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Citrus Huanglongbing (HLB) or citrus greening, is the most destructive disease for citrus 
worldwide. It is caused by the psyllid-transmitted, phloem-limited bacteria “Candidatus 
Liberibacter asiaticus” (CLas). To date, there are still no effective practical strategies for 
curing citrus HLB. Understanding the mechanisms against CLas can contribute to the 
development of effective approaches for combatting HLB. However, the unculturable 
nature of CLas has hindered elucidating mechanisms against CLas. In this review, 
we summarize the main aspects that contribute to the understanding about the mechanisms 
against CLas, including (1) CLas virulence targets, focusing on inhibition of virulence 
genes; (2) activation of citrus host defense genes and metabolites of HLB-tolerant citrus 
triggered by CLas, and by agents; and (3) we also review the role of citrus microbiome in 
combatting CLas. Finally, we discuss novel strategies to continue studying mechanisms 
against CLas and the relationship of above aspects.

Keywords: HLB, unculturable bacteria, CLas, citrus defenses, HLB-tolerance

INTRODUCTION

Citrus Huanglongbing (HLB), or citrus greening, is the most destructive citrus disease worldwide. 
It is associated with three species of fastidious, phloem-restricted α-proteobacteria: “Candidatus 
Liberibacter asiaticus” (CLas), “Candidatus Liberibacter americanus”(CLam), and “Candidatus 
Liberibacter africanus” (CLaf), which are transmitted by the psyllids Diaphorina citri or Trioza 
erytreae (Jagoueix et  al., 1994; Bové, 2006; Gottwald, 2010). CLas is the most prevalent species 
found in commercial citrus production regions, including the United  States, China, and Brazil 
(Jagoueix et  al., 1994; Bové, 2006; Gottwald, 2010; Bassanezi et  al., 2020; Zhou, 2020). HLB 
symptomology include yellowing of shoots, blotchy mottled leaves, corky veins, malformed and 
discolored fruits, premature fruit drop, root loss, and eventually tree death (Wang and Trivedi, 
2013; Blaustein et  al., 2018). Unfortunately, no commercial citrus varieties are resistant to HLB.

The HLB epidemic has affected all major citrus growing regions in the world (Hodges 
and Spreen, 2012; Kumagai et  al., 2013; da Graça et  al., 2015; Graham et  al., 2020). In 
the United  States, Florida has been the most affected citrus producing state. Since HLB 
arrival in 2005 (Bové, 2006), citrus production in Florida has decreased by 74% (Singerman 
and Rogers, 2020). Production losses due to HLB have resulted in the reduction of citrus 
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growers from 7,389 in 2002 to 2,775 in 2017, juice processing 
facilities from 41  in 2003/2004 to 14  in 2016/2017, and 
packinghouses from 79 to 26 during the same period 
(Singerman and Rogers, 2020). In China, HLB was first 
reported in Guangdong province nearly a century ago (Reinking, 
1919). To date, HLB has occurred in 10 provinces in China, 
including Guangdong, Guangxi, Fujian, Zhejiang, Jiangxi, 
Hunan, Guizhou, Hainan, and Sichuan. Especially, citrus 
production in Guangdong, Guangxi, and Fujian have been 
affected by HLB for a long time (Zhou, 2020). In Brazil, 
HLB was first reported in São Paulo State in 2004 (Coletta-
Filho et  al., 2004). After the first HLB outbreak, the disease 
spread to the States of Minas Gerais, Paraná and Mato Grosso 
do Sul, causing reduction of citrus production (Bassanezi 
et  al., 2020).

Currently, many strategies have been developed for HLB 
mitigation, including application of antimicrobials (Zhang et al., 
2011a, 2012, 2014, 2021; Hu and Wang, 2016; Hu et  al., 2018; 
Yang et  al., 2018), thermotherapy (Hoffman et  al., 2013; Fan 
et al., 2016; Yang et al., 2016b; Doud et al., 2017; Ghatrehsamani 
et  al., 2019; Vincent et  al., 2019), macro-and micronutrients 
(Spann and Schumann, 2009; Gottwald et  al., 2012; Rouse 
et  al., 2017; Mattos-Jr et  al., 2020; Dong et  al., 2021; Zhou 
et  al., 2021), plant defense inducers (Canales et  al., 2016; Li 
et  al., 2016, 2019, 2021a; Hu et  al., 2018; Wang, 2021), control 
of the insect vector (Grafton-Cardwell et  al., 2013; Boina and 
Bloomquist, 2015; Cocuzza et  al., 2017; Pierre et  al., 2021), 
biocontrol (Trivedi et  al., 2011; Hopkins and Wall, 2021; Nan 
et  al., 2021; Poveda et  al., 2021), and eradication of HLB 
symptomatic citrus trees (Bassanezi et  al., 2013; Yuan et  al., 
2020). However, these strategies have shown limited success 
in field applications and effective HLB management remains 
a challenge. Three-pronged approach including control of the 
psyllid vector, aggressive removal of infected trees to reduce 
sources of the disease, and planting with HLB-free nursery 
stock, has proven successful in China and Brazil, and has 
resulted in drastic reductions in the proportion of symptomatic 
trees (Bové, 2006). While this approach was advocated early 
on in Florida’s HLB outbreak, it was deemed to be too expensive 
by most producers, who instead decided to maintain symptomatic 
trees as long as they were bearing usable fruit (Hall and 
Gottwald, 2011). In addition, non-uniform distribution of CLas 
within citrus tree (Tatineni et  al., 2008; Li et  al., 2009) makes 
early detection of CLas very difficult, which is crucial for the 
management of citrus HLB. Thus, breeding for HLB disease-
resistance may provide the most effective and sustainable solution 
to combat HLB (Bové, 2006).

In order to develop novel and effective strategies to suppress 
HLB, it is important to understand the virulence mechanisms 
employed by CLas to be  able to elucidate potential targets 
against the pathogen. In this review, we  describe the different 
virulence mechanisms of CLas and strategies used to identify 
virulence inhibitors. We  also discuss the role of plant defenses 
in conferring HLB tolerance and the potential role of the 
citrus microbiome against CLas. We conclude with a discussion 
about the new pathways for studying this uncultured 
bacterial pathogen.

CLAS VIRULENCE TARGETS

Most insights of CLas virulence and biological processes are 
derived from the genome sequence of CLas (Duan et al., 2009), 
and other related Liberibacters (Coyle et  al., 2018). Many 
putative virulence factors have been identified by utilizing 
surrogate models, and several strategies also have been developed 
for targeting these virulence genes associated with CLas 
pathogenicity and survival.

SECRETION SYSTEMS AND EFFECTORS

Systems capable of secreting bacterial proteins, called effectors, 
into host cells are among the most important virulence factors 
of bacterial pathogens. Protein effectors often suppress plant 
defenses or manipulate developmental processes within the 
host to benefit the pathogen (Jones and Dangl, 2006). CLas 
encodes type I  secretion systems (T1SS), a complete general 
secretory pathway (Sec), and an autotransporter type V secretion 
system (T5SS), but lacks other secretion systems (Duan et  al., 
2009; Fagen et  al., 2014; Wulff et  al., 2014; Wang et  al., 2017). 
The Sec machinery facilitates the majority of proteins transport 
across the cytoplasmic membrane and is essential for bacterial 
viability (Segers and Anné, 2011). The Sec apparatus also 
secretes important virulence factors in some plant-pathogenic 
bacteria. It has been reported that CLas has at least 86 proteins 
with functional Sec-dependent secretion signals (Prasad et  al., 
2016). Many of these proteins, also called Sec-delivered effectors 
(SDEs) are highly conserved in CLas genomes and exhibit 
differential expression patterns in the citrus host and the psyllid 
vector (Thapa et al., 2020). CLas Sec-delivered effector 1 (SDE1, 
CLIBASIA_05315), is conserved across CLas isolates with a 
typical Sec-dependent secretion signal (Pitino et  al., 2016; 
Prasad et  al., 2016; Pagliaccia et  al., 2017). SDE1 is highly 
expressed in citrus relative to psyllid, indicating a plausible 
role in CLas colonization of citrus and HLB disease progression 
(Yan et  al., 2013). SDE1 inhibits the enzymatic activity of 
citrus papain-like cysteine proteases (PLCPs), which regulate 
multiple processes in plants, including defense against microbial 
pathogens (Clark et  al., 2018). Other studies also suggested 
that SDE1 contributes to CLas colonization and the development 
of leaf yellowing symptoms, possibly by promoting premature 
senescence in citrus (Pitino et  al., 2016; Clark et  al., 2020). 
Although, there is no evidence that targeting effectors would 
lead to CLas suppression, targeting the Sec system could inhibit 
protein translocation and have a significant effect on CLas 
virulence and survival. The SecA ATPase drives protein 
translocation when it is bound to the SecYEG complex 
(Economou and Wickner, 1994; Van den Berg et  al., 2004). 
Based on characteristics of SecA, 20 small molecules against 
CLas were identified by molecular docking in silico, and five 
of these compounds were confirmed to have antimicrobial 
activity in vitro using Agrobacterium tumefaciens as culturable 
model (Akula et al., 2012). Using a similarity search methodology, 
11 compounds were identified based on the five SecA inhibitors 
(Hu et  al., 2016). Although these 11 compounds had poor 
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aqueous solubility, they were coupled in a micro-emulsion to 
assess their antimicrobial activities on eight bacteria 
phylogenetically related to CLas (A. tumefaciens, Liberibacter 
crescens, Rhizobium etli, Bradyrhizobium japonicum, 
Mesorhizobium loti, and Sinorhizobium meliloti). The inhibitions 
obtained from these compounds were similar to those described 
for streptomycin (Hu et al., 2016). Thus, the compounds targeting 
SecA, could also inhibit protein translocation in CLas and 
have a significant effect on HLB suppression.

TRANSCRIPTIONAL REGULATORS

The reduced genome of CLas has a small number of 
transcriptional regulators that if targeted by high affinity inhibitors 
could result in strong reduction of CLas fitness and survival 
(Table  1). For instance, the transcriptional regulator PrbP was 
identified and the genome of CLas and was shown to bind 
to specific promoter regions of CLas DNA as well as to interact 
with RpoB, the β subunit of RNA polymerase (Gardner et  al., 
2016). In vitro screening of chemical compounds that target 
this gene identified one compound, tolfenamic acid, that inhibited 
PrbP/RpoB interaction and PrbP DNA binding. Further 
evaluation showed that tolfenamic acid inhibited in vitro growth 
of L. crescens, affected viability of CLas in citrus leaf-soaking 
assays, and reduced CLas titers in infected seedlings causing 
the recovery of roots and canopy tissues (Gardner et al., 2016). 
The antimicrobial activity of Tolfenamic acid against CLas 
might be  the result of targeting key regulatory components 
that inhibit multiple pathways for bacterial survival.

LdtR belongs to the MarR family transcription regulator 
and it has been linked to the regulation of more than 180 
genes in Liberibacter species (Pagliai et al., 2017). In S. meliloti, 
mutation of LdtR resulted in morphological changes and reduced 
tolerance to osmotic stress. Small molecules including 
benzbromarone that targeted at LdtR were identified that caused 
a phenotype in S. meliloti and L. crescens similar with the 
insertional mutants (Pagliai et al., 2014). These small molecules 

were then assessed via a citrus shoot assay and shown to 
decrease the expression of LdtR and a gene regulated by LdtR 
potentially involved in cell wall biosynthesis. Therefore, 
application of small molecules that target LdtR, as a potential 
treatment option against citrus HLB.

As inhibition of transcriptional regulators provide an 
alternative method for mitigating CLas and HLB, a synthetic, 
high-throughput screening system to identify molecules that 
target CLas transcriptional regulators was developed (Barnett 
et  al., 2019). This system used the closely related model 
bacterium, S. meliloti, as a heterologous host for expression 
of the CLas transcriptional activator, the activity of which was 
detected through expression of an enhanced green fluorescent 
protein (EGFP) gene fused to a target promoter. Around 120,000 
compounds were screened by this system to target regulators 
including LdtR, RpoH, and VisNR and compounds that inhibited 
regulator activity were selected as candidate compound for 
combating HLB (Barnett et al., 2019). CLas sigma factor RpoH 
is most similar to RpoH1 in S. meliloti (72% identity), which 
mediate response to various stressors, including heat, acid, 
hydrogen peroxide, stationary phase growth, and envelope 
disrupting agents (Mitsui et  al., 2004; de Lucena et  al., 2010; 
Barnett et  al., 2012). VisN and VisR, members of the LuxR 
transcriptional factor family, negatively regulate the expression 
of the CLas pilin gene flp3, which is associated with bacterial 
adherence and psyllid colonization (Andrade and Wang, 2019). 
Thus, targeting transcriptional regulators is a potential strategy 
for reducing CLas fitness and HLB mitigation.

ROLE OF PROPHAGE IN CLAS 
SURVIVAL

A prophage, also considered as a temperate phage, can integrate 
into the circular bacterial DNA chromosome, continuing this 
lysogenic cycle for as long as host physiology remains stable. 
However, stresses such as heat, UV light, starvation, or chemicals 
like antibiotics, which cause DNA damage to bacterial cells, 

TABLE 1 | Transcriptional regulators in uncultured bacteria Candidatus Liberibacter and inhibitors found in surrogate models for screening chemicals targeted the gene.

Transcriptional 
regulators

Function Surrogate bacterial 
models

Inhibitors References

LdtR

Controlling the expression of nearly 180 genes, 
distributed in processes such as cell motility, cell 
wall biogenesis, energy production, and 
transcription.

Sinorhizobium meliloti, and 
Liberibacter crescens

Benzbromarone, phloretin, 
hexestrol etc.

Pagliai et al., 2014; Barnett et al., 
2019

PrbP
Regulating gene expression through interactions 
with the RNA polymerase β-subunit and a 
specific sequence on the promoter region

Liberibacter crescens and 
Escherichia coli

Tolfenamic acid Gardner et al., 2016

VisNR Regulate the expression of the pilin gene flp3 
involved in adhesion and psyllid colonization

Sinorhizobium meliloti
Bortezomib, Chemdiv 
C549-0604, and Chemdiv 
D244-0326 etc.

Sourjik et al., 2000; Andrade and 
Wang, 2019; Barnett et al., 2019

RpoH

Alternative sigma factor mediating stress 
responses including heat, acid, hydrogen 
peroxide, stationary phase growth, and envelope 
disrupting agents

Sinorhizobium meliloti Rosiglitazone Mitsui et al., 2004; de Lucena et al., 
2010; Barnett et al., 2012, 2019
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activate the “SOS” stress response inducing the excision of 
phage DNA from the host (Oppenheim et  al., 2005). Three 
prophage regions have been identified in CLas and have been 
classified as SC1, SC2, and SC3, based on genomic data (Zhang 
et  al., 2011b; Zheng et  al., 2016, 2018). SC1 carries putative 
lytic cycle genes, as phage particles in the phloem of infected 
periwinkle have been observed by transmission electron 
microscopy, although phage particles have not been observed 
in citrus (Fleites et  al., 2014). SC2 lacks lytic cycle genes and 
can be integrated in the CLas genome or replicate as an excision 
plasmid prophage (Zhang et al., 2011b). Study of Zhang (2011b) 
indicated that SC1 and SC2 also encode multiple virulence 
factors that might contribute to the pathogenicity of CLas. 
Two predicated peroxidases are encoded by SC1 and SC2, 
which might detoxify CLas against reactive oxygen species 
(ROS), including superoxide radicals, hydrogen peroxide, and 
hydroxyl radicals. SC1 and SC2 also encode two predicated 
adhesins, which might be  useful in transmission by psyllid 
(Zhang et  al., 2011b). SC3 is not capable of reproduction via 
the lytic cycle. A restriction-modification (R-M) system of SC3 
was speculated to play a role against Type 1 prophage-phage 
invasion (Zheng et al., 2018). The involvement of SC3 in survive 
of CLas still needs to be  investigated.

Study of Ding et  al. (2018) demonstrated that the relative 
copy number of both prophage SC1 and SC2 increased in 
HLB-affected host plants (citrus and periwinkle), in response 
to heat and antibiotic (tetracycline) treatments. These results 
suggest a potential mechanism for the activity of heat treatment 
and antibiotics against HLB through induction of CLas prophages 
causes lysis of CLas bacteria, reducing CLas population and 
mitigating HLB symptoms in citrus trees (Ding et  al., 2018). 
Therefore, understanding the factors that trigger the lytic cycle 
in CLas prophages can provide a potential control strategy of 
citrus HLB.

MECHANISMS OF HLB-TOLERANT 
CITRUS TO CLAS

Citrus Huanglongbing affects all commercial citrus varieties, 
citrus species, and relatives (Bové, 2006). Nevertheless, several 
citrus cultivars and relatives have shown tolerance to CLas, 
and many studies have deciphered the mechanism of these 
tolerance to HLB (Table  2). Here, we  would discuss host 
defense genes and metabolites against CLas (Figure  1).

CITRUS DEFENSE GENES INVOLVED IN 
COMBATING CLAS

Multiple defense genes in HLB-tolerant citrus have been identified 
by multi-omics approaches (Table 2), although just the function 
of Constitutive disease resistance (CDR) and Non-expressor of 
Pathogenesis Related genes 1 (NPR1) was confirmed in surrogate 
models or citrus.

Constitutive disease resistance genes belong to the plant 
aspartic proteinase (APs) gene family. CDR1 was first identified 

and cloned in Arabidopsis. Its product has been implicated in 
disease resistance signaling (Xia et  al., 2004). Overexpression 
of a rice (Oryza sativa L) CDR 1 gene, led to constitutive 
activation of defense response and enhanced resistance in rice 
and Arabidopsis against bacterial and fungal pathogens (Prasad 
et  al., 2009). Several studies have demonstrated that CDR1 as 
potential candidate genes for HLB tolerance in Poncirus (Albrecht 
and Bowman, 2012; Du et  al., 2015; Rawat et  al., 2015). A 
study was undertaken to mine and characterize the CDR gene 
family in Citrus and Poncirus and to understand its association 
with HLB tolerance in Poncirus. It found that PtCDR2 and 
PtCDR8 were high abundance in Poncirus leaf transcriptomes. 
The expression of PtCDR2 and PtCDR8 genes responded to 
CLas infection differently in HLB-tolerant and susceptible 
genotypes (Rawat et al., 2017). The role of PtCDR2 and PtCDR8 
in disease resistance was confirmed in Arabidopsis mutants 
that showed that transformation of PtCDR2 and PtCDR8 into 
Arabidopsis cdr1 mutant induced PR1 expression and recovered 
the hypersensitive response to Pseudomonas syringae pv. tomato 
strain DC3000 (Ying et  al., 2020). Therefore, PtCDR2 and 
PtCDR8 play a key role in plant defense responses and serve 
as strong candidate genes for engineering citrus for HLB 
disease tolerance.

Non-expressor of Pathogenesis Related genes 1 gene is a key 
regulator in the signal transduction pathway that leads to SAR 
response. The NPR1 gene may act as a regulator of the 
transcription factor/s that controls PR gene expression (Kinkema 
et  al., 2000) and mediates the salicylic acid (SA) induced 
expression of PR genes and SAR (Clarke et  al., 1998). Plants 
over expressing NPR1 display enhanced resistance to several 
pathogens (Cao et al., 1998). For instance, transcriptome profiling 
of HLB-tolerant “Jackson” (grapefruit hybrid) and 
HLB-susceptible “Marsh” grapefruit found that four NPR1-like 
genes were significantly upregulated in HLB tolerant citrus 
trees (Wang et al., 2016). Furthermore, transgenic sweet orange 
cultivars “Hamlin” and “Valencia” expressing an A. thaliana 
npr1 gene under the control of a constitutive CaMV 35S 
promoter or a phloem specific Arabidopsis SUC2 (AtSUC2) 
promoter resulted in trees with normal phenotypes that exhibited 
enhanced resistance to HLB. Additionally, the transgenic trees 
exhibited reduced diseased severity and a few lines remained 
disease-free even after 36 months of planting in a high-disease 
pressure field site (Dutt et  al., 2015). AtNPR1 can enhance 
expression of transcription of genes encoding pathogen-associated 
molecular patterns (PAMPs), transcription factors, leucine-rich 
repeat receptor kinases (LRR-RKs), and putative ankyrin repeat-
containing proteins, in AtNPR1 transgenic line compared to 
the control plant (Qiu et  al., 2020). These results suggested 
that NPR1 positively regulates the innate defense mechanisms 
in citrus, contributing to enhance tolerance to citrus HLB.

ACTIVATION OF ANTIMICROBIAL 
METABOLITES

Plants have a number of unique defense mechanisms including 
physical barriers to pathogen invasion as well as a wide range 
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of secondary metabolites and antimicrobial peptides (AMP). 
Secondary metabolites have long been suggested to interact 
with pathogen (Hartmann, 2008). Several studies have revealed 
a vast number of secondary metabolites with proven or putative 
functions in plant responses to pathogen microorganisms 
(Piasecka et al., 2015). In several HLB-tolerance citrus cultivars, 
the transcriptomic analysis reveals that most differentially 
expressed genes (DEGs) increase in secondary metabolites 
pathways from HLB-tolerant citrus including Poncirus trifoliata 
and its hybrids (Albrecht and Bowman, 2012), “Jackson” 
(grapefruit hybrid; Wang et  al., 2016), Mexican lime (Citrus 
aurantifolia; Arce-Leal et  al., 2020), and Kaffir lime (Citrus 
hystrix; Zou et al., 2019). The secondary metabolites are higher 
in HLB-affected tolerant citrus cultivars, indicating a strong 
relationship between HLB-tolerance and secondary metabolites 
accumulation (Rao et  al., 2018). In addition, amino acids 
including phenylalanine, tyrosine, and tryptophan were 
accumulated on HLB-tolerant citrus relative P. trifoliata (Killiny 
and Hijaz, 2016), which are involved in synthesis of many 
secondary metabolites. Furthermore, several studies demonstrated 
that HLB-tolerant citrus including US-942 (P. trifoliata×Citrus 
reticulata), Curry leaf [Murraya koenigii (L.) Spreng], and LB8-9 

Sugar Belle contained high level of secondary metabolites such 
as volatile organic compounds (VOC), phenolics, and flavonoids 
(Killiny et  al., 2017; Hijaz et  al., 2020; Deng et  al., 2021; 
Huang et  al., 2021b).

Volatile organic compounds play a key role in protecting 
plants under insect and pathogen attack. VOCs, including 
aldehydes, monoterpenes, sesquiterpenes, thymol, b-elemene, 
and (E)-b-caryophyllene, have antimicrobial activities against 
pathogens, and accumulate in HLB-tolerant LB8-9 Sugar Belle 
(Killiny, 2017; Deng et  al., 2021). Phenolics are a group of 
secondary metabolites, which are produced via the shikimic 
acid pathway through the phenylpropanoid pathway (Lin et  al., 
2016). It has been demonstrated that the accumulation of phenolic 
compounds at the infection site could result in pathogen restriction 
and prevention of their spread to other plant’s tissues (Nicholson 
and Hammerschmidt, 1992). Flavonoids are widely distributed 
in plants and they are synthesized in the cytosol through the 
phenylpropanoid pathway by a set of enzymes (Treutter, 2006; 
Petrussa et  al., 2013). Flavonoids could exhibit their resistance 
to pathogens by inhibition and crosslinking of the microbial 
enzymes, chelation of metals necessary for enzyme activity, and 
formation of physical barrier (Treutter, 2006). The HLB-tolerant 

TABLE 2 | The mechanisms of Citrus Huanglongbing (HLB)-tolerant citrus elucidated by multi-omics approaches.

Citrus genotypes Putative tolerance mechanisms of citrus to HLB References

Poncirus trifoliata and hybrids Constitutive disease resistance 1 (CDR1) genes activate PR1 expression

Downregulation of gibberellin (GA) synthesis and the induction of cell wall 
strengthening

Poncirus trifoliata hybrids (US-942) have a stronger defense response, more efficient 
nutrient uptake and increased accumulation of secondary metabolites, flavonoids, 
phenolics, and volatile organic compounds (VOC).

Increased accumulation of phenylalanine, tyrosine, and tryptophan, and some 
sugars such as mannose, and α-D-mannopyranoside which are important in 
secondary metabolite biosynthesis and reduction of availability of essential sugars 
for Candidatus Liberibacter asiaticus (CLas) survival

Folimonova et al., 2009; Albrecht 
and Bowman, 2011, 2012; Killiny 
and Hijaz, 2016; Killiny, 2017; 
Curtolo et al., 2020; Huang et al., 
2021b

Ichang papeda (Citrus ichangensis “2586”) Carbohydrate metabolism, photosynthesis process, and amino acids are not 
activated during CLas infection, which may suppress HLB development

Upregulation of genes involved in secondary metabolism, such as the isoprenoid 
and flavonoid biosynthesis pathways

Wu et al., 2020

“Jackson” grapefruit (Citrus paradisi Macf) Increased expression of NPR1-like genes and secondary metabolite pathways Wang et al., 2016
Mexican lime (Citrus aurantifolia) Increase expression of genes related to cell wall, secondary metabolism, 

transcription factors, signaling, and redox reactions
Arce-Leal et al., 2020

Rough lemon (Citrus jambhiri) Upregulation of genes involved in maintaining or recovering of phloem transport 
activity and possible enhancement of stress tolerance

Fan et al., 2012

Kaffir lime (Citrus hystrix) Upregulation of genes involved in cell wall metabolism and secondary metabolism

Increased expression of peroxidases, Cu/Zn-SOD, and POD4 genes

Zou et al., 2019

Sydney hybrid (Microcitrus virgata) Strong defense response upon CLas infection, more efficient nutrient uptake and 
increased accumulation of secondary metabolites, flavonoids, phenolics, and VOC

Huang et al., 2021a,b

Australian finger lime (Microcitrus 
australiasica)

Production of stable antimicrobial peptides, induction of defense responses such as 
salicylic acid (SA) biosynthesis, phenylpropanoid pathways, and defense genes

Huang et al., 2021a

Volkamer lemon (Citrus Volkameriana) Upregulation of four glutathione-S-transferases proteins involved in radical ion 
detoxification

Martinelli et al., 2016

Lisbon lemon (Citrus limon) Upregulation of genes involved in defense responses Ramsey et al., 2020
Curry leaf [Murraya koenigii (L.) Spreng] High level of phenolics and flavonoids with antimicrobial activity Killiny et al., 2017; Hijaz et al., 

2020
LB8-9 Sugar Belle {“Clementine” mandarin 
(Citrus reticulata) × “Minneola” tangelo [(Citrus 
x Tangelo), “Duncan” grapefruit (Citrus 
paradisi) × “Dancy” tangerine (C. reticulata)]}

Increased accumulation of phenolics, flavonoids, and VOCs with known 
antimicrobial activity such as aldehydes, monoterpenes, and sesquiterpenes

Increase accumulation of plant hormones responsible for plant growth and phloem 
regeneration

Killiny et al., 2017; Deng et al., 
2021; Suh et al., 2021
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Curry leaf [M. koenigii (L.) Spreng] and LB8-9 Sugar Belle 
contain high level of phenolics and flavonoids, which correlate 
with their enhanced tolerance to CLas (Killiny et  al., 2017; 
Hijaz et al., 2020). Therefore, increased levels of VOCs, phenolics, 
and flavonoids in citrus may contribute to HLB tolerance.

Antimicrobial peptides stand out as one of the most prominent 
components of the plant immune system. These small and 
usually basic peptides are deployed as a generalist defense 
strategy that grants direct and durable resistance against plant 
pathogens. A recent study identified a novel class of heat stable 
antimicrobial peptides (SAMPs), from HLB-tolerant citrus 
Australian finger lime (Microcitrus australiasica). SAMPs not 
only effectively reduced CLas titer and disease symptoms in 
HLB-positive trees but also prevented and inhibited infections 
by induction of defense response genes such as PR1 and PR2, 
an enzyme of SA biosynthesis, phenylpropanoid pathways, and 
phenylalanine ammonia-lyase 1(PAL; Huang et al., 2021a). Thus, 
HLB-tolerant citrus can also be  a source of defense peptides 
against CLas.

HOST DEFENSE TRIGGERED BY 
AGENTS

Citrus defense mechanisms not only can be  activated by 
pathogens, but also induced by agents such as chemical 
compounds, heat and nutrients. Systemic acquired resistance 
(SAR) can be  useful to control of several plant diseases (Ryals 
et  al., 1996; Sticher et  al., 1997; Durrant and Dong, 2004). 

SAR involves in a specific defense signaling pathway that 
required SA and is associated with accumulation of pathogenesis-
related proteins (PR). Several chemical compounds can activate 
SAR in plant. Four SAR activators including SA, oxalic acid, 
acibenzolar-S-methyl, and potassium phosphate, provided 
significant control of HLB by suppressing CLas titer and disease 
progress when applied by trunk injection (Hu et  al., 2018). 
Furthermore, both SA and acibenzolar-S-methyl significantly 
induced expression of PR-1 and PR-2 genes, and oxalic acid 
and potassium phosphate resulted in significant induction of 
PR-2 and PR-15 gene expression, respectively (Hu et al., 2018). 
In addition, foliar spray application of several plant defense 
inducers [i.e., β-aminobutyric acid (BABA), 
2,1,3-benzothiadiazole (BTH), 2,6-dichloroisonicotinic acid 
(INA), and ascorbic acid (AA)] were reported to suppress 
progress of HLB in the field. BTH and INA, which are functional 
analogs of SA, can induce plant defenses in citrus. The effect 
control of BABA on citrus HLB may be in SA-depend pathway. 
Furthermore, AA may alleviate HLB symptoms by interfering 
with biosynthesis of plant hormones (including salicylic acid 
and jasmonic acid; Li et  al., 2016). Other plant hormones, 
such as brassinosteroids, can induce plant defenses against a 
wide range of pathogens including CLas. Foliar spray of 
brassinosteroid (24-epibrassinolide) in greenhouse and field 
experiments of HLB-affected citrus showed CLas titer was 
reduction after treatment under both conditions (Canales et al., 
2016). Moreover, several chemical compounds have antimicrobial 
activities against CLas, and can also induce plant defense against 
the pathogen. Sulphonamide antibiotics such as sulfadimethoxine 

FIGURE 1 | The potential mechanism of defense genes and metabolites in HLB-tolerant citrus against CLas. Solid line indicates that the functions were confirmed 
in citrus, and dash line indicates that the function were just confirmed in other species.
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sodium (SDX) and sulfathiazole sodium (STZ) have been proved 
to be  effective against CLas (Zhang et  al., 2014; Yang et  al., 
2016a). Transcriptomic analysis of citrus plants revealed that 
SDX can induce genes related to the metabolism of jasmonates, 
brassinosteroids, ROS, and secondary metabolites, which are 
beneficial for resistance against HLB (Yang et al., 2020b; Table 3).

Candidatus Liberibacter asiaticus is a heat-tolerant bacterium 
and can thrive under high temperature conditions extending 
to 35°C (Lopes et  al., 2009). Many studies demonstrated that 
heat treatment (temperature ranged from 40 to 50°C) can 
eliminate or suppress CLas titer in HLB-affected citrus (Hoffman 
et  al., 2013; Fan et  al., 2016; Yang et  al., 2016a,b). Moreover, 
the heat treatment also can enhance vigor of HLB-affected 
citrus and promote new flush (Hoffman et  al., 2013; Yang 
et  al., 2016b; Armstrong et  al., 2021). Transcriptome analysis 
has shown that the gene expression profiles of HLB-affected 
trees post solar-heat treatment more closely modeled healthy 
trees than their gene profiles prior to treatment, with many 
genes involved in plant-bacterium interactions being upregulated 
post treatment, which may contribute to host defense against 
CLas (Doud et  al., 2017). In addition, proteomics analysis 
indicated that a strong upregulation of chaperones including 
small (23.6, 18.5, and 17.9 kDa) heat shock proteins, a HSP70-
like protein and a ribulose-1,5-bisphosphate carboxylase 
oxygenase (RuBisCO)-binding 60 kDa chaperonin, in response 
to heat treatment (40°C), which has been involved in reversing 
the effects of CLas infection in citrus plants (Nwugo et  al., 
2016; Table  3).

For several years, it has been reported that the application 
of enhanced nutritional products can extend the vigor of 
HLB-affected citrus and trigger citrus defense against CLas 
(Spann and Schumann, 2009; Shen et  al., 2013; da Silva et  al., 
2020; Shahzad et al., 2020; Dong et al., 2021). Although nutrient 
treatments have no effect on reducing CLas titer and cannot 
enhance yield of HLB-affected citrus in the field (Gottwald 
et  al., 2012; da Silva et  al., 2020; Phuyal et  al., 2020), the 
application of macro-and micronutrients have been adopted 
worldwide as they induce host defenses and help maintain 
production of HLB-affected trees. For instance, a field study 
in Florida showed application of phosphorus (P) oxyanion 
solutions to HLB-affected citrus mitigated disease symptom 
severity during a 3-year field trial (Zhao et  al., 2013). It is 
known that phosphite has a direct action on plant defense 
mechanisms by the activation of the PAL activity and the 
biosynthesis of phytoalexins (Saindrenan and Guest, 1994), 
which may be  involved in citrus defense induced by P. 
HLB-affected citrus display interveinal chlorotic leaves due to 
iron (Fe) deficiency caused by CLas (Masaoka et  al., 2011) 
and foliar application of Fe2+ have shown to alleviate symptoms 
of HLB-affected citrus trees (Inoue et  al., 2020). In other 
pathosystems, such as in rice-Magnoporthe interactions, rice 
plants growing at high Fe levels have enhanced resistance 
against the fungus. Although this has not been evaluated, 
application of Fe may induce host defense against CLas (Peris-
Peris et al., 2017). Recent research indicates that elevated levels 
of manganese (Mn) promote better tree response to the effects 
of HLB increasing citrus tree lifespan (Morgan et  al., 2016; 

Zambon et al., 2019). Sufficient Mn in the rhizosphere is critical 
for scavenging ROS (Alscher et  al., 2002), which is known to 
be  produced extensively in CLas-damaged cells (Ma et  al., 
2022). Although many nutrients can mitigate symptoms of 
HLB-affected trees, the mechanisms of how these nutrients 
trigger citrus defenses are still unclear and warrant investigation.

ROLE OF CITRUS MICROBIOME 
IN COMBATTING CLAS

The plant microbiome is an important contributor to plant 
health and defense against pathogens. Plant-associated microbiota 

TABLE 3 | Chemicals and heat activate citrus defense response.

Agent types Name Mechanisms 
against CLas

References

Chemicals Salicylic acid
Induction of 
expression of PR-1 
and PR-2 genes

Hu et al., 2018

Acibenzolar-S-methyl
Induction of 
expression of PR-1 
and PR-2 genes

Hu et al., 2018

Oxalic acid
Induction of PR-2 
gene expression

Hu et al., 2018

Potassium phosphate
Induction of PR-15 
gene expression

Hu et al., 2018

β-Aminobutyric acid
Involving in SA-
depend pathway

Li et al., 2016

2,1,3-Benzothiadiazole
Functional analogs of 
SA

Li et al., 2016

2,6-Dichloroisonicotinic 
acid

Functional analogs of 
SA

Li et al., 2016

Ascorbic acid

Interfering with 
biosynthesis of plant 
hormones and the 
signaling process

Li et al., 2016

24-Epibrassinolide

Induction of some 
plant defense genes 
such as glutathione 
peroxidase, 
Jasmonate acid

Canales et al., 
2016

Sulfadimethoxine 
sodium

Induction of genes 
related to the 
metabolism of 
jasmonates, 
brassinosteroids, 
reactive oxygen 
species (ROS), and 
secondary metabolites

Yang et al., 
2020b

Heat Solar thermotherapy

Many genes involved 
in plant-bacterium 
interactions being 
upregulated post 
treatment, which may 
be contributed to host 
defense against CLas

Doud et al., 
2017

Heat treatment (40°C)

A strong upregulation 
of chaperones 
involved in reversing 
the effects of CLas 
infection in citrus 
plants

Nwugo et al., 
2016
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can suppress pathogens through direct competition, producing 
antimicrobial compounds or stimulating plant immunity to 
resist or tolerate pathogen infection (Saikkonen et  al., 2004; 
Kaul et  al., 2016; Brader et  al., 2017). To date, a plethora of 
studies have focused on deciphering the role of the citrus 
microbiome with the goal of identifying members of the 
microbial community associated with HLB and CLas suppression. 
However, comparison of microbiomes from healthy and 
HLB-affected citrus have shown that CLas affects the microbial 
community structure and reduce the putative beneficial microbe 
associations within citrus leaves and roots (Trivedi et  al., 2011; 
Zhang et  al., 2017; Ginnan et  al., 2020; Yan et  al., 2021).

For example, CLas infection in mandarin leaves (C. reticulata 
cv. Shatangju) causes reduction of several beneficial bacteria 
genera including Variovorax, Novosphingobium, Methylobacillus, 
Methylotenera, and Lysobacters, which are known to be involved 
in promoting plant growth and antibiotic production (Yan 
et  al., 2021). Study of Blaustein (2017)identified citrus-health-
associated endophytes of leaves (such as Methylpbacterium, 
Burkholderia, and Sphingomonas) and roots (Bradyrhizobiaceae) 
based on increased relative abundances in healthy vs. 
HLB-diseased citrus trees. These potential beneficial microbes 
are known to be  involved in competing with pathogens for 
nutrients, antagonize pathogens through antibiosis, assist the 
host with nutrient acquisition, and induce host defense responses 
(Compant et  al., 2005; Madhaiyan et  al., 2006; Enya et  al., 
2007; Lugtenberg and Kamilova, 2009; Verma et  al., 2010; 
Innerebner et  al., 2011; Ardanov et  al., 2012). However, their 
reduction in HLB-affected citrus provides insights into the 
role of the microbial community into HLB progression.

Interestingly, inoculations of Burkholderia stains isolated 
from the rhizosphere of healthy citrus roots can induce the 
expression of genes involved in activation of citrus defenses 
and SA mediated induced systemic resistance (Zhang et  al., 
2017). Other studies have shown that Bacillus sp. can also 
induce host defense responses against CLas through enhancing 
expression of several transcription factors involved in disease 
resistance (Tang et  al., 2018; Munir et  al., 2020). Moreover, 
when the biocontrol agent Xylella fastidiosa strain EB92-1 was 
applied to HLB-affected citrus plants, the results indicated that 
it could reduce the incidence of HLB symptoms in mature 
trees through 18 months after inoculation and the incidence 
of severe symptoms up to 3 years (Hopkins and Wall, 2021). 
Although the mechanism of HLB suppression by X. fastidiosa 
EB92-1 and the other bacteria remain to be  studied in depth, 
these studies show that beneficial bacteria can be  used to 
suppress CLas and improve plant health by induction of plant 
defenses that confer broad-spectrum resistance against pathogens.

Manipulation of the citrus microbiome to enrich the 
populations of beneficial microbes in HLB-affected trees could 
aid in disease suppression. Actually, nutrients play a role in 
activating plant immunity system by altering the microbial 
community structure and the metabolism (Sugimoto et al., 2010; 
Shi et  al., 2012; Huber and Jones, 2013). A recent study has 
reported that application of calcium, magnesium, and boron 
to the soil can alter microbial structure and communities in 
phyllosphere and rhizosphere of HLB-affected citrus and promoted 

beneficial microorganism (Burkholderiaceae, Xanthomonas, and 
Stenotrophomonas) enrichment, which may have contributed to 
the reduced HLB incidence, and CLas titers (Zhou et al., 2021).

Chemotherapy is another method that can shape the citrus 
microbiome. Antimicrobial activity of the effective antibiotics 
against CLas have been associated with shifts in endophytic 
microbial structure and communities in HLB-affected citrus 
after treatment (Zhang et  al., 2014; Yang et  al., 2015, 2020a; 
Li et al., 2019). Foliar application of penicillin and oxytetracycline 
to HLB-affected citrus, caused an increase in the relative 
abundance of beneficial bacterial species, including Streptomyces 
avermitilis and Bradyrhizobium, compared to those treated with 
water control (Yang et  al., 2020a). Moreover, the relative 
abundance of the bacterial species associated with CLas survival, 
such as Propionibacterium acnes and Synechocystis sp. PCC 
6803, was lower in penicillin and oxytetracycline treated plants 
compared to the control (Yang et  al., 2020a). Other studies 
have shown that the endophytic microbiome was altered in 
HLB-affected scion treated with ampicillin, and 10 abundant 
operational taxonomic units (OTUs) from antibiotic producing 
Stenotrophomonas spp. were only detected in the ampicillin-
treatment (Zhang et  al., 2013). Study of Ascunce et  al. (2019) 
also showed that Bacilli, involved in the elicitation of plant 
defenses against pests and pathogens, were relatively more 
abundant in petioles and roots from penicillin treated 
HLB-affected citrus. Moreover, it was also found that the 
endophytic microbiome was changed in HLB-affected citrus 
plants under heat and sulfonamide (sulfathiazole sodium–STZ, 
and sulfadimethoxine sodium—SDX) treatments (Yang et  al., 
2016a). Following antibiotic treatment with SDX and STZ, 
there was enhanced abundance of OTUs belonging to the 
families Streptomycetaceae, Desulfobacteraceae, Chitinophagaceae, 
and Xanthomonadaceae, which are beneficial for control of 
plant pathogens and promoting plant growth (Hell, 1997; Kim 
and Jung, 2007; Mhedbi-Hajri et al., 2011; Mendes et al., 2013). 
Therefore, the enrichment of beneficial bacteria in these antibiotic 
treatments, may be  contributed to their antimicrobial activity 
against CLas.

It is clear that the citrus microbiome plays a key role in 
citrus health. Whether some bacteria have an effect in survival 
of CLas is still unclear. The enrichment of beneficial bacteria 
in healthy citrus or in response to effective chemical compounds, 
may be  involved in combating CLas. However, more studies 
are needed to validate the role of beneficial bacteria in citrus, 
and identify antagonistic bacteria against CLas (Trivedi et  al., 
2011; Riera et al., 2017; Zhang et al., 2017). Therefore, isolation 
and identification of the enriched beneficial bacteria can provide 
more insight into the role of citrus microbiome in HLB mitigation.

NEW APPROACHES FOR STUDYING 
MECHANISMS AGAINST UNCULTURED 
BACTERIAL PATHOGENS

Despite the advances in uncovering virulence mechanisms of 
CLas, identification of genes conferring disease tolerance, 
discovering potential antagonistic bacteria, and identifying many 
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small molecules that inhibit CLas, we are still far from deploying 
sustainable solutions to the HLB epidemic.

Establishing CLas in culture can provide an extended vision 
in mechanism of agents against CLas. Although several reports 
of transient CLas cultures have been published, most of these 
attempts have only been able to maintain CLas in coculture 
(Davis et  al., 2008; Parker et  al., 2014; Fujiwara et  al., 2018; 
Ha et  al., 2019; Merfa et  al., 2019). These studies partially 
fulfilled Koch’s postulates and could potentially be  used to 
unravel the complex relationships of CLas with other citrus 
endophytes; however, no follow-up research using these approaches 
to obtain a pure CLas culture has been published. Currently, 
the methods employed to study the mode of action of small 
molecules with antimicrobial activity have been elucidated in 
vitro using as culturable surrogate models such as L. crescens 
and S. meliloti (Pagliai et al., 2014; Barnett et al., 2019). However, 
all sequenced CLas strains have reduced genome size of about 
1.2 Mb (Duan et  al., 2009; Thapa et  al., 2020), compared with 
the slightly larger 1.5 Mb of L. crescens BT-1 (Leonard et  al., 
2012), and the about 6.7 Mb genome of the phylogenetically 
related S. meliloti (Sugawara et  al., 2013) which could cause 
differences in biosynthetic pathways, metabolic enzymes, and 
secretion systems. Therefore, novel approaches are needed to 
uncover how chemicals, nutrition, beneficial microorganisms 
or hosts, directly or indirectly affect CLas. One such approach 
is the recent development of a plant hairy root system that 
mimics the host environment and supports the growth of CLas 
(Irigoyen et  al., 2020). This system was developed as a tool 
for high throughput screening of antimicrobials against CLas 
and Candidatus Liberibacter solanacearum (CLso), which is 
faster and more reliable compared to conventional compound 
screening approaches (Irigoyen et  al., 2020). Thus, this system 
could also be  used as a model to study the mode of action 
of antimicrobials against CLas inside the citrus host.

Uncovering the complex interactions of CLas and the host, 
is key to discover pathways that can be  exploited for disease 
suppression. However, genome-wide transcriptome profiling of 
a phloem-restricted pathogen in planta is very difficult, since 
the bacterial mRNA constitutes a minor fraction of the total 
mRNA. Thus, most research has focused on gene expression 
of the citrus host, and smaller number of studies describe 
global gene expression profiles of the pathogen. To examine 
the expression profiles of CLas in the host, most studies rely 
on quantitative reverse transcription-polymerase chain reaction 
approaches which only address targeted genes. In vivo 
transcriptomic analyses are required to understand the active 
pathways in CLas. A recent study identified the regions in 
the citrus fruit pith with higher bacterial titers which was 
used to conduct RNA-seq analysis after rRNA removal (Fang 
et  al., 2021). This study compared the gene expression profiles 
of the fruit pit vs. leaf midribs and found different gene 
expression profiles related to virulence genes; however, the 
resolution of the transcriptome profile was lower in midribs 
compared to fruit pit mainly due to the lower bacterial titers 
(Fang et  al., 2021).

Because the main limitation of conducting transcriptomic 
profiles of CLas is bacterial titers, different enrichment approaches 
are being developed. A CLas enrichment system using dodder 
showed about 419-fold CLas titer increase in dodder system 
as compared to the corresponding citrus hosts, and the dual 
RNA-seq data indicated that similar CLas gene expression 
profiles in dodder and citrus samples, yet dodder samples 
generated a higher solution than those obtained in citrus host 
(Li et al., 2021b). Although the CLas-enrichment dodder system 
could be  used as surrogate model for studying interaction of 
CLas and host, dodder defense system against CLas is very 
different from citrus. To overcome the limitation of surrogate 
systems, a bacterial cell enrichment procedure has been developed 

FIGURE 2 | The pathways involved in effective agents including chemicals, nutrition, and plant defense activators against CLas.
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for transcriptome profiling of CLas in citrus in which bacteria 
is isolated from citrus samples prior to RNA extraction, reaching 
detectable expression to 84% of the CLas genome coverage 
(De Francesco et  al., 2022). This CLas-enrichment method 
will be  useful for mechanisms of CLas within the citrus host 
and for elucidating potential targets for CLas suppression.

CONCLUSION

The mechanisms to study phloem-limited and uncultured plant 
bacterial pathogens are a complicated process. The development 
of novel approaches to understand the virulence mechanisms 
of the pathogen, the mode of action of antimicrobial therapies, 
the interactions with host and other endophytic microbes will 
aid in the search of effective and sustainable methods to combat 
CLas and ultimately HLB.

Until we unravel the mechanistic black box in the interactions 
between citrus phloem and CLas, the combination of effective 
agents including chemicals, nutrition, and plant defense activators 
will continue to be  the only path to combat HLB (Figure  2). 
To effectively combat HLB, multiple strategies need to be applied 
against CLas: (1) the use of antimicrobial agents that directly 

disturb the biological processes of CLas, thus affecting bacterial 
survival; (2) the use of chemical agents that suppress CLas by 
inducing citrus host defense systems; (3) modifying the 
environment by agents to promote the enrichment of beneficial 
bacteria to antagonize CLas; and (4) the enrichment of beneficial 
bacteria that trigger citrus defense system against CLas. These 
pathways may work separately or together to promote tree health, 
mitigate HLB and recover tree productivity. Therefore, the 
relationship of virulence targets, citrus defenses and microbiome 
plays a key role in elucidating mechanisms against CLas.
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