (Singer All-Purpose Oil; Singer Corp., Barcelona,
Spain) to help prevent friction between the NiTi endodontic files and the walls of the
artificial root canal; this oil is specifically formulated for the lubrication of mechanical parts.

The files were all used until failure. The researchers recorded and evaluated both the
length of time and the number of cycles the files took to fracture.

2.5. Statistical Tests

Statistical analysis of all variables was performed using SAS 9.4 (SAS Institute Inc.,
Cary, NC, USA). The mean value and SD were used to express the descriptive statistics
of the quantitative variables. The researchers then used an ANOVA test to perform a
comparative analysis of the number of cycles to failure and the time to failure (in seconds).
In 2-to-2 comparisons, the Tukey method was used to determine the p-values and correct
any Type I errors. The researchers also calculated the Weibull modulus and Weibull
characteristic strength. Statistical significance was defined as p < 0.05.

3. Results

Scanning electron microscopy (SEM) analysis of the NiTi alloy endodontic rotary files
did not detect any structural alterations or accumulated organic matter. Additionally, due
to the laser machining process used to make them, the manufacturing lines were parallel
to each other and perpendicular to the longitudinal axis of the files. The distance and
width between these manufacturing lines were indicators of the precision and intensity of
the laser machining manufacturing process. The laser machining process also resulted in
tubular porosity that was observed in the files. Additionally, tubular porosity was visible in
all of the NiTi alloy endodontic rotary files as a result of the combination of other chemical
elements with the Ti alloys (Figure 2).
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Figure 2. (A) SEM images of the full-length NiTi alloy endodontic rotary files (Ref.: IRE 02506, D,
Endogal, Galician Endodontics Company, Lugo, Spain) at ×30, (B) and specifically of the end of the
file at ×600 and (C) the surface of the file at ×600.

EDX micro-analysis of the NiTi alloy endodontic rotary files was performed at three
different locations at 20 kV, enabling a thorough and precise analysis of the composi-
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tion of the NiTi alloy endodontic rotary files. Through EDX micro-analysis at 20 kV, the
NiTi alloy endodontic rotary files were found to comprise Ti (37.59–34.52 wt.%) and Ni
(34.19–38.81 wt.%), although O and C were also observed (Figure 3).
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Table 1 and Figure 4 show the mean and SD values of the time to failure (in seconds)
across all study groups.

Table 1. Descriptive analysis of time to failure (seconds).

Study Group n Mean SD Minimum Maximum

200 rpm 30 364.30 a 6.71 352.38 375.49
350 rpm 30 282.42 b 7.19 261.90 293.71
500 rpm 30 143.84 c 5.70 132.08 152.39

350 rpm+ 30 590.38 d 11.19 561.37 608.08
400 rpm+ 30 488.44 e 12.93 462.19 512.33

a,b,c,d,e Statistically significant differences among groups (p < 0.05).

The ANOVA analysis found there were differences of statistical significance among all
of the study groups with regard to the time to failure (p < 0.001) (Figure 5). The results of
the time to failure could be applied to the “number of cycles to failure” since all of the NiTi
endodontic files were used at a frequency of 60 pecks per minute within the dynamic cyclic
fatigue device.

The Weibull statistics scale distribution parameter (η) identified differences of sta-
tistical significance among all of the study groups with regard to the time to failure
(p < 0.001) (Table 2, Figure 5). The Weibull statistics shape distribution parameter (β)
revealed differences great enough to be statistically significant with regard to time to failure
between the 200 rpm and 400 rpm+ groups (p = 0.0236), the 500 rpm and 350 rpm+ groups
(p = 0.0003), the 350 rpm+ and 400 rpm+ groups (p = 0.0154), the 350 rpm and 500 rpm
groups (p = 0.0152), and the 200 rpm and 500 rpm groups (p = 0.0005). However, there
were not enough differences observed in the time to failure between the 350 rpm and 400
rpm+ groups (p = 0.2283), the 500 rpm and 400 rpm groups (p = 0.1908), the 200 rpm and
350 rpm+ groups (p = 0.08925), the 350 rpm and 350 rpm+ groups (p = 0.2492), and the 200
rpm and 350 rpm groups (p = 0.3123) to be statistically significant (Table 2, Figure 5). In
short, the NiTi alloy endodontic rotary systems exhibited very predictable behavior, as it
took about the same amount of time for the majority of the endodontic rotary files within
each study group to reach the point of failure. The more gradual slope seen when using
the NiTi endodontic rotary files at 350 rpm+ would indicate that this behavior is easier to
predict than other kinematics. The NiTi alloy endodontic rotary files at 350 rpm+ were
shown to be the most resistant to cyclic fatigue, followed by the NiTi alloy endodontic
rotary files at 400 rpm+, 200 rpm, 350 rpm, and 500 rpm.
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Table 2. Weibull statistics for the time to failure across the study groups.

Study
Group

Weibull Shape (β) Weibull Scale (η)

Estimate St Error Lower Upper Estimate St Error Lower Upper

200 rpm 61.9124 8.8223 46.8258 81.8598 367.5283 1.1471 365.2868 369.7836
350 rpm 50.3905 7.3394 37.8766 67.0388 285.6319 1.0898 283.5039 287.7759
500 rpm 30.5162 4.4688 22.9024 40.6611 146.4785 0.9251 144.6765 40.6611

350 rpm+ 63.6086 8.9083 48.3399 83.7000 595.4815 1.8047 591.9549 599.0291
400 rpm+ 39.6357 5.3913 30.3603 51.7449 494.7559 2.4189 490.0376 499.5197
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4. Discussion

The findings of the present study do not accept the null hypothesis (H0), which
postulates that rotational speed does not affect the dynamic fatigue resistance of NiTi alloy
endodontic rotary files.

The present study used the same NiTi alloy endodontic instruments in rotary and
reciprocating kinematic motion since the manufacturer reported that the geometrical design
of the NiTi alloy endodontic files allows for its use in both kinematic movements; there-
fore, manufacturers recommend its use with both continuous and reciprocating rotations.
Furthermore, other instrumentation systems can be used with continuous or reciprocating
rotation, and it is necessary to have a motor in which the angles can be adjusted. Clear
examples can be found in the studies of Yared 2008 [22] and De Deus 2010 [17], where they
used instruments that cut clockwise in a reciprocating mode.

Previous studies have analyzed the effects of rotational speed on the number of cycles
to fracture of rotary NiTi instruments. Lopes et al. subjected ProTaper Universal instru-
ments F3 and F4 to 300 and 600 rpm; however, the speed values selected were too distant, a
cylindrical tube was used as the artificial root canal, and the fracture detection of the NiTi
alloy endodontic rotary files was subjective and therefore imprecise. Furthermore, they did
not carry out any additional measurement methods [23]. Additionally, some reviews have
been conducted with the aim of analyzing the mechanical and metallurgical behavior of
endodontic instruments under different testing conditions and methodologies [24–26].

The results derived from the present study indicate that the resistance of NiTi alloy
endodontic rotary files to cyclic fatigue is inversely proportional to the rotational speed. In
addition, reciprocating movements were shown to be more resistant to cyclic fatigue when
compared with continuous rotational movements. Moreover, the results derived from the
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present study present a direct application to the clinical setting, since the reciprocating sys-
tems provided higher resistance to cyclic fatigue, followed by the lower values of rotational
speed. Therefore, clinicians should choose reciprocating motion systems or reduce the
rotational speed of the endodontic torque-controlled motor if the NiTi endodontic rotary or
reciprocating file is expected to experience high cyclic fatigue, particularly in root canal
systems with a pronounced angle and/or curvature radius.

Specification #28 of the American Dental Association/American National Standards
Institute (ADA/ANSI) outlines tests used to measure how flexible stainless steel hand files
are, as well as their strength under torsion. These same tests were also adopted under ISO
3630/1, which is meant for instruments with a 0.02 ISO taper. Currently, there are still no
specifications or international standards with regard to testing the resistance of endodontic
rotary instruments to cyclic fatigue [27]. The ideal model would entail curved canals being
instrumented in natural teeth. That being said, each tooth can only be used once with
these tests, and instrumentation causes changes to the shape of the root canal, rendering it
impossible to establish standardized experimental conditions. Therefore, various methods
and devices have been used to analyze the in vitro resistance of NiTi rotary endodontic
instruments to cyclic fatigue fractures [28]. Cyclic fatigue is considered a dynamic event
itself since the movement of the NiTi alloy endodontic rotary or reciprocating instruments
inside the root canal system gives it dynamism. Cyclic fatigue tests have been carried out in
a static model under well-controlled experimental conditions; however, the novel pecking
movement of the endodontic handpiece of the present cyclic fatigue device provides an
additional dynamic movement more representative of the in-and-out motion made by
the operator. That being said, studies have shown that the number of cycles to failure
is significantly higher in the dynamic model, regardless of the brand or manufacturing
processes [29–31]. In the static testing model, there is no up-and-down movement applied
to the instrument, causing stresses to accumulate at a fixed point. With the dynamic model,
however, these stresses are spread out along the full length of the instrument, thereby
increasing its cyclic fatigue resistance [23]. Furthermore, researchers have found that the
up-and-down motion should not exceed 1, 2, or 3 mm/s in the dynamic testing model so as
to simulate clinical conditions [24]. An automatic detection system can be used to identify
the precise point of failure of endodontic rotary files [19]. Given this, the present study
used an anatomically based artificial root canal design in accordance with Schneider’s
method [20], using a 60◦ curvature angle and radius of 5 mm, and modifying the geometry
to adapt to the NiTi endodontic rotary files used in this study [11].

The findings of this study corroborate the findings of Kim et al., who found that the
Reciproc R25 and WaveOne Primary heat-treated NiTi alloy endodontic reciprocating files
were more resistant to torsion and cyclic fatigue when compared with ProTaper F2 NiTi
alloy endodontic rotary files used under continuous rotation [32]. Similarly, De Deus et al.
found that the ProTaper F2 NiTi alloy endodontic rotary file also exhibited significantly
greater resistance to cyclic fatigue when employed using reciprocating movement rather
than continuous rotational motion [17]. Furthermore, several other studies have em-
phasized the increase in the lifespan of NiTi alloy endodontic rotary files when using
reciprocating movement as opposed to continuous rotational motion [33,34]. That being
said, there are several studies that have analyzed the impact of rotational speed on how
resistant NiTi alloy endodontic rotary files are to cyclic fatigue, although the findings
remain controversial. Lopes et al. found that the ProFile NiTi alloy endodontic rotary
instrument exhibited greater susceptibility to accidental fracture at higher rotational speeds,
and they found that the total number of cycles to failure was about 30% lower in ProTa-
per instruments when the rotational speed was increased from 300 to 600 rpm [23]. On
the other hand, Martin et al. reported that unexpected fracture of NiTi alloy endodontic
rotary instruments was correlated with the rotational speed, as the ProTaper NiTi alloy
endodontic rotary instrument was more susceptible to fracture at 350 rpm than at 250 or
150 rpm [16]. However, Gao et al. reported no statistically significant differences (p > 0.05)
between files that had similar NiTi alloys and apical diameters when used at different
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rotational speeds [35]. The discrepancies in these findings may be due to differing study
designs, NiTi alloys, or geometrical designs of the instruments under study. Additionally,
not only the asymmetric oscillatory counterclockwise motion (reciprocation motion) but
also the asymmetric oscillatory clockwise motion can be used with any rotary instrument.
Martins et al. evaluated the cyclic fatigue resistance of three replicate rotary instruments
compared with their original brand systems using continuous rotation and optimum torque
reverse kinematics. They reported that reciprocating files showed greater resistance to
cyclic fatigue than continuous rotation files, and the replicas showed higher cyclic fatigue
resistance than the original brand instruments and higher transition temperatures to the
austenitic phase [36].

The results found by Ray et al. were corroborated by those obtained in the present
study using an analysis of dynamic cyclic fatigue when employing a standardized axial
movement, increasing the durability of NiTi alloy endodontic rotary instruments subjected
to cyclic fatigue in comparison with the results observed in static cyclic fatigue devices [37].
Most studies comparing dynamic and static cyclic fatigue appliances have concluded
endodontic rotary instruments exhibited a time to fracture roughly 20–40% longer when
undergoing dynamic cyclic fatigue than the time to fracture found in studies of static cyclic
fatigue, with this also being more similar to the clinical setting [38–40].

The cyclic fatigue testing was performed in a room temperature setting, according
to the results by La Rosa et al., who showed that studies at body temperature impaired
the cyclic fatigue resistance of most files [41]. In addition, Plotino et al. reported that the
surrounding temperature affected the NiTi crystalline phase transformation, significantly
decreasing the cyclic fatigue resistance at body temperature [42].

Regrettably, the limitations of this study precluded analyzing any additional kinematic
movements, under both reciprocating and continuous rotation movements. Future studies
ought to include more NiTi alloys, apical diameters, pitch, helix angles, manufacturing
processes, and tapers. Furthermore, due to difficulties with the standardization of samples,
the present study was not conducted in a clinical setting. However, the present study
provided multimethod research, including SEM, EDX, and an accurate dynamic cyclic
fatigue device, increasing the knowledge of the mechanical behavior of NiTi endodontic
rotary files under different kinematic conditions.

5. Conclusions

NiTi alloy endodontic rotary files used with a reciprocating movement at 350 rpm
with 120◦ counterclockwise and 30◦ clockwise motion were more resistant to dynamic
cyclic fatigue than those used with a reciprocating movement at 400 rpm with 120◦ counter-
clockwise and 30◦ clockwise motion, continuous rotational speed at 200 rpm, continuous
rotational speed at 350 rpm, and continuous rotational speed at 500 rpm. It is therefore
advisable to use reciprocating movements at a low speed.
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