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ABSTRACT
FTY720 (Fingolimod) is a clinically approved immunomodulating therapy 

for multiple sclerosis that sequesters T-cells to lymph nodes through functional 
antagonism of sphingosine-1-phosphate 1 receptor. FTY720 also demonstrates a 
proven efficacy in multiple in vitro and in vivo cancer models, suggesting a potential 
therapeutic role in cancer patients. A potential anticancer mechanism of FTY720 
is through the inhibition of sphingosine kinase 1, a proto-oncogene with in vitro 
and clinical cancer association. In addition, FTY720’s anticancer properties may be 
attributable to actions on several other molecular targets. This study focuses on 
reviewing the emerging evidence regarding the anticancer properties and molecular 
targets of FTY720. While the clinical transition of FTY720 is currently limited by its 
immune suppression effects, studies aiming at FTY720 delivery and release together 
with identifying its key synergetic combinations and relevant patient subsets may 
lead to its rapid introduction into the clinic.

TARGETING SPHINGOLIPID SIGNALLING 
FOR CANCER TREATMENT

Introduction to sphingolipid metabolism

Sphingolipids are one of the major components 
of eukaryotic cell plasma membranes. Aside from their 
structural role, they have attracted attention as potent 
second messengers regulating programmed cell death. 
Cleavage of a pro-apoptotic sphingolipid ceramide yields 
pro-apoptotic sphingosine that is phosphorylated by 
sphingosine kinases (SKs) to anti-apoptotic sphingosine-1-
phosphate (S1P) (Figure 1). The dynamic balance between 
S1P and sphingosine/ceramide signalling is referred to 
as the “sphingolipid rheostat” and determines whether 
a cell undergoes apoptosis (reviewed in [1-3]). S1P can 
be dephosphorylated or degraded [4] (Figure 1), and the 
balance of production and degradation of S1P is tightly 

regulated (reviewed in [5]). Importantly, the enzymes 
of the rheostat do not just function by directly changing 
the balance of metabolites, but also by the roles these 
metabolites have in a myriad of signaling pathways with 
production, localisation, secretion and signaling of these 
metabolites having profound effect on tumor outcomes 
[6]. 

Two SK genes expressed in humans, SK1 and SK2, 
display different catalytic properties [7] suggesting distinct 
physiological roles [8-10]. SKs possess an intrinsic 
catalytic activity [11] which is rapidly accelerated upon 
phosphorylation, [12] inducing its translocation to the 
plasma membrane [11]. SKs may have extracellular 
effects (reviewed in [13]). SK1 or SK2 single knockout 
in mice does not affect development and reproduction, 
whereas simultaneous knockout results in S1P deficiency 
and embryonic lethality [14]. SK1 is a proto-oncogene 
and is regulated through multiple mechanisms. Upon 
stimulation, SK1, located predominately in the cytosol, 
translocates to the plasma membrane and enhances S1P 
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secretion and proliferative signalling [15] (Figure 2). 
Through binding cell surface S1P G-protein coupled 
receptors (S1PRs1-5), S1P initiates autocrine and 
paracrine signalling cascades that induce cell migration, 
angiogenesis and differentiation (reviewed in [16], (Figure 
2). Diverse outcomes of S1P signalling depend on the cell 
type and the expression of G proteins and S1PRs [17]. 
Acting as an intracellular second messenger S1P enhances 
proliferation and suppresses apoptosis (reviewed in [16]. 
Internalised upon ligand binding, S1PRs can then either 
resensitise or degrade [18] depending on ubiquitination 
status. S1P binding through mono-ubiquitination leads to 
resensitisation, whilst other agonists (e.g. FTY720) lead 
to degradation through poly-ubiquitination [19]. S1P has 
several non-receptor intracellular actions (reviewed in 
[20]) including binding histone deacetylases HDAC1 and 
HDAC2 and regulating gene expression epigenetically 
[21], and forming complexes with tumour necrosis factor 
(TNF) receptor-associated factor 2 (TRAF2) leading to 
increased nuclear factor kappa B (NF-kB) signalling [22]. 

In healthy cells, ceramide and sphingosine play a 
crucial role in physiological apoptotic machinery while 
S1P signalling leads to cell proliferation, migration, 
angiogenesis, inflammatory response and lymphocyte 
trafficking. In cancer cells, dysregulation of enzymes 
involved in sphingolipid metabolism to escape cell death 
leads to increased S1P signalling, often through aberrant 
expression of ceramide degrading enzymes, sphingosine 
kinases or S1PRs (reviewed in [23]). While this provides 
rationale for therapeutic targeting of these pathways, their 

important physiological role in other tissues (such as heart 
or liver) urges for extreme caution. In particular, targeting 
S1P may lead to lymphocyte retention in lymph nodes and 
subsequent lymphopenia, which would be an undesirable 
side effect, especially in cancer patients. 

Sphingosine kinase 1 as a potential therapy target 
for cancer treatment

Clinical and in vitro association

Compelling evidence suggests that SK1 activation 
contributes to cancer progression. High SK1 expression 
has been shown in several human cancers including brain, 
breast, colon, lung, ovary, stomach, uterus, kidney, rectum 
and small intestine [24-27]. Expression of high levels of 
S1P receptors, S1P1 and S1P3, SK1, and extracellular 
signal-regulated kinase-1/2 are associated with 
development of tamoxifen resistance in estrogen receptor-
positive breast cancer patients [28]. This is the first study 
to demonstrate the association of survival rates and disease 
recurrence with combined S1P1/S1P3 and SK1 protein 
expression indicating a complex relationship between 
S1P receptor and SK1 expression and outcomes. This may 
indicate the significance of the autocrine activation of this 
pathway in breast cancer cells and suggests that disruption 
of this pathway may provide a target for treatment of 
tamoxifen-resistant breast cancer [28]. 

High levels of SK1 expression/activity are 
associated with poor prognosis, decreased survival rate 

Figure 1: Sphingolipid rheostat. Ceramide and sphingosine are intracellular lipid second messengers, which induce activation of 
apoptotic pathways. In turn, SK1 can phosphorylate sphingosine to yield S1P, a lipid second messenger that activates anti-apoptotic 
pathways and antagonises the effects of ceramide and sphingosine. The intracellular balance between ceramide, sphingosine and S1P 
determines the cell fate. PKC - protein kinase C; MAPK - mitogen-activated protein kinases; JNK - c-Jun N-terminal kinases; SAPK - stress 
activated protein kinase; NFkB - nuclear factor kappa B; PLC - phospholipase C; Bcl2 - B cell lymphoma 2, AP-1 - activator protein 1 
(reviewed in [248] and [249]).
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[25] and histologic grade [29] in glioma; poor prognosis 
in breast cancer patients [30]; prostate cancer progression 
(Prostate specific antigen (PSA), tumour volumes and 
Gleason score) and disease recurrence (positive margins 
and surgical failure) [31]; shorter survival time in gastric 
cancer patients [32]; poor survival and tumour progression 
in non-small cell lung cancer [33]; TNM status, tumour 
differentiation and shorter overall survival time in salivary 
gland cancer [34]; and advanced tumour stage, nodal 
involvement, recurrence, shorter patient survival time and 
loss of p21 expression in head and neck cancer [35, 36]. 

These associations have complex pathophysiological 
mechanisms. A hallmark study showed that enforced 
expression of SK1 is sufficient for malignant 
transformation of NIH-3T3 fibroblasts leading to 
serum independence and tumour formation [37]. The 
expression of SK1a and SK1b in androgen-independent 
LNCaP-AI prostate cancer cells is upregulated compared 
with androgen-sensitive LNCaP prostate cancer cells, 
suggesting that androgen escape might be associated 
with increased transcriptional up-regulation of SK1a/b 
[38]. Indeed, long-term androgen deprivation raises 
basal SK1 levels in prostate cancer cells, although the 
exact mechanism is not known [39]. This is confirmed in 

androgen-independent prostate cancer cells derived from 
patients’ brain and bone metastases which have ~10-fold 
higher SK1 activity than androgen dependent prostate 
cancer cells derived from lymph nodes [40].
Protection against apoptosis

Many studies have shown that one of the major 
functions of SK1 is to provide cancer cells protection 
from apoptosis. Thus, targeting SK1 was quickly 
proposed as a potential therapeutic approach for cancer 
treatment. Indeed, many cancer cell lines are sensitive to 
treatment with either siRNAs to SK1 or pharmacological 
inhibitors of this enzyme [27, 40, 41] independently of 
p53 mutation [40] or Bcl-2 status [42]. SK1 is upregulated 
in response to several anticancer treatments [40, 43, 44] 
leading to resistance of cancer cells to these therapies. 
Apoptosis-induced SK1 expression and subsequent 
release of S1P signals to tumour-associated macrophages 
and may therefore promote an inflammatory tumour 
microenvironment [45]. SK1 expression can protect the 
cells against apoptosis induced by TNF-α and Fas ligand 
[46, 47], and can mediate survival under stress conditions 
such as starvation [37, 48].

Figure 2. SK1/S1P signalling pathway. Tumour necrosis factor alfa, growth factors and cytokines activate receptor tyrosine kinases, 
G-protein coupled receptors, toll like receptors, which induce phosphorylation of sphingosine kinase 1 (SK1, often through ERK1/2 and 
PKC), its translocation to plasma membrane and generation of sphingosine-1-phosphate (S1P) from sphingosine (reviewed in [250]). S1P 
can then be exported outside of the cell where it acts in a paracrine or autocrine manner and activates 5 specific S1P receptors (S1P1-5). 
Upon coupling with S1P, these receptors can activate downstream signalling pathways leading to cell proliferation, migration and gene 
expression. PKC - protein kinase C; (reviewed in [248] and [249]).
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Inflammatory response

In addition to blocking cancer cell death, it has 
been proposed that SK1 promotes pro-inflammatory 
cytokine release [49]. Extracellular S1P induced 
COX2 overexpression and PGE2 production in L929 
fibrosarcoma and A549 lung adenocarcinoma cells [50]. 
S1P secreted from apoptotic tumour cells could induce 
macrophage polarisation [51] and stimulated chemotaxis 
of primary monocytes and macrophages, whereas S1P 
antibody abrogated macrophage invasion to ischemic 
areas [52]. Tumour associated macrophages (TAMs) are 
strongly associated with a poor prognostic outcome in 
cancer patients and induce TNFα-dependent activation 
of JNK and NF-κB in adjacent tumour cells to promote 
their growth, motility and invasion [53, 54]. TAMs 
secrete promigratory cytokines/chemokines, including 
those released in response to activation of the SK1/S1P 
pathway [50, 55]. The SK1/S1P pathway is involved in 
inflammatory responses to cytokines such as TNFα and 
interleukin (IL-1) [56]. TNFα, via a TRAF2-dependent 
mechanism, activates SK1 leading to activation of the 
pro-survival and pro-inflammatory pathways mediated 
by AKT [57, 58] and NF-κB [58] through ubiquitination 
of receptor interacting protein 1 and stimulation of IκB 
kinase [22]. However, in both murine macrophages 
lacking both SK1 and SK2 and WT macrophages, TNFα 
and LPS induced similar inflammatory responses and 
activated the NFκB pathway to a similar extent, possibly 
suggesting that intracellular S1P is not necessary for the 
activation of this critical inflammatory signaling pathway 
[59]. 
Migration

Activation of SK1 downstream of several 
chemotactic receptors (e.g. lysophosphatidic acid (LPA1). 
epidermal growth factor or platelet-derived growth factor) 
[60, 61] enhances metastatic potential of cancer cells [62, 
63] and cancer cell migration [64-68]. In many instances 
SK1-induced cell migration is mediated by S1P secretion 
and coupling to S1P receptors [69]. S1P1, S1P3 and S1P4 
receptors mediate promigratory responses [70-72][50] 
through activation of Rac signalling, actin polymerization 
and lamellipodia formation. S1P2 (except in fibroblasts 
[73]) and S1P5 mediate cessation of migration through 
stimulation of Rho and Rac leading to stress fiber 
formation [74-76], suggesting the effect of S1P depends 
on differential expression of S1PRs in a specific cell type. 
In U373 glioblastoma cells SK1/S1P-induced cancer cell 
migration was linked with expression of plasminogen 
activator inhibitor-1 (PAI-1) and urokinase receptor 
(uPAR) [77]. Induction of cancer cell migration may also 
occur through intracellular non-receptor mechanisms, for 
example in hepatocyte growth factor-induced migration 
of endothelial cells [78]. The formation of a signalling 
complex between SK1, S1P1 and the cytoskeletal protein 
filamin A that localises to membrane ruffes of migrating 

cells to promote cell movement has been reported [66]. 
Neovascularisation

SK1/S1P signalling enhances tumour 
neovascularisation [79]. S1P secreted from tumour tissue 
can act as a chemoattractant for various cells including 
vascular endothelial cells [79]. S1P promotes endothelial-
cell growth and interacts with vascular endothelial 
growth factor VEGF signalling [80]. VEGF stimulated 
S1P production mediated activation of RAS and MAPKs 
in T24 bladder tumour cells [81]. S1P1 expression 
is strongly induced in tumour vessels and specific 
knockdown of S1P1 significantly abrogates angiogenesis 
in murine models [82]. Secreted S1P initiated endothelial 
cell sprouting in 3-dimensional collagen matrices [83]. 
Antibodies to S1P have antitumour potential [63] through 
inhibition of cell proliferation, release of proangiogenic 
cytokines (e.g. VEGF, IL-8 and IL-6) and blocking S1P-
related angiogenesis [63]. 
Chemoresistance

SK1 plays a role in chemoresistance and SK1 
inhibition is proposed to correlate with chemotherapy 
efficiency [40]. SK1 overexpression inhibits 
chemotherapy-induced apoptosis: anthracyclines in MCF-
7 breast cancer cells [47]; doxorubicin and etoposide 
in HL-60 acute myeloid cells [41]; camptothecin and 
docetaxel in PC3 and LNCaP prostate cancer cells 
[40]; and MDR-associated chemoresistance in an acute 
myeloid leukemia (AML) model [41]. In prostate cancer 
cell lines and animal models indirect SK1 inhibition 
was a valid chemotherapeutic strategy [84]. Modulation 
of SK or S1P lyase has been suggested to contribute to 
altered sensitivity to cisplatin [85]. In vitro and in vivo 
models of prostate cancer demonstrated that the SK1/
S1P pathway has the potential to synergise with the 
effects of camptothecin chemotherapy [86], docetaxel 
chemotherapy [87] and radiotherapy [88]. SK1 inhibition 
restored endocrine response in breast cancer cells [89], 
and decreased colony formation [90], cell motility and 
chemotaxis [49, 91]. Pharmacological inhibition of SK1 
results in resensitisation to anticancer therapies [41, 92, 
93], notably through targeting SK1 to the ubiquitin-
proteasomal degradation pathway and lowering SK1a/b 
levels below a threshold required for survival [38]. 

Therapeutic potential of sphingosine kinase 1 
inhibition

SK1 is a potential target in cancer therapy. 
Dimethylsphingosine (DMS), a non-selective SK 
inhibitor [94] and its methylated derivative N,N-
dimethylsphingosine (DMS) induce apoptosis in numerous 
cancer cells [94, 95], reviewed in [96]), inhibit in vivo 
growth of lung and gastric carcinoma tumours in athymic 
mice [97], decrease lung metastasis of melanoma cells in 
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syngeneic mice [98], and induce apoptosis and sensitise 
LNCaP cells to gamma-irradiation-induced apoptosis 
[99]. Lacking specificity, DMS inhibits protein kinase C, 
phospholipase A2, and phospholipase D [100]. 

F-12509A and B-5354c are SK inhibitors with 
greater specificity [101]. F-12509A induces cancer cell 
apoptosis in imatinib-resistant cells [102], and in HL-60, 
HL-60/Doxo and HL-60/VP16 cells leading to nuclear 
fragmentation, caspase-3 cleavage, downregulation of 
XIAP, cytochrome C and SMAC/Diablo release [41]. 
B-5354c induces apoptosis in LNCaP and PC-3 prostate 
cancers which is reversed by upregulation of SK1 [86]. 

2-(p-hydroxyanilo)-4-(p-chlorophenyl)thiazole 
(SKI-II), a SK-selective inhibitor has anti-cancer effects. 
SKI-II is cytotoxic to T24 bladder carcinoma cells, and 
MCF-7 and MCF-7/VP breast cancer cells [27]. SKI-II 
induces apoptosis in LNCaP and PC-3 human prostate 
cancer cells, irrespective of their p53 status [40]. Upon 
intraperitoneal administration of SKI-II, tumour size 
decreases and tumour growth is inhibited by 50-80% 
[103]. SKI-II abrogates androgen receptor signalling via 
an oxidative stress-induced, p53-independent mechanism 
in prostate cancer cells [104].

Selective SK1 inhibitor (SK1-I) ([(2-hydroxy-1-
naphthyl)methylene]-3-(2-napythyl)-1H-pyrazole-5-
carbohydrazide) induces apoptosis of leukaemia cells but 
not normal bone marrow derived cells [105]. 

Further SK1-specific inhibitors have been developed 
through modifications of sphingosine [106], and amidine-
based subtype-selective SK1 inhibitors. These inhibitors 
induce reduction of endogenous S1P levels in human 
leukemia cells at nanomolar concentrations [107]. (S)-
FTY720 vinylphosphonate [108] and sphingo-guanidines 
(LCL146 and LCL351) [109] induce SK1 inhibition in 
breast and prostate cancer cells and decrease migration 
rate of human prostate DU145 cells. New SK inhibitors 
optimised for selectivity and activity include SK1-178, 
which is active in vitro and in vivo and may help discern 
the role the SK1 and SK2 in disease development and 
progression [110].

L-threo-dihydrosphingosine (safingol) has 
sphingosine kinase-inhibiting properties [111]. A Phase I 
clinical trial of safingol, in combination with cisplatin in 
43 cancer patients, reported safe use, reduction in S1P in 
plasma, significant regression of liver and lung metastases 
in one adrenal cortical cancer patient, and prolonged stable 
disease in another patient [112]. 

More recently, SK1 inhibitors with sub-micromolar 
potency have been more thoroughly characterized.  In 
several studies, these more selective SK1 inhibitors did not 
demonstrate cytotoxic effects. For example, PF-543, with 
a K(i) of 3.6nM and an IC50 of 2nM for SK1, had no effect 
on proliferation and survival of various cancer cell lines 
including head and neck carcinoma cells [113]. Through 
use of sub-micromolar amidine-based SK1 inhibitors, a 
lack of correlation between SK1 inhibition with changes 
in cell survival in U937, Jurkat T and SKOV3 cells was 
demonstrated [114]. Potent and specific SK1/2 inhibitors 
completely inhibited intracellular S1P production in 
human cells and attenuated vascular permeability in mice, 
but did not lead to reduced tumor cell growth in vitro or 
in vivo [115]. While the cytotoxic effects demonstrated 
by older less specific SK1 inhibitors may be explained by 
their off-target effects rather than by their action on SK1, 
there is significant evidence showing anticancer cytotoxic 
effects of SK1 siRNAs [116-119]. Conversely, one recent 
paper showed that siRNA targeting SK1 in a large panel of 
cell lines failed to demonstrate any statistically significant 
effects on cell viability [115].

FTY720 AS A NEW MOLECULAR THERAPY 
FOR CANCER TREATMENT

FTY720

FTY720 (Fingolimod, Gilenya) (Figure 3) is a 
structural analogue of sphingosine developed from the 
fungal metabolite myriocin [120]. A phenylene moiety in 

Figure 3: Structures of sphingosine (A) and FTY720 (B).
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FTY720’s side chain confers potent immunosuppressive 
activity [121]. FTY720 is phosphorylated by SK2 
to form FTY720-phosphate (FTY720-p), but is not 
phosphorylated, or phosphorylated with low efficiency, 
by SK1 [88, 108, 122-128]. FTY720-p is an agonist of 
S1Prs 1, 3, 4 and 5 and same time a functional antagonist 
of S1PR1 receptor [124, 129]. Through internalization and 
degradation of lymphocytes’ S1PR1 receptor, FTY720 
inhibits lymphocytes’ egress from secondary lymphoid 
tissues and thymus and induces lymphopaenia [71, 130-
134]. In multiple sclerosis FTY720 acts upon naïve and 

central memory T-cells without affecting peripheral 
effector memory cells [135]. The U.S. Food and Drug 
Administration (FDA) have approved FTY720 as a first-
line treatment in relapsing forms of multiple sclerosis 
[136]. Owing to its cardio-protective effects FTY720 is 
a candidate for heart failure and arrhythmia treatment 
[137-140]. FTY720 has failed phase III clinical trials as 
an immunosuppressant for use in kidney transplantation 
[141, 142]. 

Figure 4: Molecular targets of FTY720. FTY720 inhibits SK1 and blocks the activation of multiple targets of this enzyme. In 
addition it can directly or indirectly inhibit multiple intracellular targets responsible for cell proliferation, migration and angiogenesis. It 
further activates mitochondrial permeability transition pore (MPTP), cytochrome c and effector caspases. P-gp - P-glycoprotein, MRP1 
- multidrug resistance protein, ROBO1 - roundabout homolog 1, ROCK1 - rho-associated, coiled-coil-containing protein kinase 1, Stat5 - 
signal transducer and activator of transcription 5, FAK – focal adhesion kinase, MMP – matrix metalloprotease, TIMP – tissue inhibitor of 
metallopeptidase, CDK - cyclin-dependent kinase.
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Anti-cancer properties of FTY720

FTY720 demonstrates anti-cancer properties and 
may have potential in cancer treatment. In vitro and in 
vivo studies demonstrate the growth arrest and apoptosis-
inducing ability of FTY720 in diverse normal and cancer 
cells including: lymphocytes [143, 144], microglia [145], 
prostate cancer [88, 108, 146-149], breast cancer [108, 
122, 150, 151], several forms of leukaemia and lymphoma 
[152-159], lung cancer [160-162], liver cancer [163-166], 
pancreatic cancer [167, 168], bladder cancer [169], renal 
cancer [170, 171]; glioma [172], gastric cancer [173], 
colon cancer [151, 174] and ovarian cancer [175]. 

FTY720 is also a therapy sensitiser. Treatment of 
colorectal cancer cells with FTY720 shows an additive 
effect with 5-fluorouracil, SN-38, and oxaliplatin [176], 
and results in resensitization to cetuximab both in vitro and 
in vivo with inhibition of tumour growth, interference with 
signal transduction, induction of cancer cells apoptosis and 
prolongation of mice survival [177]. FTY720 significantly 
augments treatment efficacy and overall survival of mice 
receiving allogeneic adoptive cell transfer [178].

FTY720 inhibits metastasis in a mouse model 
of melanoma [179] and glioblastoma cell lines [180], 
and is able to inhibit microvessel formation and reduce 
expression of the angiogenesis promoting factor VEGF 
in androgen independent prostate tumour xenograft in 
nude mice [146]. FTY720 has strong immunosuppressive 
properties against TREG cells [181] that contribute to 
tolerance of malignant tumour cells [182] indicating 
FTY720 may have potential in post transplant 
malignancies [183].

FTY720 inhibits sphingosine kinase 1

One of the most studied anticancer mechanisms 
of FTY720 is inhibition or degradation of SK1 (Figure 
4). SK1 downregulation is not dependent on FTY720 
phosphorylation; in SK2-/- mice FTY720 decreased 
SK1 and S1PR1 expression, and eliminated the NFκB/
IL-6/STAT3 amplification cascade and development 
of colitis-associated cancer [184, 185]. FTY720 may 
inhibit SK1 through multiple mechanisms. In cell lines 
FTY720 has been shown to inhibit SK1 intracellular 
activity [88, 108, 122, 123] and it was shown that the in 
vitro IC50 of FTY720 for SK1 is 50uM [108]. FTY720 
was demonstrated to be a competitive SK1 inhibitor 
with respect to sphingosine with an in situ Kic of 2 
mmol/L [108, 122]. Inhibitor characterization studies 
reveal that (S)-FTY720 vinylphosphonate inhibits 
SK1 in an uncompetitive manner, whereas a conjugate 
of sphingosine with a fluorophore and (S)-FTY720 
regioisomer stimulate SK1 activity indicating the presence 
of allosteric site(s) [122]. Moreover FTY720 and (S)-
FTY720 vinylphosphonate, in addition to other direct 

SK1 inhibitors [186, 187], induce SK1 degradation via 
ubiquitination and proteasomal processing [108]. This 
effect could be mediated by accumulation of ceramide and 
subsequent ceramide-induced activation of the proteasome 
[131]. In cisplatin-resistant SK-Mel-28 melanoma cells 
FTY720 induces SK1 degradation by p53-independent 
caspase activation and may inhibit the PI3K/Akt/mTOR 
pathway, related to chemoresistance mainly through 
escape from apoptosis [188]. Conversely in prostate 
cancer cell lines and mouse tumors FTY720-mediated 
radiosensitization is facilitated by SK1 inhibition and is 
caspase independent, suggesting a mechanism involving 
depletion of prosurvival signaling (e.g., Akt, SK1/S1P) 
[88]. In vitro, SK1 inhibition by FTY720 was shown to 
lead to prostate cancer cells apoptosis [88] and reduction 
of the expression of the androgen receptor [134].

FTY720 reactivates protein phosphatase 2A

Further to its effects on SK1, the non-
phosphorylated form of FTY720 has been shown to 
mediate protein phosphatase 2A (PP2A) reactivation [155, 
156]. PP2A is a tumour-suppressor that is down-regulated 
in many cancers [155, 156, 176, 189-193] resulting in 
PI3K/Akt/mTOR activation (reviewed in [194]). The 
FTY720 mediated PP2A reactivation appears important 
in its apoptosis-inducing effects in many cancers [153, 
155, 156, 190, 195, 196]. FTY720 enhanced purified 
PP2A activity [153] suggesting a direct effect [196], and 
also induced its reactivation in vitro by down-regulation 
of SET, a PP2A inhibitory protein often upregulated in 
cancer [155, 156, 176]. Ceramide, structurally similar to 
FTY720, activates PP2A [197-200], via direct disruption 
of SET [201]. Sphingosine activates PP2A via disruption 
of acidic leucine-rich nuclear phosphoprotein-32A 
(ANP32A) [202]. FTY720 mediated PP2A reactivation 
induces caspase-dependent apoptosis, affects Akt and 
extracellular signal-regulated kinase (ERK)-1/2 activation 
status, and impairs proliferation and clonogenic potential 
in colorectal cancer cells [176]. In lung cancer cells 
FTY720 mediated inhibition of SET-driven epithelial-
to-mesenchymal transition (EMT), through a SET/
PP2A/c-myc/NDRG1/Snail pathway, restored sensitivity 
to cisplatin, and inhibited invasiveness and growth of 
lung tumor xenografts [203]. PP2A is deregulated in 
59.6% of basal breast tumours and oestrogen receptor 
negative breast cancer cell lines are sensitive to lower 
doses of FTY720 [193]. FTY720 mediated activation 
of the core PP2A complex dephosphorylates the mTOR 
downstream effectors, 4EBP and S6K, and concurrently 
releases the block on the p53 pathway [193]. Expression 
of the PP2A regulatory B subunit B55α (PPP2R2A) is 
reduced in acute myeloid leukemia cells and suppression 
of B55α in OCI-AML3 cells induces resistance to 
FTY-720 [204]. Reactivation of PP2A by FTY720 or 
its nonimmunosuppressive derivatives (S)-FTY720-
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OMe, (S)-FTY720-regioisomer and OSU-2S suppressed 
survival of chronic myeloid leukemia, but not quiescent 
haematopoietic stem cells in vitro and in vivo [205]. 
OSU-2S induces activation of PP2A, phosphorylation at 
the putative PKC substrate motif, nuclear translocation 
of SHP1S591 (PTPN6) and deregulation of multiple 
cellular processes in chronic lymphocytic leukemia 
(CLL) culminating in potent cytotoxicity [206]. FTY720 
disrupted the SET-PP2A interaction, which inhibited BCR-
ABL1–recruited JAK2 and impaired β-catenin–dependent 
survival through GSK-3β activation [205]. In Jak2V617F 
cells, FTY720 anti-leukaemic activity does not require 
FTY720 phosphorylation, SET dimerization nor ceramide 
induction, but depends on interaction with SET K209. 
Jak2V617F utilizes an alternative SK1-mediated pathway 
to inhibit PP2A, and FTY720-P acting as a S1P1 agonist 
elicits signals leading to the Jak2-PI-3Kγ-PKC-SET–
mediated PP2A inhibition [207]. Targeting of I2PP2A/
SET by FTY720 suppresses lung tumour growth at least 
in part via PP2A activation and necroptosis mediated by 
the kinase domain of RIPK1 [208]. 

Other targets of FTY720 

S1PRs

The anti-cancer properties of FTY720 are largely 
independent of its phosphorylation and effects upon 
S1P receptors. AAL(S), a close structural analogue of 
FTY720 that cannot be phosphorylated by SK2, lacks 
immunosuppressive effects, but induces apoptosis 
in lymphocytes [209]. Of note, FTY720 induces a 
downregulation of S1P1 in hepatocellular carcinoma 
[210]. In Hodgkin lymphoma cells S1P-induced migration 
was inhibited by an S1PR1 antagonist and FTY720-p, 
but potentiated by an S1PR2-specific antagonist [211]. 
In contrast, FTY720-P has been demonstrated to induce 
growth of breast and colon cancer cells [151]. 
Autotaxin

Autotaxin, an enzyme that produces 
lysophosphatidic acid from lysophosphatidylcholine in 
plasma, is associated with increased cancer invasion, 
metastasis and angiogenesis, and is over-expressed 
in several human cancers [212-218]. FTY720-p 
competitively inhibits autotaxin while FTY720 does 
not [219]. Conversely, FTY720 reduces plasma 
lysophosphatidic acid in mice [219]. 
Apoptotic pathways

FTY720 induces mitochondrial permeability 
transition and cytochrome c release via an influence 
on the permeability transition pore complex and F0F1-
ATPase [159]. Cytochrome c binds to Apaf-1 and 
activates caspases that induce apoptotic cell death, which 
is inhibited by Bcl-2 overexpression [159]. Activation of 

caspases has been implicated in FTY720’s pro-apoptotic 
action [147, 148, 163, 179]. In multiple myeloma cells and 
rat thymocytes FTY720 induces activation of caspase-8, 
-9, and -3; poly(ADP-ribose) polymerase cleavage; 
induces mitochondrial membrane potential and Bax 
cleavage and translocation of cytochrome c and SMAC/
Diablo from mitochondria to the cytosol [157, 220]. 
FTY720 induces apoptosis of leukemic cells via activation 
of BIM and BID, which promiscuously bind and inhibit 
anti-apoptotic Bcl-2 proteins Bcl-2, Bcl- XL and MCL-
1, and also activate BAX and BAK [221]. Bcl-2 levels 
regulate the sensitivity to FTY720 in T cell selective 
apoptosis [222]. A Fas-independent, Bcl-associated signal 
transduction pathway and inhibition of ERK activity may 
be involved in FTY720’s anti-cancer properties [223]. The 
anticancer effect of FTY720 on androgen independent 
prostate tumour xenografts is mediated through regulating 
the expression of cell cycle inhibitors such as p21Waf1 and 
promoting apoptosis through modification of apoptosis 
regulators such as Bcl-2 and caspases [146].
PI3K/Akt

In a liver tumour rat model FTY720 suppresses 
tumour growth and progression by selective induction 
of apoptosis of tumour cells via down-regulation of 
phospho-Akt (ser473) and up-regulation of cleaved 
caspase-3, together with decrease of focal adhesion 
kinase [163]. In human prostate cancer cell lines and 
mouse tumors FTY720-mediated radiosensitization is 
caspase independent and linked to SK1 inhibition and 
downregulation of p-Akt [88]. In human breast cancer 
cells FTY720 potentiates radiation effects through 
perturbation of PI3K/Akt and p42/44 mitogen-activated 
protein kinase MAPK [224]. FTY720 down-regulates IL-
6-induced phosphorylation of Akt, signal transducers and 
activators of transcription 3 (Stat3), and MAPK; insulin-
like growth factor-I-triggered Akt phosphorylation; and 
TNFα-induced Iκα and NFκB p65 phosphorylation [157]. 
In neuroblastoma cells FTY720-induced cell death, alone 
or in combination with topotecan, is caspase-independent 
and induces dephosphorylation of Akt and its downstream 
effector BAD with release of cytochrome c, which the 
authors suggested to be due to involvement of 14-3-3 
proteins [225]. Indeed, FTY720 and sphingosine bind 
directly to and regulate the function of pro-survival 
ubiquitous phospho-serine binding 14-3-3 proteins. 
Expression of non-phosphorylatable 14-3-3 in cells 
attenuates apoptosis upon FTY720 treatment [226] and 
protein kinase A [227] and PKCsigma [228] phosphorylate 
14-3-3 in a sphingosine-dependent manner. Recently it 
was suggested that FTY720 induced inhibition of PI3K/
Akt pathway is mediated by phosphorylation of PP2A 
[229]. 

FTY720-induced inhibition of PI3K/Akt pathway 
downregulated mTOR signalling, which was shown to 
be crucial for FTY720-mediated inhibition of migration 
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and invasion of glioblastoma cells [230]. mTOR is a 
key player in prosurvival cell signalling most notably 
regulating transcription and activity of multiple signalling 
molecules through its downstream targets S6 kinase and 
EIF4E transcription factor. It was demonstrated that 
FTY720-induced chemo-sensitization of cisplatin resistant 
melanoma cells is mediated by reduction of mTOR 
activity and the decrease in epidermal growth factor 
receptor expression [188]. 
Cell cycle

FTY720 treatment results in time-dependent 
downregulation of cyclin D1 and accumulation of cells 
in G(0)-G(1) and G(2)-M phases of the cell cycle with 
concomitant decrease in S-phase entry [154]. In prostate 
cancer cells FTY720 acts through modulation of mitogenic 
signaling, cell-cycle regulators (e.g. a decrease in CDK2 
and CDK4 and induction of Cip1/p21) and induction of 
G1 arrest, and apoptotic death mediated by mitochondrial 
death pathway as well as the contribution of FAK to 
MAPK pathways [147].
Cell transporters

Some report propose that FTY720’s anti-cancer 
activity may be due to its ability to induce nutrient 
transporter down-regulation [231] or inhibition of 
P-glycoprotein (P-gp) and multidrug resistance protein 
[174].
Autophagy

The evidence about the role of FTY720 in 
autophagy is controversial. FTY720 can induce U266 
multiple myeloma cell apoptosis and autophagy with 
reactive oxygen species (ROS) regulating both of these 
processes [232]. However, this is not always beneficial, 
since in a variety of ovarian cancer cell lines including 
cisplatin-sensitive and cisplatin-resistant cells, the 
autophagy induction by FTY720 was antagonistic to 
cisplatin-mediated apoptosis [233]. A recent study shows 
that a combination of FTY720 and γ-irradiation blocks 
the autophagy flux causing a paradoxical increase of 
autophagosomes in breast cancer cells that die through 
apoptosis [224]. Finally, it was reported that FTY720 
was effective in limiting murine metastatic melanoma 
development in vivo and induced apoptosis regulated by 
ROS and by increased expression of β-catenin in vitro 
without indications of autophagy or necroptosis [234]. 
Cell migration

FTY720 may reduce cell invasion and migration 
through several mechanisms. FTY720 modulates 
roundabout homolog 1 (ROBO1), rho-associated, coiled-
coil-containing protein kinase 1 (ROCK1) and epithelial to 
mesemchymal (EMT) related factors such as E-cadherin, 
N-cadherin and vimentin [235]. FTY720 down regulates 
matrix metalloprotease (MMP)-2 & MMP-9 and 
upregulates tissue inhibitors of metalloproteinases: TIMP1 

& TIMP2 [236]. Finally, FTY720-mediated reduction ion 
cell migration was reported to be mediated by its effects 
on Bcl-2 [146, 154, 167, 170], Stat5 [156], PI3K/Akt/
mTOR/p70S6K pathway [147, 154, 236, 237], FAK [147], 
RhoA-GTPase [149] and integrins [167]. 

EXPERT COMMENTARY

The fact that FTY720 is an FDA-approved drug for 
treatment of progressive multiple sclerosis [238, 239] can 
significantly simplify its clinical implementation for other 
uses, in the case that a clinical benefit is demonstrated. 
However, despite its promising actions against a diversity 
of cancers, FTY720’s S1PR-mediated immunosuppressive 
effects involving T-cell sequestration to lymph nodes limit 
its potential in cancer treatment. T-cells are considered 
as one of the most important mechanisms of anti-cancer 
defence and phosphorylated FTY720 inhibited random 
migration, cytotoxicity and tumour infiltration of activated 
CD3(+)NKG2D(+)CD8(+) T-lymphocytes in a mouse 
xenograft model [240]. In addition to its direct antitumour 
effect, FTY720 has strong immunosuppressive properties, 
specifically against regulatory T cells [181], which can 
contribute to tolerance of malignant tumour cells [182]. 
It has therefore been suggested to evaluate the use of 
FTY720 in patients with post-transplant malignancies 
[183]. There are several reports suggesting a direct 
influence of FTY720-p on cancer cells ranging from 
induction of growth in breast and colon cancer cells to 
inhibition of cancer cell migration. Currently, there is no 
consensus about the overall role of FTY720-p in cancer 
progression. 

These potentially undesired effects of FTY720-p 
can be overcome by several ways. One potential way 
is by blocking FTY720 phosphorylation. OSU-2S, a 
synthetic derivative of FTY720, demonstrates more 
potent anti-tumour activity and lacks S1PR-mediated 
immunosuppressive effects [241]. OSU-2S displays 
satisfactory pharmacokinetic properties as shown using a 
liquid chromatography-tandem mass spectrometry (LC-
MS/MS) [242]. Through CCL tumour antigen ROR1-
targeted delivery, OSU-2S induces activation of PP2A, 
phosphorylation and nuclear translocation of SHP1S591 
and deregulation of multiple cellular processes in CCL 
resulting in potent cytotoxicity [206]. 

Another way of limiting the immune suppressing 
effects of FTY720 is its tissue targeting and release 
control. A liposomal carrier of FTY720 (LP-FTY720) 
exhibits high drug loading ratio, prolonged in vitro 
release rate and beneficial pharmacokinetic properties 
in vivo compared to free FTY720 [243]. Incorporating 
tumour specific antibodies (anti-CD19, anti-CD20 
and anti-CD37) achieved higher delivery and killing 
efficiency in primary CLL cells ex vivo which may be 
beneficial for targeting hematologic diseases where 
FTY720 induces T cell apoptosis [243]. Enhanced 
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targeting of FTY720 through CD37 and CD19 dual 
immunoliposomes may improve the clinical efficacy of 
FTY720 in B-Cell lymphocytic leukaemia [244]. 

Alternatively, the immunosuppressive action 
of FTY720 can be reduced by a blockade of immune 
inhibitory pathways using anti-CTLA-4 mAb, anti-PD-L1 
mAb, and/or the indoleamine-pyrrole 2,3-dioxygenase 
(IDO) inhibitor INCB23843 which restored IL-2 
production, proliferation of intratumoural T cells, and 
tumour growth control in FTY720 treated murine B16.
SIY melanoma model [245].

Another way of exploiting FTY720’s anti-cancer 
activity is to mimic its effects on downstream targets 
using alternative small molecule inhibitors. An example 
of such approach is FTY720-induced nutrient transporter 
down-regulation [231]. O-substituted benzyl ethers of 
pyrrolidines induce nutrient transporter down-regulation 
and lack FTY720’s S1P receptor-related dose-limiting 
toxicity in human leukaemia cells [231].

Importantly, in many of the cancer studies cited in 
this review, FTY720 was applied at a dosage in excess 
of that used in multiple sclerosis patients, who currently 
receive 0.5 mg once-daily dose. The known adverse effects 
at this dose include: lymphopenia, increased alanine 
aminotransferase, herpes zoster infection, hypertension, 
first-dose bradycardia, and first-degree atrioventricular 
block [239, 246], reviewed in [88]. Higher doses of 
FTY720 that may be necessary for cancer treatment may 
be associated with more adverse events or unpredictable 
off-target effects, and this needs to be addressed by further 
studies. 

At the moment it is unlikely that FTY720 may 
be used as a monotherapy for any cancer, at least in its 
pure form. However, a multitude of studies has shown its 
potentiating effect on many therapies including standard 
DNA-targeting and antimitotic therapies and γ-irradiation. 
Therefore, one of the most important steps in its clinical 
implementation is finding the key combinations where 
FTY720 can act in synergy with the currently used 
therapies inducing sensitisation and overcoming cancer 
therapy resistance. 

Another important step is defining the patient 
populations that will most benefit from the FTY720 
therapy. This could be largely based on the tumour 
expression of the multiple FTY720 targets described in 
this review. It may be that some subsets of tumours would 
be particularly sensitive to this therapy. This approach can 
be helped by the large scale sequencing studies currently 
undertaken in several countries with the aim of defining 
specific cancer mutations/genetic aberrations in large 
groups of patients. For example it was shown that cancer 
cells overexpressing pp32r1 or a pp32r1Y140H functional 
mutant in the ANP32C oncogene that is overexpressed in 
breast, prostate and pancreatic tumours, may demonstrate 
enhanced resistance to FTY720 treatment through 
conserved residue F136, likely to be a key determinant 

of the FTY720 binding site [247]. However it is not 
known whether this mutation is present in large human 
populations.

Overall, FTY720 is a clinically approved therapy 
for multiple sclerosis and a potent apoptosis inducer and 
anticancer agent with a proven efficiency in multiple in 
vitro and in vivo anticancer models. While the clinical 
transition of FTY720 is currently limited by its immune 
suppression effects, in our opinion studies aiming at the 
FTY720 delivery and release together with identifying its 
key synergetic combinations and relevant patient subsets 
may lead to its re-evaluation and rapid introduction into 
the clinic. 

FIVE-YEAR VIEW

We hypothesise that in 5 years the use of targeted 
FTY720 delivery or its specific non-immunosuppressive 
analogues will allow its clinical trials for treatment of 
cancer. Its combinations with other chemotherapies may 
prove more efficient than its use as a monotherapy. 

KEY ISSUES

FTY720 demonstrates a proven efficacy in multiple 
in vitro and in vivo cancer models.

FTY720 inhibits sphingosine kinase 1, a proto-
oncogenic enzyme with in vitro and clinical cancer 
association.

FTY720’s has actions on several other molecular 
targets including protein phosphatase 2A, the PI3K/Akt 
pathway, cell cycle regulators, cell transporters, autotaxin 
and the mitochondrial permeability transition pore.

FTY720 is a FDA-approved drug for multiple 
sclerosis, which can significantly simplify its clinical 
implementation for other uses.

Targeted FTY720 delivery and release together with 
identifying its key synergetic combinations and relevant 
patient subsets may lead to its rapid introduction into the 
clinic.
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