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SUMMARY
Genetic variation contributes greatly to LDL cholesterol (LDL-C) levels and coronary artery disease risk. By
combining analysis of rare coding variants from the UK Biobank and genome-scale CRISPR-Cas9 knockout
and activation screening, we substantially improve the identification of genes whose disruption alters serum
LDL-C levels. We identify 21 genes in which rare coding variants significantly alter LDL-C levels at least
partially through altered LDL-C uptake. We use co-essentiality-based gene module analysis to show that
dysfunction of the RAB10 vesicle transport pathway leads to hypercholesterolemia in humans and mice
by impairing surface LDL receptor levels. Further, we demonstrate that loss of function of OTX2 leads to
robust reduction in serum LDL-C levels in mice and humans by increasing cellular LDL-C uptake. Altogether,
we present an integrated approach that improves our understanding of the genetic regulators of LDL-C levels
and provides a roadmap for further efforts to dissect complex human disease genetics.
INTRODUCTION

Coronary artery disease (CAD) is a common cause of death

and disability worldwide.1 Genetic differences in cholesterol

metabolism contribute substantially to CAD risk, along with envi-

ronmental and clinical risk factors. Serum cholesterol measure-

ments are quantitative and nearly uniformly measured across

biobanks, providing human phenotypic data that can aid in the

identification of genetic risk factors for CAD. Rare monogenic

variants can alter low-density lipoprotein cholesterol (LDL-C) up-

take in genes such as LDLR, APOB, and PCSK9.2 Common,

lower-effect-size genetic variants that affect LDL-C levels and

CAD risk have also been identified through genome-wide asso-

ciation screens (GWASs).3–7

Genetic findings from variants with effects on cholesterol

levels have led to the development of FDA-approved drugs tar-

geting PCSK9 and a clinical pipeline targeting ANGPTL3,

APOC3, and LPA.8,9 Nonetheless, the genetics of cholesterol

levels are far from completely understood. A trans-ancestry

GWAS meta-analysis from the Global Lipids Genetics Con-

sortium (GLGC), using data from 1.65 million subjects, has iden-

tified >900 genome-wide significant loci associated with blood

lipid levels, including >400 loci associated with LDL-C.10 Yet,
This is an open access article under the CC BY-N
the majority of genes or non-coding RNAs that modulate these

loci have not been identified. Associations between deleterious

coding variants and cholesterol levels from exome sequencing

cohorts, including over 400,000 UK Biobank (UKB) individuals,

identified 14 genes with coding variations significantly associ-

ated with LDL-C levels.11–14 Thus, a major disconnect currently

remains between the hundreds of loci flagged in GWASs and

the paucity of genes shown to drive these associations.

Organismal regulation of LDL-C is accomplished through a

complex set of mechanisms. Liver cell LDL uptake is a domi-

nant mechanism controlling serum LDL-C levels, being the pri-

mary deficiency in familial hypercholesterolemia patients15 and

the primary target of statins and PCSK9 inhibitors.16 Cell cul-

ture models have been instrumental in dissecting the roles of

the sterol-responsive SREBP and LXR pathways,17,18 which

regulate cholesterol biosynthesis and the LDL-C uptake ma-

chinery. Cellular uptake of fluorescent LDL-C can identify ge-

netic regulators of cholesterol metabolism in the context of

RNAi and CRISPR-Cas9 screening.19–22 In particular, a

genome-wide CRISPR-Cas9 screen in hepatic cell lines identi-

fied 163 genes with mutations that alter LDL-C uptake.22 Yet,

how these in vitro LDL-C uptake regulators are functionally

related in biological pathways, and whether variation in these
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genes plays a role in controlling serum LDL-C levels, is poorly

understood.

In this work, we combine human biobank coding rare variant

analysis, CRISPR screening in human cell models, gene network

analysis, andmouse knockdown analysis to dissect the genetics

of LDL-C uptake. Using this approach, we find 21 genes that

alter LDL-C levels, at least partially, through altered LDL-C up-

take. Genes associated with the GTPase RAB10 and exocytosis

machinery greatly influence LDL-C levels, defining a novel hyper-

cholesterolemia pathway. In addition, our integrated pipeline

identifies genes—including OTX2—that decrease serum LDL-C

levels upon disruption at least in part through increased LDL-C

uptake. In sum, our integrated approach evaluating the results

of deleterious coding variants in human cell models through

CRISPR screening and in the human population through exome

analysis reveals novel genetic contributors to LDL-C levels and

provides a roadmap to improved understanding of quantitative

human trait genetics.

RESULTS

Genome-scale CRISPR-Cas9-nuclease screening
identifies hepatic cell LDL-C uptake-altering genes
Uptake of fluorescently labeled LDL-C by liver cells can assay

the genetic contributors to LDL-C levels.19–23 We used a

CRISPR-Cas9 screening platform to determine which human

genes govern the uptake of LDL-C in HepG2 hepatocellular car-

cinoma cells,24 amodel of liver cholesterol metabolism that has a

relatively normal karyotype25 and has been the subject of exten-

sive epigenetic profiling.26

To assess fluorescent LDL-C uptake after mutation of known

LDL-C uptake-altering genes, we lentivirally infected HepG2

with guide RNAs (gRNAs) targeting LDLR and the LDLR-degrad-

ing E3 ubiquitin-protein ligase MYLIP (a.k.a. IDOL).27 We

assessed LDL-C uptake under serum-starved (SS) and serum-

containing (SER) conditions, and we found that Cas9-nuclease

mutation of LDLR leads to a 3- to 4-fold reduction in LDL-C up-

take, while mutation of MYLIP leads to up to 1.5- to 1.7-fold in-

crease in LDL-C uptake (Figures 1A and S1A).

We performed a high-throughput CRISPR-Cas9-nuclease

screen targeting genes adjacent to variants associated with

serum LDL-C from a multi-ancestry GWAS from the Million Vet-

eran Program (MVP) cohort.3 We targeted 2,634 genes within 1

Mb of the 293 lead genome-wide significant MVP serum

LDL-C variants using a gRNA library (Knockout [KO]-Library 1),

including four gRNAs per gene predicted by the Cas9 indel pre-

diction algorithm inDelphi28 to induce frameshifts in >80%of edi-

ted alleles, as well as 200 non-targeting control gRNAs.

We performed lentiviral CRISPR-Cas9-nuclease screens using

KO-Library 1 in four biological replicates, ensuring >500 cells per

gRNA at all stages. We performed screens in SER and SS condi-

tions, as SSHepG2 showedupregulation of a gene set associated

with lipid biosynthesis (Table S1).29 We flow cytometrically iso-

lated four populations per replicate with the lowest 12.5%, next

lowest 25%, highest 12.5%, and next highest 25% LDL uptake

(Figure 1B), using next-generation sequencing (NGS) on all sorted

populations, followed by the MAGeCK RRA pipeline,30 to identify

genes with significant effects on LDL-C uptake.
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We found strong replicability in pre-sort gRNA counts

(Spearman rank correlation (R) = 0.79–0.91; Figure S1B), appre-

ciable replicability in the ratio of gRNA representation in cells

with the highest vs. lowest 37.5% LDL uptake (R = 0.2–0.21;

Figures 1C and 1D), and strong replicability among the 100

genes with the strongest effect on LDL-C uptake (R = 0.77–

0.79; Figure 1E). MAGeCK analysis identified 37 genes whose

disruption significantly alters LDL-C uptake (false discovery

rate [FDR] <0.1) under either SS or SER conditions (Figure S1C;

Table S2).

To ask whether the resolution to identify significant LDL-C up-

take-altering genes is improved by increasing the number of

cells screened per gRNA, we designed a smaller gRNA library

targeting the 360 genes with themost robust effect on LDL-C up-

take in our original screen according to MAGeCK (KO-Library 2).

Screening KO-Library 2 using the same protocol as for KO-

Library 1 identified 152 genes whose disruption significantly al-

ters LDL-C uptake (FDR <0.1, Figure S1D; Table S2) under either

SS or SER conditions and yielded results that are concordant

with the larger screen.

Given the added power to identify LDL-C-uptake-altering

genes using smaller gRNA libraries, we performed CRISPR-

Cas9 screening using two additional gRNA libraries. One library

targets 1,803 annotated human transcription factors31,32 (KO-

Library 3) to increase the resolution to identify transcriptional

regulators of LDL-C uptake (Figure S1E; Table S2). The final

library (KO-Library 4) targets 522 genes with significant or

near-significant effects on LDL-C uptake from the three

previous screens as well as from a published genome-wide

LDL-C uptake CRISPR-Cas9 screen performed in Huh7 cells.22

Altogether, the four screens identify a total of 490 genes whose

knockout alters LDL-C uptake under either SER or SS conditions

(299 decrease uptake, 180 increase uptake, 11 do both at FDR

<0.1; Figure 1F; Table S2), increasing the number of such genes

compared with previously published screens.21,22,33,34 We

observed a positive correlation in the gene-level phenotype

across our screens (R = 0.36–0.53 for 229 union gene set; Fig-

ure S1F). We find robust but incomplete correlation in the

gene-level log2 fold change in screens of SER vs. SS conditions

(R = 0.43 for 1,800 genes in KO-Library 3; Figure S1G) and in our

HepG2 SS screens vs. previous screens in SS HuH7 cells

(R = 0.50 for 203 genes in KO-Library 4; Figure S1H), suggesting

that environmental conditions and cell line influence the genetic

control of LDL-C uptake.

The screens identify known players in cholesterol uptake and

metabolism and flag candidate genes. Mutating known LDL-C

uptake-implicated genes such as LDLR (the most robust hit),

SREBF2,17,35 HNF4A,36 and SCAP17,35 impairs LDL uptake,

while mutating MYLIP27 and the cholesterol biosynthesis and

processing enzymes ACAT2 and SQLE35,37 increases LDL up-

take (Figure 1F; Table S2). The majority of the significant genes

have not been implicated in cholesterol homeostasis, suggesting

this dataset can identify novel genes and pathways involved in

LDL-C uptake. To address the accuracy of these screening

data, we cloned 20 individual gRNAs targeting genes found to

affect LDL-C uptake and performed fluorescent LDL-C uptake

assays on all 20 knockouts in triplicate. Correlations between

changes in LDL-C uptake in our CRISPR screen and individual
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Figure 1. CRISPR screening identifies genes required for LDL-C uptake

(A) Flow cytometric analysis of LDL-C uptake in HepG2 cells with CRISPR-Cas9 knockout of LDLR (red) and MYLIP (blue) under SER and SS conditions; n = 10.

Two-tailed t test (***p % 0.001).

(B) Schematic of LDL-C uptake CRISPR-Cas9 knockout screening.

(C–E) Spearman correlation and p value of the ratio of representation of all gRNAs (C and D) or gRNAs in the 100 genes with strongest effects on LDL-C uptake

(E) in cells with top 37.5% vs. bottom 37.5% LDL-C uptake in KO-Library 1 under SS conditions.

(F) Volcano plot showingMAGeCK LDL-C uptake log2 fold change (x axis) andminimumMAGeCK�log10 p value (y axis) for the 522 genes in KO-Library 4 under

SS conditions. Several significant genes are listed; n of permutations = 100,000.

(G) Comparison of LDL-C uptake log2 fold change for 20 genes between KO-Library 1 (x axis) and individual gRNA knockout testing (y axis).
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validation (R2 = 0.69; Figures 1G and S1I) confirm the accuracy of

the CRISPR screening results.

CRISPR activation screening reveals tunable regulators
of LDL-C uptake
To determine which genes alter LDL-C uptake upon overexpres-

sion, we performed systematic upregulation of 200 LDL-C up-

take-altering genes using CRISPR activation (CRISPRa)

screening. To maximize CRISPR-based gene upregulation, we

employed the SunTag system,38 fusing ScFvGcn4 with a combi-

nation of human activation domains. We also recruited two

transactivators, p65 and HSF1, to the target site through fusion

with the MS2 coat protein (MCP)39 (Figure S2A). This combined

CRISPRa platform leads to significantly stronger gene activation

compared with the individual SunTag and MCP components

(Figure S2B).

In addition to maximizing the potency of the CRISPRa plat-

form, we characterized the reliability of CRISPRa screening. To

measure the variable efficiency of gRNAs in CRISPRa screening,

we developed and employed theCRISPRaOutcome andPheno-

type (COP) platform.We designed a high-throughput pooled len-

tiviral CRISPRa library in which each promoter-targeted gRNA

has two targets: a target in an adjacent barcoded reporter

construct containing a 205-nt proximal promoter sequence

and a native genomic target in the promoter of a target gene (Fig-

ure 2A). For each of 200 target genes, we cloned eight on-target

gRNAs predicted to have high activity,40 as well as two non-tar-

geting control gRNAs. After transduction of HepG2 cells stably

expressing dCas9-10xGcn4 and ScFvGcn4-SBNO1-NFE2L1-

KRT40 in three biological replicates, we sorted the cells with

the top and bottom 30% cutoffs for LDL-C uptake. In addition,

we collected RNA to assess the magnitude of promoter reporter

activation upon gRNA treatment through the transcribed bar-

code (Figure S2A).

The majority of gRNAs were active in CRISPRa, with on-target

gRNAs inducing significantly higher reporter activity than

control gRNAs (Figure 2B; Table S3). Furthermore, 75% of on-

target gRNAs produced stronger reporter activity than the me-

dian promoter-matched control gRNA (Figure 2B; Table S3).

gRNA cleavage efficiency predictors,41,42 gRNA binding strand,

and gRNA position showed significant but modest correlations

with CRISPRa activity (Figure S2C).

We evaluated the endogenous activation strength of 15

gRNAs targeting four cell-surface proteins that were also evalu-

ated in the COP screen, using flow cytometric antibody staining

to measure CRISPRa potency. The correlation between COP-

measured activation and endogenous activation was high

(R = 0.81; Figures 2C andS2D). In addition, reporter activity

was significantly, albeit incompletely, correlated with phenotypic

impact on LDL uptake for on-target gRNAs targeting the 10

genes with strongest phenotypes (R = 0.38; Figure S2E).

We observed that the ratio of gRNA representation in top- vs.

bottom-sorted cells was replicate-consistent (R = 0.43–0.69;

Figure S2F). MAGeCK analysis showed that upregulation of 32

genes significantly altered LDL-C uptake, with LDLR upregula-

tion most robustly increasing and MYLIP upregulation most

robustly decreasing uptake (Figure 2D; Table S4). Comparing

the effects of gene knockout with upregulation, significant anti-
4 Cell Genomics 3, 100304, May 10, 2023
correlation (R = �0.31; Figure 2E) suggests that LDL-C uptake

is a tunable process controlled by a set of core regulators.

Genemodule analysis elucidates LDL-C uptake-altering
mechanisms
We employed co-essentiality analysis to group genes into func-

tionally coherent modules. Utilizing genome-wide CRISPR cell

essentiality screen datasets (DepMap),43 genes with similar

functions can be clustered into modules, as genes with similar

cellular functions will affect fitness in the same cell lines.44–48

We combined features of co-essentiality pipelines,47,48 using

ClusterOne49 (d = 0.2) to group nearly twice as many genes

into functional modules as Gene Ontology (GO) and search

tool for the retrieval of interacting genes/proteins (STRING). We

then annotated each module using overlapping GO modules

for interpretability, finding that 85% of modules have a signifi-

cantly enriched GO term (STAR Methods; Table S5).

Employing co-essential module enrichment on the 490 signif-

icant LDL uptake-altering genes, we identified 33modules signif-

icantly associated with LDL-C uptake (STAR Methods;

Table S5). The most significantly associated modules contain

genes associated with vesicle-mediated transport, protein

N-linked glycosylation, lipid biosynthesis, tRNA processing,

and translation initiation (Figures 3A and S3A). Most modules

comprise a mix of genes annotated to be involved with a cellular

function and unannotated genes.48 To evaluate whether unanno-

tated genes contribute to the annotated cellular function, we

explored module 146, whose most significant GO association

is in protein N-linked glycosylation. We measured binding of

two N-glycan-binding lectins, WGA and ECL, on the surface of

HepG2 cells through flow cytometry. We confirmed significantly

reduced lectin binding upon knockout of two GO-annotated

N-glycosylation genes, OST4 and STT3A, as well as four of five

genes that are not annotated as N-glycosylation genes by GO

(Figure S3B). RNA sequencing (RNA-seq) of HepG2 cells with

knockout of one such unannotated gene, HYOU1, reveals

compensatory upregulation of co-essential modules involved

in N-glycosylation (Figure S3C; Table S1).

We also identified 13 significantly associated modules related

to vesicle transport (Figures 3B, 3C, and S3D). The most signifi-

cant, module 255, for which 11 of the 14 included genes signifi-

cantly alter LDL-C uptake, contains RAB10 GTPase and

exocytosis machinery (Figures 3B and 3C). RAB10 is a GTPase

implicated in numerous trafficking processes, including Golgi-

to-membrane and endosomal transport;50 RABIF is aRAB10 hol-

dase/chaperone that is required for RAB10 stability;51 DENND4C

is a RAB10 guanine exchange factor (GEF);52 and RALGAPB is a

RAB10 GTPase-activating protein (GAP). Module 255 also con-

tains seven members of the exocyst complex, which is required

forRAB10-mediated vesicle fusionwith theplasmamembrane,53

aswell as three SNAREcomplex proteins known to be involved in

exocytosis.53 Altogether, this cluster implicates exocytosis in

LDL-C uptake, in line with previous findings.22,54

Beyond this exocytosis module, co-essential clustering allows

dissection of the multiple roles of vesicle trafficking in LDL-C up-

take (Figure S3D),55 highlighting the multivesicular body (module

514), the WASH and CCC endosome sorting complexes56 (mod-

ules 11 and 277), endosome recycling (modules 476 and 165),
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Figure 2. CRISPR activation screening reveals tunable regulators of LDL-C uptake

(A) Schematic of CRISPRa Outcome and Phenotype (COP) screening approach.

(B) Reporter cDNA:gDNA ratio of all promoter-paired gRNAs vs. control gRNAs, normalized by the average cDNA:gDNA ratio of control gRNAs for each gene;

Mann-Whitney U test.

(C) Spearman correlation and p value of individual flow cytometric cell surface antibody staining and reporter cDNA:gDNA ratio; n = 2–4.

(D) Volcano plot showing MAGeCK LDL-C uptake log2 fold change (x axis) and minimum MAGeCK �log10 p value (y axis) for the 200 genes in the CRISPRa

library. Several significant genes are listed.

(E) Comparison of LDL-C uptake log2 fold change for 200 genes targeted by CRISPR-KO (x axis) and CRISPRa (y axis); two-tailed t test (***p % 0.001).
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vesicle ATPase acidification (modules 229 and 514), and

ER-Golgi trafficking (modules 98, 372, and 461), in addition to

the exocyst complex and polarized transport machinery (mod-

ules 255 and 69).22,57
To assess the roles of co-essential modules on LDL-C uptake,

we identified 10 small molecules that modulate the function of

significant genes and pathways from our screens (Table S22).

Eight of the 10 molecules significantly alter LDL-C uptake in
Cell Genomics 3, 100304, May 10, 2023 5
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Figure 3. Gene module analysis elucidates LDL-C uptake-altering mechanisms

(A) Co-essential modules with the most significant enrichment of CRISPR-KO genes (hypergeometric p value) labeled with the most significantly associated GO

term for each module.

(B) A t-distributed stochastic neighbor embedding (t-SNE) plot based on principal component analysis (PCA) of module 255. CRISPR-KO genes that decrease

LDL uptake are labeled red, those that increase LDL uptake are labeled blue. Genes with pairwise Pearson correlation of >0.2 (purple) or <�0.2 (green) are

connected with dashed lines.

(C) Schematic of known functions and complexes of module 255, including RAB10 GTPase and exocyst complex components.

(legend continued on next page)
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the direction expected based on the CRISPR screening data

(Figure 3D), compared with 6 of 14 control molecules chosen

for their effect on DNA repair58 (Figure S3E).

Reasoning that gene knockouts may be redundant or synergis-

tic with small molecules that target the same cellular pathway,59

we performed CRISPR screening using KO-Library 4 in the pres-

ence of eight small molecules as well as a DMSO control, each in

three replicates. We observed evidence of gene-small molecule

interactions, including EIF4A1 knockouts increasing LDL-C up-

take in cells treated with DMSO or seven unrelated small mole-

cules and decreasing LDL-C uptake in cells treated with the

EIF4A1 inhibitor Rocaglamide A (Figure 3E; Table S6). Similarly,

the LDL-C uptake-increasing effects of knockout of the lipid

biosynthesis pathway members LSS and SQLE were less pro-

nounced in cells receiving the HMGCR inhibitor simvastatin, pre-

sumably because simvastatin acts through the same LDL-C up-

take-increasing mechanism (Figure S3F; Table S6). Co-essential

modules with differential effects in the presence of each drug

compared with DMSO-treated cells supported these results. We

identified expected effects (the ‘‘translational initiation’’ module

was strongly depleted in Rocaglamide A-treated cells, while the

‘‘lipid biosynthetic process’’ module was strongly depleted in sim-

vastatin-treated cells [Figures 3E and S3F; Table S7]) as well as

unexpected molecule-module interactions (e.g., the ‘‘Golgi

vesicle transport’’ module was mitigated in Rocaglamide

A-treated cells [Figures 3E and S3F; Table S7]).

We built a correlation matrix of the differential effects of each

co-essential module on LDL-C uptake in the presence of the

eight small molecules. Certain co-essential modules cluster in

their interaction with these small molecules, such as modules

related to vesicle transport and N-linked glycosylation and mod-

ules related to translation, mitochondrial function, and lipid

biosynthesis functions (Figure S3G; Table S8). Thus, analysis

of gene-small molecule interactions identifies cellular functions

that act in coordinated fashion to alter LDL-C uptake.

Rare variant analysis reveals monogenic contributions
to serum LDL-C levels
We examined the effects of rare coding variants on serum LDL-C

levels using exome sequencing data and patient LDL-C values

from the UKB.60 First, we analyzed the coding burden of rare pu-

tative loss of function (pLOF) and computationally predicted

damagingmissense variants from an analysis of 454,787 individ-

uals.14 Among the 459 CRISPR-KO significant genes with qual-

ifying variants in this dataset, we identified 11 genes with LDL-C

burden at a 10% FDR (Figures 4A and S4A; Tables S9 and 10).

These genes include LDL-C uptake regulators such as LDLR,

MYLIP, and HNF1A, as well as genes such as the RAB10 GEF

DENND4C (carriers have increased LDL-C). We found that

CRISPR-KO genes are enriched in genes with LDL-C burden in

this analysis Figure S4B), supporting the idea that HepG2

LDL-C uptake CRISPR-KO screening is a valuable approach to
(D)Mean control-normalized LDL-C uptake fold change of HepG2 cells treatedwit

test; n = 6–26 (**p % 0.01, ***p % 0.001).

(E) Comparison of LDL-C uptake log2 fold change for 522 genes targeted by CRIS

denoted co-essential modules are highlighted.
improve identification of genes associated with serum LDL-C

levels. We note that KO-Library 1, which contributed to the iden-

tification of a subset of the CRISPR-KO significant genes, is en-

riched in genes with LDL-C burden, and thus we cannot rule out

that some enrichment in CRISPR-KO hits with coding burden

could derive from this non-uniform starting gene set. Whole-

genome LDL-C burden analysis using this approach revealed

51 significant genes (Tables S9 and 10).

The pLOF-focused coding burden analysis is restricted to var-

iants that are predicted to be highly damaging62; however, this

threshold diminishes the ability to identify associations in genes

that have low allele counts, due to either strong negative selec-

tion of damaging variants or sequence length and context. We

applied a more inclusive rare variant analysis pipeline, including

a larger set of rare coding variants. We evaluated 12 computa-

tional models that predict variant deleteriousness (e.g.,

CADD,63 VEST464) and evolutionary conservation scores (e.g.,

GERP,65 PhyloP66). We found that VEST4 outperforms other

methods at classifying pathogenic and benign variant annota-

tions from ClinVar67 (area under the receiver operating charac-

teristics [AUROC] = 0.96) for these variants (Figure S4C). We

also found that VEST4 showed the highest mean correlation

rank between deleteriousness scores and serum LDL-C levels

for 8,344 UKB missense variants in 33 genes with significant

rare variant enrichment,14 adjusting serum LDL-C levels for

age, sex, polygenic risk score (PRS), and statin use5 (adjusted

LDL-C) (Figure S4D). While the correlation between VEST4 score

and adjusted LDL-C was modest and variable across these

genes (median R = 0.077), the fact that correlations were signif-

icantly non-zero in 12/33 genes and robust in genes such as

LDLR, ABCA1, and ASGR1 (Figures 4B, S4D, and S4E) rein-

forced the idea that accounting for deleteriousness using

VEST4 may improve the estimation of the impact of monogenic

coding variants on LDL-C levels.

We assessed whether variants in the significant genes iden-

tified in our CRISPR-KO screens altered adjusted LDL-C in the

UKB cohort by performing collapsing tests considering all var-

iants in 188,891 individuals with four VEST4 score thresholds

(top 25%, 50%, 75%, or 100% most deleterious; Figure 4C).

Of 417 CRISPR-KO significant genes with R10 carriers, we

found 13 genes associated with LDL-C at a 10% FDR

(Figures 4A, 4D, 4E, and S4F; Tables S9 and S11). Only four

genes were identified in both analyses (ABCA1, ABCG5,

APOE, and LDLR) (Figure 4A), revealing the complementary

nature of these approaches. Genes uniquely identified in the

deleterious-thresholded approach include the RAB10 hol-

dase/chaperone RABIF (carriers have increased LDL-C) and

the transcription factor OTX2 (carriers have decreased

LDL-C). Whole-genome LDL-C rare variant analysis using the

deleterious-thresholded approach revealed 42 significant

genes (Tables S9 and S11). VEST4 scores correlated reason-

ably well with UKB carrier LDL-C levels in genes with significant
h DMSO (control) or one of 10 small molecules. Dunnett’s multiple comparisons

PR-KO in the presence of DMSO (x axis) and Rocaglamide A (y axis). Genes in
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Figure 4. Coding rare variant analysis reveals contributions of genes and modules to serum LDL-C

(A) Venn diagram showing genes with significant enrichment of coding variants in the UKB cohort using two analysis methods.

(B) Spearman correlation and p value within UKB LDLR variant carriers between VEST4 score (5% bins) and change in adjusted LDL-C compared with non-

carriers. Bubble size represents the number of carriers; 95% confidence interval around the linear regression line is shown.

(C) Schematic of a collapsing burden model that accounts for variant deleteriousness to identify genes associated with altered serum LDL-C in the UKB exome

cohort.

(legend continued on next page)
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coding burden, such as OTX2 and RABIF, as well as in other

CRISPR-KO hit genes (Figures 4F and S4G), adding further ev-

idence that deleterious variants in these genes lead to altered

serum LDL-C levels.

We also examined rare variant associations with CAD among

469,828 UKB exome sequencing participants in 21 genes. Using

a Cox proportional-hazards regression, we found CAD to be

significantly associated with LOF variants in LDLR (hazard ratio

[HR] = 6.81 [10.16, 4.56], p = 5.94 3 10�21) and SPAG5

(HR = 2.08 [1.47, 2.96], p = 4.39 3 10�5) and missense variants

in LDLR (HR = 1.28 [1.16, 1.42], p = 2.29 3 10�6) (Figure S4H;

Table S12). These findings may be limited by statistical power

given the low numbers of rare LOF variant carriers, the number

of CAD cases among variant carriers, or the broad spectrum of

functional effects of missense variants. For example, PCSK9

LOF carriers lack a significant decrease in CAD risk (p = 0.13;

Figure S4H; Table S12), at odds with previous reports.68

Among all genes with significance in the CRISPR-KO screens,

there is a significant negative correlation between their effect on

LDL-C uptake and the effect of deleterious coding variants on

serum LDL-C levels (Pearson correlation [r] = -0.20; Figure S4I).

Restricting to genes prioritized by both the CRISPR-KO LDL-C

uptake phenotype and the coding rare variant analysis ap-

proaches, there is a significant and more robust negative corre-

lation between their effect on LDL-C uptake and their effect on

serum LDL-C levels (r = �0.79; Figure S4J).

We asked whether co-essential modules showed evidence of

coherent association with serum LDL-C levels through gene set

enrichment analysis (GSEA)69 using the ranked list of mean car-

rier serum LDL-C among variants in the top 75% of VEST4 dele-

teriousness for 16,843 genes with 20 or more qualifying variants.

Among 241 d = 0.8 modules, we found four significant modules,

all associated with increased LDL-C levels, comprising a total of

11 genes (Figure 4G; Table S13). These genes can primarily be

functionally designated as RAB10 GTPase components and

members of the exocyst complex (Figure 3C). Focused gene-

level rare variant analysis on these 11 genes reveals that, among

them, DENND4A, DENND4C, and RABIF have LDL-C burden

(Figure 4A; Table S9). Similarly, among 291 d = 0.2 modules,

the module with the strongest GSEA normalized enrichment

score and the lowest p value (Figure S4K; Table S14) was mod-

ule 255, which also comprises RAB10-related and exocyst

pathway genes and scores as the most enriched module in the

CRISPR-KO screen (Figures 3B and 3C).

These analyses indicate that RAB10 GTPase dysfunction may

contribute to hypercholesterolemia through impaired LDL-C up-

take. Of the 16,849 genes assessed in the UKB exome cohort,
(D) Volcano plot showingmean adjusted LDL-C difference (x axis, mg/dL) and two

417 CRISPR-KO significant genes and 3 additional well-known LDL-C burden ge

(blue) LDL-C levels in burden analyses and selected non-significant genes (black

(E) Number of genes significantly (two-sidedMann-Whitney U p value, Benjamini-H

of 417-gene sets.

(F) Correlation within UKBRAB10 andRABIF variant carriers between VEST4 scor

in (B).

(G) Volcano plot showing UKB LDL-C rank co-essential GSEA normalized enrichm

modules. The four significant modules (red) (Benjamini Hochberg FDR = 0.1) and

(H) UKB mean carrier-adjusted LDL-C rank for the 75% most deleterious varian

decreased (blue) LDL-C levels (Benjamini-Hochberg FDR = 0.1) and selected RA
deleterious variant carriers in RABIF have the second highest

mean adjusted LDL-C (behind only LDLR), and carriers of

RAB10 variants have the 53rd highest mean adjusted LDL-C

(Figure 4H). RAB10 GEFs DENND4C (2,389th of 16,849) and

DENND4A (3,224th)52 are both significantly associated with

serum LDL-C, albeit with weaker magnitude, and carriers of var-

iants in other module 255 genes show elevated LDL-C (Fig-

ure 4H). Altogether, these analyses suggest that disruption of

RAB10 vesicle-mediated processes, including exocytosis medi-

ated by SNARE proteins and the exocyst complex, drives higher

LDL-C levels in the human population.

Disrupting the RAB10 vesicle transport pathway
impedes LDLR membrane trafficking
Flow cytometry with an anti-LDLR antibody indicated that

HepG2 cells with CRISPR knockout of RAB10 and DENND4C

have decreased surface LDLR levels (Figure 5A). We repeated

these knockouts in a doxycycline-inducible LDLR-mCherry

HepG2 cell line. Through time-course fluorescence imaging,

we found that LDLR is never efficiently trafficked to the cell mem-

brane in RAB10-knockout cells (Figures 5B and S5A); instead,

LDLR has a vesicular localization. In addition to altered localiza-

tion, flow cytometric quantification revealed that RAB10- and

DENND4C-knockout cells have significantly less LDLR-

mCherry, indicating decreased LDLR stability (Figures 5C and

S5B). Finally, RNA-seq on DENND4C-knockout HepG2 vs. con-

trol cells revealed enrichment in the expression of a co-essential

module related to vesicle-mediated transport (Figure 5D;

Table S1); RNA-seq analysis of RAB10 knockout showed an

elevated cellular stress signature and was thus excluded from

analysis. Altogether, these data suggest that deficiencies in the

RAB10 pathway lead to decreased membrane LDLR levels

through decreased membrane trafficking and consequent

decreased LDLR stability.

Mouse knockdown of Rabif, Otx2, and Csk alters serum
cholesterol levels
We tested whether the liver-specific knockdown of three LDL-C

uptake-altering genes affects mouse serum cholesterol levels.

We chose two genes with robust effects in our CRISPR-KO

and CRISPRa screens as well as robust and statistically signifi-

cant association with LDL-C in the UKB rare variant analysis,RA-

BIF and OTX2 (Figure 4H), and a third gene with robust in vitro

phenotypes but without UKB burden, CSK. Individual knockout

of each gene significantly altered HepG2 LDL-C uptake, with

ectopic expression of each gene’s open reading frame signifi-

cantly altering LDL uptake in the opposite direction (Figure 6A).
-sided�log10Mann-Whitney U p value (y axis) in the VEST4 burden analysis for

nes (gray). Genes significantly associated with increased (red) and decreased

) are highlighted.

ochberg FDR= 0.1) associatedwith serum LDL-C in 10,000 random selections

e and change in adjusted LDL-C comparedwith non-carriers. Plot formatting as

ent score (NES) (x axis) andGSEA�log10 p-value61 for 241 d = 0.8 co-essential

several enriched non-significant modules are highlighted.

ts for 16,843 genes. Genes significantly associated with increased (red) and

B10-associated non-significant genes (black) are highlighted.
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Figure 5. Disrupting the RAB10 vesicle transport pathway impedes LDLR membrane trafficking

(A) Median anti-LDLR flow cytometric staining intensity for HepG2 cells with gene KO as indicated. Two-tailed t test; n = 2.

(B) Fluorescence microscopic images of HepG2 cells with inducible LDLR-mCherry expression and gene KO as indicated. LDLR-mCherry expression was

induced 6 h prior to imaging.

(C) Flow cytometric expression of LDLR-mCherry in HepG2 cells with inducible LDLR-mCherry expression and gene KO as indicated. LDLR-mCherry expression

was induced 24 h prior to measurement in the indicated medium conditions; n = 2–4. Two-tailed t test (*p < 0.05, **p % 0.01, ***p % 0.001).

(D) Co-essential module enrichment among sgDENND4C RNA-seq upregulated genes. Hypergeometric p values are shown.
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For RABIF, this was done through coordinated overexpression

ofRABIF andRAB10, as these proteins are coordinately required

for proper function.

We also explored whether UKB carriers of deleterious coding

variants in these genes show alterations in other serum lipids.

RABIF carriers show low HDL-C and high triglyceride (TG) levels,

although these trends do not rise to statistical significance

(Figures 6B, 6C, and S6A). OTX2 and CSK variant carriers

show lowHDL-C andmiddling TGs, although also not significant.

Associations among these genes and lipoprotein A and apolipo-

protein A levels are also predominantly non-significant.

We performed RNA-seq of knockout HepG2 cells to explore

mechanisms underlying the LDL-C uptake-altering effects of

OTX2. OTX2 knockout induces upregulation of a serum starva-

tion response gene program in non-starved HepG2 (Figure 6D;

Table S1). While OTX2 expression is too low to reliably measure

in HepG2 RNA-seq, its paralog OTX1 is among the most highly

downregulated genes upon HepG2 serum starvation (2.4-fold;

Figure 6E; Table S1). OTX1 also significantly increases LDL-C

uptake in our CRISPR screen, suggesting these genes

may play overlapping roles. Co-essential GSEA on genes

showing differential expression in SS OTX2-knockout HepG2

cells showed upregulation of the ‘‘lipid metabolic process’’ mod-

ule (module 660) and ‘‘cholesterol esterification’’ module (mod-
10 Cell Genomics 3, 100304, May 10, 2023
ule 335) and downregulation of the ‘‘TG catabolic process’’

module (module 324) (Table S15). We analyzed genome-wide

Perturb-seq data in which RNA-seq profiling was performed af-

ter CRISPRi knockdown of 9,858 genes in the myelogenous leu-

kemia cell line K562.70 While knockdown ofOTX1 andOTX2was

performed in this study, the OTX2 knockdown experiment failed

quality control. Co-essential GSEA showed that the module with

the most upregulated expression upon OTX1 knockdown was

the ‘‘regulation of cholesterol biosynthetic process’’ module

(module 82; Table S16). The most downregulated module (mod-

ule 160; Table S16) comprises genes involved in ‘‘signal-recog-

nition particle (SRP)-dependent co-translational protein target-

ing to membrane,’’ or the ER targeting of proteins destined for

secretion or membrane deposition.

To begin to determine how OTX genes control these gene

expression changes, we analyzed OTX1 chromatin immunopre-

cipitation (ChIP)-seq data from K562 cells.71 These data identify

10,690 OTX1 binding sites in the K562 genome (Table S16). We

used GREAT72 to identify 3,549 human genes with OTX1 pro-

moter binding (+5 to �1 kb of the gene’s transcription start site

[TSS]). We found that the 10% of genes most upregulated

upon OTX1 knockdown were significantly more likely than other

genes to have OTX1 promoter binding (36% vs. 31%, p < 0.01),

while genes downregulated upon OTX1 knockdown had



(legend on next page)
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marginally decreased likelihood of OTX1 promoter binding (28%

vs. 31%, p < 0.05; Table S16; STAR Methods). Further, genes

with OTX1 promoter binding have significantly higher expression

upon OTX1 knockdown than genes without such binding (me-

dian log2 fold change [LFC] 0.019 vs. 0.012, p < 0.0001;

Table S16; STAR Methods). These data provide supportive evi-

dence that OTX1 acts more often as a transcriptional repressor

than an activator. OTX1 promoter binding is significantly en-

riched at promoters of genes in module 160 (51% vs. 31%,

p < 0.01; Table S16) and not significantly different at module

82 promoters, suggesting that these module 160 genes involved

in co-translational ER targeting may represent key cis-regulatory

targets of OTX1. Taken together, our data point to a role for OTX

genes in regulating gene programs related to lipid metabolism

and cholesterol biosynthesis across several cell states. CSK

knockout induces the expression of co-essential modules

related to cell motility and cytoskeleton organization

(Figure S6B).

To evaluate the effects of these genes in mice, we performed

adeno-associated virus 8 (AAV8) shRNA-mediated gene knock-

down of all three genes using retro-orbital injection, which yields

efficient liver delivery.73–75 We measured serum cholesterol

levels prior to knockdown and then every other week for 6weeks,

with the first 4 weeks on standard chow and the final 2 on West-

ern diet (WD) (Figure 6F). At the 6-week endpoint, we confirmed

that shRNA treatment induced robust decreases in target tran-

script levels in liver (on average 88% decrease for Rabif, 60%

decrease for Csk, and Otx2 transcripts were undetectably low;

Figure S6C).

We observed rapid, robust, and durable shRNA-mediated

alteration of serum cholesterol compared with pre-treatment

baseline levels. Rabif knockdown increased total cholesterol

levels by an average 21% compared with pre-treatment levels

within 2 weeks, significantly more than the 1% decrease

observed in scrambled shRNA control mice (Figure 6G). This

serum cholesterol increase was maintained at 4 weeks (22%

vs. 9% in shScrambled) and expanded at 6 weeks after 2 weeks

onWD (72%vs. 65% in shScrambled) (Figure 6G). The increased

total cholesterol in shRabif-treated mice was primarily driven by

changes in the VLDL/LDL fraction, which was 59%higher than in

shScrambled-treated mice at week 4 and 58% higher at week 6

(Figure 6H), with only minimal changes in HDL (n = 8, non-signif-

icant; Figure 6I). Rabif knockdown also increased serum TG

levels by 13% compared with control knockdown after 4 weeks,

although this change was not significant (Figure S6D). Alto-
Figure 6. Mouse knockdown of Rabif, Csk, and Otx2 alters serum cho

(A) Comparison of the effects of CRISPR-Cas9 gene KO (x axis) and ectopic op

targeting control. Error bars represent standard error.

(B and C) UKB mean carrier adjusted LDL-C (x axis) vs. mean carrier HDL-C (B, y

and novel genes are highlighted.

(D) HepG2 control or OTX2 KO RNA-seq reads per million (RPM) for the 100 gen

Paired Mann-Whitney U test.

(E) RNA-seq RPM for OTX1 in HepG2 cultured under serum-containing or serum

(F) Schematic of mouse AAV shRNA experiment. Cohort sizes for each treatmen

(G) Average percentage change in total cholesterol from pre-treatment measurem

points. Two-tailed t test.

(H and I) Average LDL/VLDL (H) and HDL (I) in mice treated with the designated A

shScrambled and p value are noted. Two-tailed t test (*p < 0.05, **p % 0.01, ***p
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gether, mouse liver-targeted knockdown of Rabif led to mark-

edly increased serum LDL-C levels, in line with the higher serum

LDL-C observed in individuals with deleterious RABIF variants

and the decrease in liver cell LDL-C uptake after RABIF

knockout.

On the other hand, knockdown of Otx2 led to robustly

decreased serum cholesterol as predicted from biobank and

cell line analysis. Otx2 knockdown decreased cholesterol levels

by 18% and 36% at 2 and 4 weeks, respectively (Figure 6G),

comparable to decreases seen after liver-targeted siRNA-medi-

ated knockdown and CRISPR-Cas9 mutation of Pcsk9 in chow-

fed wild-type mice (30%–40%).76,77 Csk knockdown decreased

total cholesterol levels compared with pre-treatment levels by an

average of 34% and 16% at those time points. This decrease in

cholesterol was maintained in shOtx2-treated mice at week 6 af-

ter 2 weeks of WD (19% decrease), but not in shCsk-treated

mice (36% increase; Figure 6G). Otx2 knockdown decreased

both VLDL/LDL and HDL levels significantly compared with con-

trol knockdown at 4 weeks (by 37% and 34%) and 6 weeks (by

27% and 33%) (Figures 6H and 6I) and also robustly decreased

TG levels compared with control knockdown by 26% at 4 weeks

(Figure S6D). Csk knockdown did not induce significant changes

in separated VLDL/LDL or HDL levels at either 4 or 6 weeks, nor

did it alter TG levels (Figures 6H, 6I, and S6D).

Some genetic mutations that lower circulating LDL-C levels,

such as those in APOB, cause increased hepatic lipid and

cholesterol levels, while mutations in PCSK9 do not.78 We

found that mice with Otx2 knockdown show on average 18%

reduction in liver total cholesterol and 24% reduction in liver

TG levels (Figure S6E). These data demonstrate that Otx2 re-

duces lipid and cholesterol content both in the blood and in

the liver, suggesting that Otx2 loss is unlikely to reduce circu-

lating LDL-C by impairing VLDL secretion. We conclude that

liver-targeted knockdown of Otx2 leads to robust decrease in

serum LDL-C levels and makes mice refractory to WD-induced

increases in cholesterol level.

LDL uptake-altering genes may underlie GWAS loci
We asked whether LDL uptake-altering genes that we identified

could potentially underlie loci associated with LDL-C in a recent

trans-ancestry GWAS.10 Examining the RAB10 co-essential

module, we noted GWAS-identified loci significantly associated

with LDL-C adjacent to RAB10 and DENND4C.10 Bayesian

fine-mapping79 of the RAB10 locus suggests a single likely

causal variant (rs142787485, posterior inclusion probability
lesterol levels

en reading frame (ORF) expression (y axis) for CSK, OTX2, RABIF, and non-

axis) and mean carrier triglycerides (C, y axis) for all genes. Benchmark genes

es that are most robustly upregulated in HepG2 cells upon serum starvation.

-starved conditions; n = 46. Two-tailed t test.

t group are listed.

ent in mice treated with the designated AAV8 shRNA at the designated time

AV8 shRNA at the designated time points. Average difference compared with

% 0.001).
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Figure 7. LDL uptake-altering genes may underlie GWAS loci

(A) Finemapping of the GWAS signal at theRAB10 locus (black, LDL-GWAS variants; red, 95% confidence set; teal, 99% confidence set). Signal tracks represent

HepG2 DNase-seq and H3K27me3 ChIP-seq. Blue bars represent ABC-predicted enhancer connections with RAB10.

(B) Flow cytometric analysis of HepG2 cells with expression of a GFP-RAB10 fusion protein expression construct containing the full RAB10 30 UTR with

rs142787485 major (blue) or minor (red) allele.

(C) GFP-RAB10 30 UTR mean GFP flow cytometry; n = 6. Two-tailed t test (**p % 0.01).

(D) Fine-mapping of the GWAS signal at the DENND4C locus. Plot formatting as in (A).
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[PIP] = 0.92) in a conserved region of the 30 UTR of RAB10 (Fig-

ure 7A). The minor allele of rs142787485, which is associated

with lower LDL-C levels in carriers,10 disrupts predicted binding

sites of two microRNA species (Figure S7A),80 suggesting that

the minor allele may possess increased RAB10 transcript stabil-

ity. To evaluate the impact of this variant, we cloned a GFP-

RAB10 fusion protein expression construct containing the full

RAB10 30 UTRwith rs142787485 major or minor allele. We found

that, upon stable lentiviral transduction into HepG2 cells,

GFP-RAB10 with a 30 UTR with rs142787485min led to 9% higher

protein levels than rs142787485maj (Figures 7B and 7C). Alto-

gether, these data suggest that a common variant that increases
RAB10 protein levels is associated with reduced LDL-C levels in

the population. Fine mapping of the DENND4C locus yields

seven intronic variants with PIP between 5% and 25% (Fig-

ure 7D), complicating evaluation of regulatory mechanisms.

Other robustly LDL uptake-altering genes that are not classi-

cally recognized cholesterol modulators but which are near

LDL-C GWAS loci include CSK, ARID1A, and RRBP1

(Figures S7B–S7D). In particular, the ARID1A locus contains a

single credible fine-mapped variant in the ARID1A promoter

(rs114165349, PIP = 0.99), which is predicted to regulate its

expression by the ABC model (Figure S7B). ARID1A is a core

epigenetic regulator whose loss in mouse liver leads to
Cell Genomics 3, 100304, May 10, 2023 13
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pleiotropic changes, including elevated cholesterol.81 In addi-

tion, the GWAS signal at the RRBP1 locus can be localized to

a single fine-mapped variant (rs2618566, PIP = 1.00) in a distal

regulatory region that is a liver expression quantitative trait loci

(eQTL)82 (Figure S7C). Our exome rare variant analysis identifies

significantly decreased LDL-C in carriers of rare ARID1A and

RRBP1 coding variants (Figure S7E), and mouse RRBP1 knock-

down has been shown to disrupt lipid homeostasis and lead to

lower circulating LDL-C levels.83 Nonetheless, further experi-

ments are required to determine whether these non-coding

GWAS variants alter expression or function of these LDL up-

take-altering genes.

DISCUSSION

Cholesterol has been recognized for over 100 years as a risk fac-

tor for CAD.84,85 Currently, genetic contributors to LDL-C levels

remain incompletely understood, as evidenced by GWAS-asso-

ciated loci lacking known LDL-C regulatory genes.We employed

a pipeline combining human cell line CRISPR screening, co-es-

sentiality-based gene module analysis, human genetic associa-

tion, and mouse knockdown to expand the understanding of

genes and cellular mechanisms whose dysfunction alters serum

LDL-C levels. Overall, combining genes identified here with

those from published genome-wide analyses,11–14 we expand

the list of genes significantly associated with LDL-C levels

(Table S9). Of these, 21 function at least partially by altering liver

cellular LDL-C uptake. This gene set is thus a valuable resource

to understand pathways and mechanisms altering cholesterol

metabolism, to evaluate therapeutic targets, and to connect

GWAS-identified variants with target genes.

Combining human genetic association and cellular genetic

screening compensates for shortfalls in each approach. While

genetic association cohort sizes have increased,14 the rarity of

deleterious coding variants and the genetic and environmental

heterogeneity among carriers complicate the identification of

disease-associated genes from human cohorts alone.

Conversely, CRISPR screening allows scalable and well-

controlled loss-of-function screening; however, variability in

cellular LDL-C uptake is not a perfect surrogate of serum

LDL-C levels. Focusing rare variant analysis specifically on

genes with in vitro LDL-C uptake phenotypes increases the po-

wer to identify significant associations. This is not simply due

to decreasing the number of tested hypotheses; LDL-C up-

take-impairing genes are highly enriched in genes with LDL-C

burden (Figures 4E and S4E).

These previously unappreciated genes often show robust ef-

fects on LDL-C levels in deleterious variant carriers, as with RA-

BIF andRAB10, for which carriers have the 2nd and 53rd highest

mean LDL-C among 16,849 evaluated genes, and OTX2, for

which carriers have the 49th lowest mean LDL-C, on par with

PCSK9 (Figure 4G). We validated in mice that the effects of RA-

BIF and OTX2 knockdown on LDL-C levels are similar in magni-

tude to those of known monogenic hyper-/hypocholesterolemia

genes. These genes have likely eluded prior identification due to

the relative rarity of deleterious variant carriers. Classical hyper-/

hypocholesterolemia genes have been identified through char-

acterization of human loss-of-function alleles and knockout
14 Cell Genomics 3, 100304, May 10, 2023
mice.15 However, germline knockouts of Otx2, Rab10, and

Dennd4c, along with many other genes we implicate in LDL-C

uptake, are embryonic lethal,86–89 and humans with biallelic

disruption of these genes have not been reported. In addition,

genes such as RAB10 and RABIF are small (200 and 123 amino

acids, respectively), making them inherently less likely to accu-

mulate mutations. Our use of cell-type-specific CRISPR

screening and analysis of monoallelic partial loss-of-function

phenotypes from exome biobank data provide innovative ave-

nues to identify disease-relevant genes.

In addition, we find that co-essentiality provides a powerful

approach to grouping genes into functional modules. Co-essen-

tiality annotates a larger number of genes than GO and PPI data-

base analysis48 and, because it is based on functional impacts of

gene knockout, is well calibrated for pathway analysis of

CRISPR screening data. Of note, we define a pathway contrib-

uting to genetic propensity toward hypercholesterolemia. We

find that the RAB10-driven exocytosis pathway shows signifi-

cant LDL-C burden. A recent GWAS also identifies common var-

iants nearRAB10 andDENND4C that are associated with LDL-C

levels, and we validated that the RAB10 30 UTR variant that is

associated with decreased serum LDL-C levels increases

RAB10 protein levels by 9% in liver cells.

RAB10 is a multi-functional GTPase that has been implicated

in a diverse array of vesicle-mediated processes, including

endocytosis and exocytosis50,54; however, the co-essentiality

data suggest stronger shared function with the exocyst complex

than other vesicle-mediated processes. The exocyst complex

has been previously implicated in polarized transport of LDLR

to basolateral membranes,57 and mutations in exocyst genes

impair LDLR uptake while increasing transferrin uptake.22 In

our time-course microscopy data, we are unable to detect sub-

stantial surface LDLR expression in RAB10-mutant cells at its

earliest detectable time point, suggesting that impaired initial

membrane trafficking contributes to the phenotype. Recent

work also indicates that RAB10-deficient cells show defective

LDLR endosomal recycling as well.54 In addition, RAB10 and

exocyst knockout impairs LDL-C uptake in LDLR knockout

cells,22,54 and RAB10 has been implicated in lipophagy,90 sug-

gesting that this pathway’s roles in lipid uptake and trafficking

are multi-faceted.

Further, we show that decreased function of OTX2 robustly

lowers LDL-C levels in human cohorts and mice through

increased LDL-C uptake. Deleterious OTX2 alleles are too rare

to ascertain effects on CAD. Otx2 is essential for gastrulation

and early brain and eye development86; its roles outside of the

nervous system are poorly understood. OTX2 RNA expression

is undetectably low in human and mouse liver tissue and in

HepG2 cells, yet its downregulation in HepG2 and mouse liver

yields a strong transcriptional and cholesterol phenotype.

Knockout of the orthologous and partially functionally redundant

OTX1 gene91 in HepG2 yields similar increase in HepG2 LDL-C

uptake, and individuals with deleterious OTX1 variants have

lower LDL-C levels, albeit not as robustly as for OTX2. Whether

dual inhibition of OTX1 and OTX2 more dramatically lowers

LDL-C levels and whether hepatic OTX2 inhibition has side ef-

fects beyond its effects on serum lipids are compelling areas

for further research.



Article
ll

OPEN ACCESS
Limitations of the study
Here we focus on genetic control of liver cell LDL-C uptake,

which is but one of many points of control of serum LDL-C levels.

As such, we posit that many additional genes are likely to be

bona fide LDL-C regulators with distinct phenotypes that

contribute to organismal LDL-C levels. We also note that our

CRISPR screens were performed in a liver cancer cell line, which

may not fully reflect genetic programs involved in hepatocyte

LDL-C uptake.

In addition, the rare variant analysis was designed to be an

expansive screen for discovery, given two additional sources

of information: functional screening data and gene families

derived from co-essentiality screening. The Mann-Whitney U

test is a weaker test statistic than those used by traditional

rare variant association methods.92 Methods to correct for pop-

ulation of origin in rare variant analysis could further refine this

method; adding cohorts from diverse ancestries could improve

understanding of drivers of cholesterol metabolism across ge-

netic backgrounds. Additionally, increases in cohort size should

expand the gene sets associated with LDL-C levels. For

example, genes in the lipid biosynthesis co-essential module

associate with lower LDL-C levels (Figure S7F; Table S11), yet

only the statin target HMGCR rises to significance (Table S9).

Altogether, the integrated approach combining cellular ge-

netic screening, biobank genetic association, and gene network

analysis defined here should provide a roadmap to guide efforts

to dissect complex trait genetics.
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84. MÜLLER, C. (1939). Angina pectoris in hereditary xanthomatosis. Arch.

Intern. Med. 64, 675–700. https://doi.org/10.1001/archinte.1939.

00190040016002.

85. Wilson, P.W.F. (2013). Lipids and vascular disease: a framingham

perspective. Glob. Heart 8, 25–33. https://doi.org/10.1016/j.gheart.

2012.12.009.

86. Acampora, D., Mazan, S., Lallemand, Y., Avantaggiato, V., Maury, M., Si-
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Antibodies

Purified Mouse Anti-Human LDLR BD Biosciences Cat#565641; RRID:AB_2739317

Donkey anti-mouse AlexaFluor647 Jackson ImmunoResearch Cat#715-605-151; RRID:AB_2340863

APC anti-human CD36L1 BioLegend Cat#363207; RRID:AB_2721444

APC anti-human CD132 BioLegend Cat#350007; RRID:AB_10722613

APC anti-human CD71 BioLegend Cat#334107; RRID:AB_10916388

APC anti-human CD222 BioLegend Cat#364205; RRID:AB_2904389

Bacterial and virus strains

NEB Stable Competent E. coli (High Efficiency) New England Biolabs Cat#C3040H

AAV8-scramble-shRNA Vector Biolabs N/A

AAV8-Rabif-shRNA Vector Biolabs N/A

AAV8-Otx2-shRNA Vector Biolabs N/A

AAV8-Csk-shRNA Vector Biolabs N/A

Chemicals, peptides, and recombinant proteins

Bodipy-LDL Thermo Fisher Scientific Cat#L3483

NGI-1 Cayman Cat#31519

ATN-224 Cayman Cat#23553

Pyripyropene A Cayman Cat#11896

Fatostatin Cayman Cat#13562

KX2-391 Cayman Cat#21429

MHY1485 Cayman Cat#18008

GW3965 Cayman Cat#10054

Rocaglamide A MedChemExpress Cat#HY-19356

Rho Activator II Cytoskeleton.com Cat#CN03-A

Tempol Cayman Cat#27051

Simvastatin Cayman Cat#10010344

Puromycin Dihydrochloride Gibco Cat#A1113803

NEBuilder HiFi DNA Assembly Master Mix New England Biolabs Cat#E2621L

DMEM, high glucose, pyruvate Gibco Cat#11995073

Fetal Bovine Serum Thermo Fisher Scientific Cat#10437028

Penicillin-Streptomycin (10,000 U/mL) Gibco Cat#15140122

Opti-MEM Reduced Serum Medium Gibco Cat#11058021

Trypsin-EDTA (0.25%), phenol red Gibco Cat#25200072

PureLinkTM Genomic DNA Mini Kit Invitrogen Cat#K182002

DPBS, no calcium, no magnesium Gibco Cat# 14190250

QIAquick PCR Purification Kit Qiagen Cat#28106

QIAquick Gel Extraction Kit Qiagen Qiagen Cat#28706

QIAprep Spin Miniprep Kit Qiagen Qiagen Cat#27106

SYBR Safe DNA Gel Stain Invitrogen Cat#S33102

BsmBI-v2 New England Biolabs Cat#R0739L

1 Kb Plus DNA Ladder Invitrogen Cat#10787026

UltraPureTM Agarose Invitrogen Cat#16500100

NEBNext Ultra II Q5 Master Mix New England Biolabs Cat#M0544L

Dimethyl sulfoxide Sigma-Aldrich Cat#D2650

Polybrene infection/Transfection Reagent Sigma-Aldrich Cat#TR-1003
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RNEasy Plus mini kit Qiagen Cat#74134

Zymo Quick-RNA 96 kit Zymo Research Cat# R1052

Lexogen QuantSeq 3’ mRNA-Seq Library Prep Kit

FWD for Illumina

Lexogen Cat#015.96

TransIT-Lenti Transfection Reagent Mirus Cat#MIR6605

Lenti-X Concentrator Takara Cat#631232

Erythrina Cristagalli Lectin (ECL), Biotinylated Vector Biolabs Cat#B-1145-5

Wheat Germ Agglutinin (WGA), Biotinylated Vector Biolabs Cat# B-1025-5

45% fat Kcal diet (0.2% total cholesterol) Envigo TD.10885

Deposited data

RNA-seq data This paper Tables S1 and S6 and GEO: GSE229650

CRISPR screen data This paper Tables S2, S3, and S4 and

SRA: PRJNA943253

Experimental models: Cell lines

HepG2 ATCC Cat#HB-8065

HEK293T Gift from Dr. Steven

Elledge

Harvard Medical

School, Boston, MA

Experimental models: Organisms/strains

C57BL/6 InVivos N/A

Oligonucleotides

gRNA_60bp_fw TAACTTGAAAGTATTTCGATTTCTT

GGCTTTATATATCTTGTGGAAAGGACGAAACACCG

This paper method details

gRNA_60bp_rv GTTGATAACGGACTAGCCTTATTTA

AACTTGCTATGCTGTTTCCAGCATAGCTCTTAAAC

This paper method details

U6_Bc_r1seq_halftail (24 distinct versions of this primer with

staggered-length in-line barcodes denoted here as NNNNN)

5’ ACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNN

GGAAAGGACGAAACACCG 3’

This paper method details

gRNAFE_r2seq_halftail

5’ GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGC

CTTATTTAAACTTGCTATGCTGT 3’

This paper method details

r1seq_fulltail

5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCC

CTACACGACGCTCTTC 3’

This paper method details

r2seq_fulltail (up to 8 distinct indexed versions of this primer

were used to maximize pooling)

5’ CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACT

GGAGTTCAGACGTGTGCT 3’

This paper method details

See Table S21 for individual gRNA oligos This paper method details

Recombinant DNA

pCMV-VSV-G Gift from Dr. Ricardo Weinlich Hospital Israelita

Albert Einstein,

Brazil

pMDLg-pRRE Gift from Dr. Ricardo Weinlich Hospital Israelita

Albert Einstein,

Brazil

pRSV-Rev Gift from Dr. Ricardo Weinlich Hospital Israelita

Albert Einstein,

Brazil

LentiCRISPR v2 Sanjana et. al., Nat. Methods93 Addgene Cat#52961

pCW-Cas9-Blast Gift from Dr. Mohan Babu Addgene Cat#83481

GFP-RAB10 lenti Jeng et al., Cell Host &

Microbe94
Addgene Cat#130883

(Continued on next page)
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lenti GFP-RAB10 3’UTRmaj PuroR This paper Addgene Cat#186736

lenti GFP-RAB10 3’UTRmin PuroR This paper Addgene Cat#186737

pLenti_rtTA-P2A-BFP_HygroR This paper Addgene Cat#186738

lentiTet-LDLR BlastR This paper Addgene Cat#186739

lentiTet-RAB10-T2A-RABIF-P2A-mCherry BlastR This paper Addgene Cat#186740

lentiTet-OTX2-P2A-mCherry BlastR This paper Addgene Cat#186741

lentiTet-CSK-P2A-mCherry BlastR This paper Addgene Cat#186742

lentiTet-P2A-mCherry BlastR This paper Addgene Cat#186743

pLenti_EF1a-scFv-SBNO1-KBP250-NFEL1-GSTGGT-

KRT40-T2A-MCP-P65-HSF1-BFP_HygroR

This paper Addgene Cat#186744

p2T CAG dCas9-10XGcn4-P2A-mCherry BlastR This paper Addgene Cat#186745

lentiCRISPR-v2-FE-PuroR This paper Addgene Cat#186746

Software and algorithms

FCS Express 7 De Novo Software https://denovosoftware.com/

MAGeCK Li et. al., Genome Biology95 https://sourceforge.net/

projects/mageck/

Excel Microsoft https://www.microsoft.com/

en-us/microsoft-365/excel

Prism 8.2.0 GraphPad https://www.graphpad.com

Rstudio Rstudio https://rstudio.com

STAR aligner (v2.5.2b) STAR aligner https://github.com/alexdobin/STAR

HT-seq (v0.9.1) HT-seq https://htseq.readthedocs.io/

en/master/

DESeq2 1.26.0 Bioconductor https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Biorender Biorender https://biorender.com/

FloJo version 10.6.2 BD Biosciences https://www.flowjo.com/

Code generated in this manuscript

and publicly available data

This paper Mendeley Data: https://doi.org

/10.17632/9wgk5ny69n.1
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Richard I.

Sherwood (rsherwood@bwh.harvard.edu)

Materials availability
Plasmids generated in this study have been deposited to Addgene (Deposit 81242) and will be publicly available as of the date of

publication.

Data and code availability
d RNA-seq and CRISPR screening data that support the findings of this study are provided in the supplemental information. Data

has been deposited at SRA (Bioproject ID PRJNA943253).

d All original code and publicly available data is available at Mendeley repository https://doi.org/10.17632/9wgk5ny69n.1 and

https://github.com/j-fife/hamilton-et-al.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
HepG2 hepatocellular carcinoma cells.
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Animal models
C57BL/6 mice.

METHOD DETAILS

CRISPR-KO screening
For KO-Library 1, four gRNAswere designed targeting each of the 2,634 genes within 1Mb of a lead variant from theMVPmultiethnic

GWAS cohort3. gRNAs were selected from the Brunello, TKOv3, and CROATAN libraries42,96,97 to maximize inDelphi-predicted

frameshift fraction28. 200 non-targeting control gRNAs were chosen from the Brunello library. KO-Library 2 included the same

four gene-targeting gRNAs fromKO-Library 1 for 360 genes that showed strong phenotypic effects as well as the same non-targeting

controls. KO-Library 3 contained the 4 Brunello gRNAs for 1,803 transcription factor genes31,32 aswell as Brunello non-targeting con-

trols. KO-Library 4 included four Brunello gRNAs targeting 522 genes with significant or near-significant effects on LDL-C uptake

from the three previous screens as well as from a recently published genome-wide LDL-C uptake CRISPR-Cas9 screen performed

in Huh7 cells22 and also included Brunello non-targeting controls.

All oligonucleotide libraries (Tables S17, S18, S19, and S20) were ordered from Twist Biosciences or Agilent Technologies in the

following sequence format:

CTTGTGGAAAGGACGAAACACCG [19-20-bp protospacer—remove initial G for any 20-bp protospacer with one natively]

GTTTAAGAGCTATGCTGGAAACAGCATAGC

Libraries were amplified by PCR using Q5UltraII mastermix (NEB) using the following primers:

gRNA_60bp_fw TAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCG

gRNA_60bp_rv GTTGATAACGGACTAGCCTTATTTAAACTTGCTATGCTGTTTCCAGCATAGCTCTTAAAC

gRNA libraries were cloned into the lentiCRISPR-v2-FE-PuroR backbone (derived from Addgene plasmid #5296193 by replacing

the gRNA hairpin with the FE gRNA hairpin98) through BsmBI vector digest and NEBuilder HiFi DNA assembly, ensuring >100-fold

representation of each gRNA.

HepG2 Cas9NG-P2A-mCherry cells were seeded at a density of 4x104 cells/cm2 on 15 cm plates in four biological replicates with

8 mg/mL of polybrene. The cells were transduced with lentivirus using Trans-IT Lenti (Mirus Bio) at a multiplicity of infection (MOI) of

0.3-0.5 as determined by titration. Two days post-transduction, cells were treated with 500 ng/mL puromycin and were selected for

5-7 days to enrich for infected cells.

After selection, cells were seeded at a density of 1.08x105 cells/cm2 on 15 cm plates and left to incubate overnight. The next day,

the media was replaced with either DMEM + 10% FBS (serum condition) or optiMEM (serum-starved condition) and cells were incu-

bated overnight. Approximately 4-6 hours prior to sorting, cells were treated with 2.5 mg/mL BODIPYTM FL LDL (Thermo Fisher) in

optiMEM. Cells were trypsinized and sorted into four bins (bottom 12.5%, bottom 12.5-37.5%, top 37.5-12.5%, and top 12.5%)

or two bins as specified in the text using a BD FACSAria flow cytometer. After sorting, genomic DNA was isolated from cells using

the Purelink Genomic DNA mini kit (Thermo Fisher), and up to 20 mg of genomic DNA per sample was used to amplify the U6-3’ to

gRNA hairpin region with different in-line barcodes. PCR2was performed to add full-length Illumina sequencing adapters using inter-

nally ordered primers with equivalent sequences to NEBNext Index Primer Sets 1 and 2 (New England Biolabs). All PCRs were

performed using Q5UltraII polymerase (NEB). Pooled samples were sequenced using NextSeq (Illumina), using 75-nt reads and col-

lecting greater than 100 reads per gRNA in the library.

The library prep primers were as follows:

PCR1:

U6_Bc_r1seq_halftail (24 distinct versions of this primer with staggered-length in-line barcodes denoted here as NNNNN

were used)

5’ ACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNN GGAAAGGACGAAACACCG 3’

gRNAFE_r2seq_halftail

5’ GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCCTTATTTAAACTTGCTATGCTGT 3’

PCR2:

r1seq_fulltail

5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTC 3’

r2seq_fulltail (up to 8 distinct indexed versions of this primer were used to maximize pooling)

5’ CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCT 3’

CRISPR-Cas9 screening analysis was performed using MAGeCK RRA v0.5.9.2 paired analysis comparing top and bottom sorted

bins and normalized to non-targeting control gRNAs present in the library.

For the small molecule CRISPR-Cas9 screens, HepG2 Cas9NG-P2A-mChe cells containing the KO-Library 4 were seeded at a

density of 1.08x105 cells/cm2 on 10 cm plates in 3 replicates per condition and left to incubate overnight. The next day, the media

was replaced with optiMEM (serum-starved condition) containing either control (DMSO) or one of eight inhibitors (see below) and

cells were incubated overnight. Approximately 4-6 hours prior to sorting, cells were treated with 2.5 mg/mL BODIPYTM FL LDL

(Thermo Fisher) in optiMEM. Cells were trypsinized and sorted into two bins (bottom 30% and top 30%) using a BD FACSAria

flow cytometer. After sorting, genomic DNA was isolated from cells and PCR and sequencing was performed as described above.
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Small molecule CRISPR-Cas9 screening analysis was performed using MAGeCK RRA v0.5.9.2 paired analysis comparing top and

bottom sorted bins and normalized to non-targeting control gRNAs present in the library. A default number of permutations were

performed except when indicated otherwise in figure legends.

NGI-1 (Cayman) 5mM

ATN-224 (Cayman) 40 mM

KX2-391 (Cayman) 2.5 mM

Pyripyropene A (Cayman) 10 mM

Fatostatin (Cayman) 2.5 mM

MHY1485 (Cayman) 10 mM

GW3965 (Cayman) 0.02 mM

Rocaglamide A (MedChemExpress) 0.01 mM

Simvastatin (Cayman) 0.5 uM

Cloning and testing of individual gRNAs
Oligonucleotides including protospacer sequences (Table S21) were ordered in the following format:

GGAAAGGACGAAACACCG [19-20-bp protospacer—remove initial G for any 20-bp protospacer with one natively]

GTTTAAGAGCTATGCTGGAAAC

were amplified by PCR to create homology arms and cloned into a lentiCRISPR-v2-FE-PuroR backbone through NEBuilder HiFi

DNA assembly as described above. To make KO cell lines, the gRNA constructs were packaged into lentivirus and transduced into

HepG2-Cas9NG-P2A-mChe cells seeded at 4x104 cells/cm2 on 48-well plates in two replicates with 8 mg/mL of polybrene. Two days

post-transduction, cells were treated with 500 ng/mL puromycin and were selected for approximately one week.

HepG2 Cas9NG-P2A-mChe KO cell lines were seeded 1:1 with HepG2WT cells to achieve a total density of 1.08x105 cells/cm2 on

a 96 well plate in at least two technical replicates of two biological replicates per serum condition and incubated overnight. The next

day, the media was replaced with either DMEM + 10% FBS (serum condition) or optiMEM (serum-starved condition) and cells were

incubated overnight. Approximately 4-6 hours prior to FACS analysis, cells were treated with 2.5 mg/mL BODIPYTM FL LDL in opti-

MEM. Cells were trypsinized and analyzed for presence of mCherry and LDL uptake using a Beckman CytoFLEX flow cytometer. LDL

uptake of each KO cell line was normalized to the LDL uptake of the WT cells within the same well. Differential LDL uptake between

KO and control cells was further normalized using data from the control sgCTRL KO line.

ICE analysis was performed using Sanger sequencing reads and significance cut-off value for decomposition of P < 0.001.

Small molecule analysis
For the individual small molecule analysis, HepG2 Cas9NG-P2A-mChe cells were seeded at a density of 1.08x105 cells/cm2 on a

96-well plate in 3-26 replicates per condition and left to incubate overnight. The next day, the media was replaced with optiMEM

(serum-starved condition) containing either control (DMSO) or one of 24 inhibitors (Table S22) and cells were incubated overnight.

Approximately 4-6 hours prior to analysis, cells were treated with 2.5 mg/mL BODIPYTM FL LDL in optiMEM. Cells were trypsinized,

resuspended in FACS suspension media, and analyzed by flow cytometric analysis using a Beckman CytoFLEX flow cytometer. Dif-

ferential LDL-C uptake between small molecules and control treatment was further normalized using data from DMSO treated cells.

Lectin flow cytometry analysis
HepG2 individual gene KO cell lines were cultured in DMEM + 10% FBS with or without 5 mM NGI-1 for 24 hours. Cells were then

trypsinized and 2.5*10̂ 5 cells were resuspended in FACS suspension media (DMEM, no phenol red (Thermo Fisher 31053028) +

2% FBS + 2mM EDTA) containing streptavidin-Dy488 (2.5 ug/mL) and a biotinylated lectin (ECL (5 ug/mL) or WGA (0.625 ug/mL)).

Staining reactions were incubated for 20 minutes, protected from light. Cells were washed twice and resuspended in FACS suspen-

sion media followed by flow cytometric analysis using a Beckman CytoFLEX flow cytometer. Lectin binding of each KO cell line was

normalized using data from the control sgControl line.

RNA-seq
HepG2 Cas9NG-P2A-mChe KO cell lines were seeded at a density of 2.1x105 cells/cm2 on a 24 well plate with two biological rep-

licates per serum condition and incubated overnight. The next day, the media was replaced with either DMEM + 10% FBS (serum

condition) or optiMEM (serum-starved condition) and cells were incubated overnight. RNAwas harvested from cells using the Qiagen

RNEasy Plus mini kit or the Zymo Quick-RNA 96 kit, prepared for RNA-seq using the Lexogen QuantSeq-Pool kit, and sequenced

using Illumina Nextseq at >1*10̂ 6 reads/sample.

RNA-seq reads were mapped using the Quantseq 3’ mRNA mapping pipeline as described by Lexogen to GRCh38.p12. Briefly,

reads were first trimmed using bbduk from the bbmap suite (v38.79)99 trimming for low quality tails, poly-A read-through and adapter

contamination using the recommended parameters. Then, reads were mapped using the STAR aligner (v2.5.2b)100 with the recom-

mended modified-Encode settings. Finally, HT-seq (v0.9.1) count was used to obtain per-gene counts101.

Within each cell line, we conducted differential expression analysis using DESeq2 1.26.0 to identify significantly differentially ex-

pressed genes for each gene KO with respect to the control condition.
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OTX1 knockdown analysis was performed using published genome-wide Perturb-seq data70. Relative magnitude of change in

expression (z-score) of 8,248 genes in K562 cells withOTX1 knockdown was used as input in co-essential GSEA analysis using gse-

apy v.0.10.448 with 10,000 iterations and 60 parallel processes as negative control. The modules were analyzed according to their

normalized enrichment scores (NES), and GO terms from PANTHER version 14 were linked as described below.

CRISPRa Outcome and Phenotype (COP) screen design and execution
An oligonucleotide library was designed pairing the proximal promoter of each of 200 target genes (194-nt upstream of the annotated

TSS and 10-nt downstream) with 10 distinct gRNAs each, including 8 on-target gRNAs and 2 non-targeting gRNAs. On-target gRNAs

were chosen as the 8 gRNAs with lowest Combined Rank from the CRISPick CRISPRa mode40 after filtering gRNAs that (i) are 1-nt

offset from a lower-ranked gRNA on the same strand; (ii) contain an MfeI recognition site since MfeI was used in cloning this library.

Off-target gRNAs were chosen from the non-targeting gRNAs in the Calabrese library40.

The COP oligonucleotide library (Table S3) was ordered in the following format:

GGAAAGGACGAAACACCG [19-20-nt spacer] gtttaagagctaggccAACAATTGTCAACAGACCATGCC [205-nt promoter] GCTAG

CTTGAAGGGGACG

The oligonucleotide library was amplified by PCR to create homology arms by using the primers; 010415_sgRNA_60bp_fw:

TAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCG, and 031621_CRISPRArepPCR1A_rv: TG

GTGAGTAGGAGGAAGAGGAAGCGCTTCATGGTGGCACGTCCGTCCCCTTCAAGCTAGC. In order to introduce 15 nt random barc-

odes, two separate fragments were also amplified by PCRwherea CD5F2_DPE_CTE_Puro-containing plasmid was used as the tem-

plate by using the primers; 031621_CRISPRArep_PCR1B_fw: GCTAGCTTGAAGGGGACG and 031621_CRISPRArep_PCR1B_rv:

CTAAGACAGGCGCAGCCTCCGAGGGATGTGTACATTTGGATGCAGGTCGAAAGGCNNNNNNNNNNNNNNNTCAACTGAAGCAG

AAGAGGT, 031621_CRISPRArep_PCR1C_fw: GCCTTTCGACCTGCATCC and 031621_CRISPRArep_PCR1C_rv: CGGTGTTTC

GTCCTTTCCAC, respectively. These three amplicons were then cloned into a plasmid backbone produced with NheI-HF and

AgeI-HF double-digest of pLenti_CD5F2_MCPp65_Puro through NEBuilder HiFi, upscaled to 100ul including 0.05 pmol library,

and 0.1 pmol of each PCR amplicon. After treating with Plasmid-Safe (Lucigen), the circularized assembly product was linearized

with Mfel-HF digest and then was eluted using QIAquick PCR purification kit (Qiagen). The linearized assembly reaction was further

amplified by PCR using the following primers; 072121_CRISPRArep_PCR2A_fwnew: tattacagggacagcagagatccagtttggttaat-

taaTTCC TTGTCAACAGACCATGCC and 050415_SAMsgRNA_60bp_rv atttaaacttgctaggccCTGCAGACATGGGTGATCCTCA

TGTTggcctagctcttaaac and cloned into NheI+AgeI-digested pLenti_CD5F2_MCPp65_Puro backbone to produce a high throughput

pooled library bearing proximal promoters of 200 LDL-related genes, paired gRNAs, as well as the CRISPRa SAM component MCP-

p65-HSF1 in the same vector.

HepG2 cells used in the COP assay were first co-transfected with a non-autonomous Tol2 vector bearing dCas9-10xGcn4-

mCherry-BlastR cassette (p2T CAG dCas9-10XGcn4-P2A-mCherry BlastR) and a Tol2 transposase-expressing vector using lipo-

fectamine 3000 (Thermo Fisher). One day post-transfection, the cells were treated with 5ug/mL blasticidin and were selected for

approximately 5 days. The cells were further sorted twice using a BD FACSAria flow cytometer for mCherry expression to produce

a highly enriched HepG2dCas910x-Gcn4-mChe cell population. This cell line was then transduced with a SunTag transcriptional activator

lentiviral vector (pLenti_EF1a-scFv-SBNO1-KBP250-NFE2L1-GSTGGT-KRT40-P2A-BFP_HygroR) to produce a cell line stably ex-

pressing CRISPRa; HepG2dCas9-10xGcn4-mChe-scFv-Sbno1-Nfe2l1-Krt40-BFP. These cells were subsequently treated with the lentiviral COP

library at a multiplicity of infection (MOI) of�0.5. Two days post-transduction, cells were treated with 500 ng/mL puromycin and were

selected for approximately one week.

To build a library connecting barcodes and gRNAs, genomic DNAwas isolated from cells using the Purelink Genomic DNAmini kit

(Thermo Fisher), and up to 20 mg of genomic DNA per sample was used to amplify promoter-barcode and barcode-gRNA pairs as

dictionary library samples separately in PCR by using different in-line barcodes including primers shown below:

Paired Promoter-Barcode NGS sample

031621_CRISPRApro_r1seq_2-4N: CTTTCCCTACACGACGCTCTTCCGATCT(N)2-4TCCTTGTCAACAGACCATGCC

031621_IntPri_r2seq_1-3N:

GGAGTTCAGACGTGTGCTCTTCCGATCT(N)1-3TTTGGATGCAGGTCGAAAGGC

Paired Barcode-gRNA NGS sample

031621_CRISPRa_CD5F2_r1seq_2-4N: CTTTCCCTACACGACGCTCTTCCGATCT(N)2-4CACCTCTTCTGCTTCAGTTGA

031621_CRISPRA_MS2hp_r2seq_1-3N: GGAGTTCAGACGTGTGCTCTTCCGATCT(N)1-3CATGTTGGCCTAGCTCTTAAAC

PCR2 was performed to add full-length Illumina sequencing adapters using internally ordered primers with equivalent sequences

to NEBNext Index Primer Sets 1 and 2 (New England Biolabs). All PCRs were performed using Q5UltraII polymerase (NEB). Pooled

samples were sequenced using NextSeq (Illumina), using 40-45-nt reads and collecting greater than 100 reads per construct in the

library.

In parallel, total RNA (RNEasy Maxi kit, Qiagen) and genomic DNA (Purelink Genomic DNA mini kit) were isolated from each bio-

logical replicate. cDNA samples were synthesized from total RNA samples with reverse transcription by using sequence specific

primer, 031621_CTE_RTprimer: CCTCCGAGGGATGTGTACA, targeting downstream of the 15nt barcode site. In order to quantify

the transcript abundancy of barcodes which would eventually demonstrate the activity of the promoter library in response to their

paired gRNAs, 10ug gDNA and 20ug cDNA were PCR amplified by using 8 different r1, and a constant r2 primer for each samples:
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122320_CD5F2_3pr2seq: GGAGTTCAGACGTGTGCTCTTCCGATCTNNNGCCAATGCCATAATCCACCTCT

121016_IntPri_r1seqtail_Bc: CTCTTTCCCTACACGACGCTCTTCCGATCT(N)2-6TTTGGATGCAGGTCGAAAGGC

PCR2 was performed to add full-length Illumina sequencing adapters using internally ordered primers with equivalent sequences

to NEBNext Index Primer Sets 1 and 2 (New England Biolabs). All PCRs were performed using Q5UltraII polymerase (NEB). Pooled

samples were sequenced using NextSeq (Illumina), using 75-nt reads and collecting greater than 100 reads per gRNA in the library.

For phenotypic LDL-C uptake screening, COP library-containing HepG2dCas9-10xGcn4-mChe-scFv-Sbno1-Nfe2l1-Krt40-BFP cells were

seeded at a density of 1.08x105 cells/cm2 on 10 cm plates and left to incubate overnight. The next day, the media was replaced

with optiMEM (serum-starved condition) and cells were incubated overnight. Approximately 4-6 hours prior to FACS sorting, cells

were treated with 2.5 mg/mL BODIPYTM FL LDL in optiMEM. Cells were trypsinized and sorted into 2 bins (bottom 30%, top 30%)

using a BD FACSAria flow cytometer. To quantify the gRNA abundance in sorted cell populations, genomic DNA was isolated

from cells using the Purelink Genomic DNAmini kit (Thermo Fisher), and up to 20 mg of genomic DNA per sample was used to amplify

U6-3’ to gRNA-FE hairpin region with in-line barcodes including primer pairs, all of which are different for each sample, shown below:

101317_U6PE1_BcXr1: ACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNN GGAAAGGACGAAACACCG

031621_CRISPRA_MS2hp_r2seq_1-3N: GGAGTTCAGACGTGTGCTCTTCCGATC(N)1-3CATGTTGGCCTAGCTCTTAAAC

PCR2 was performed to add full-length index primers, shown below. All PCRs were performed using Q5UltraII polymerase (NEB).

Pooled samples were sequenced using NextSeq (Illumina), using 50-nt reads and collecting greater than 100 reads per gRNA in the

library.

031317_10xr2seq_24bp_N70X_fw: CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCT

110717_PE1_fulltail: AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTC

COP data analysis
The Promoter-Barcode-gRNA dictionary was built upon two sets of pair-end sequencing datasets. In the first sequencing data, each

R1 read contains a promoter sequence (>20-nt) from the 200 genes and the corresponding R2 read contains a 15-nt variable barcode

sequence. A barcode-promoter pair was considered valid if the barcode predominantly (in >90% of reads) pairs with a single pro-

moter sequence. In the second sequencing data, each R1 read contains the reverse complement of a barcode sequence, and

the corresponding R2 read contains the reverse complement of a 19-20-nt gRNA sequence from the 2000 gRNAs targeting the pro-

moters of the 200 genes. Similarly, a barcode-gRNA pair was considered valid if the barcode predominantly (in >90% of reads) pairs

with a single gRNA sequence. The barcode-promoter pairs and the barcode-gRNA pairs were merged and saved to the promoter-

barcode-gRNA dictionary if the gRNA and the promoter were from the same gene and the Hamming distance between the barcodes

was less than 2.

For the cDNA and gDNA reporter sequencing data, the 15-nt variable barcodes were extracted from R1 reads, andmatched to the

existing barcodes in the promoter-barcode-gRNA dictionary if the Hamming distance was less than 2. For each gRNA,the total num-

ber of reads for every matched barcode in the cDNA and gDNA data was aggregated and normalized to reads per million (RPM). The

efficiency of the gRNAwas calculated as the log2 fold change (LFC) of the cDNA to gDNA barcode count.Within each gene, the gRNA

efficiency was proportionally scaled to the 0-1 range, where the gRNA with the lowest LFC had an efficiency of 0, and the gRNA with

the highest LFC had an efficiency of 1.

gRNA and promoter features that were used as predictive variables in the linear regression model for gRNA efficiency include

CRISPick onTarget efficacy (continuous), CRISPick onTarget rank (ordinal), CRISPick offTarget rank (ordinal), Deep SpCas9 score

(continuous), TATAmotif presence (nominal), InRmotif presence (nominal), gRNA orientation (nominal), and cutsite transcription start

site (TSS) offsite bins (nominal). For each gRNA, the cutsite TSS offset was defined as the distance from the TSS to the cutsite. cutsite

TSS offset was further grouped into 10nt bins for cutsite within 80-150nt range downstreamof the TSS. To ensuremodel consistency,

the 1600 gRNAs were bootstrapped into 100 subsamples, each containing 1600 gRNAs with replacement. For each of the subsam-

ples, a linear regression model was built using the above mentioned features as predictive variables and the gRNA efficiency as the

response variable.

The LDL-C uptake gDNA sequencing data is made up of 3 replicates after quality control curation for technical data quality, and

each replicate consists of a ‘‘top30’’ sample and a ‘‘bottom30’’ sample. Sequenceswere extracted fromR1 reads andmatched to the

2000 gRNA library. For each gRNA in the library, we recorded the matched read count for the ‘‘top30’’ sample and the ‘‘bottom30’’

sample, and calculated the ‘‘Top30/Bottom30’’ read count ratio. Pearson correlations were calculated for each replication pair on the

‘‘Top30/Bottom30’’ ratio. Read counts were selected as the input to the MAGeCK ‘‘test’’ module to calculate the log2 fold change

(LFC) and the associated p-value of LDL-C uptake for each gene. To run theMAGeCK ‘‘test’’ module, we specified ‘‘Top30’’ samples

(3 replicates) as treatment samples, ‘‘Bottom30’’ samples (3 replicates) as control samples, and we used control gRNAs as the

normalization method.

Cloning and testing of individual COP gRNAs
Oligonucleotides including protospacer sequences (Table S21) were ordered in the following format:

GGAAAGGACGAAACACCG [19-20-bp protospacer—remove initial G for any 20-bp protospacer with one natively]

GTTTAAGAGCTAGGCCAACATG
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Fifteen gRNAs were amplified by PCR to create homology arms and individually cloned into a pLenti-U6-2xMS2gRNA-MCPp65-

PuroR backbone through NEBuilder HiFi DNA assembly as described above. Tomake CRISPRa cell lines, the gRNA constructs were

packaged into lentivirus and transduced into HepG2 cells expressing dCas9-10xGcn4-mChe and scFv-Sbno1-Nfe2l1-Krt40-BFP,

seeded at 4x104 cells/cm2 on 6-well plates with 8 mg/mL of polybrene in at least two replicates per gRNA. Two days post-transduc-

tion, cells were treated with 500 ng/mL puromycin and were selected for approximately one week.

For the cell-surface protein staining, CRISPRa cells were washed, trypsinized, and 6.4*10̂ 4 cells were resuspended in FACS sus-

pension media containing one of four APC-antibodies:

APC anti-human CD36L1 (Biolegend)

APC anti-human CD132 (Biolegend)

APC anti-human CD71 (Biolegend)

APC anti-human CD222 (Biolegend)

Staining reactions were incubated on ice for 20 minutes and protected from light. Cells were washed twice and resuspended in

FACS suspension media followed by flow cytometric analysis using a Beckman CytoFLEX flow cytometer to determine magnitude

of activation of each cell surface protein. CRISPRa potency of each cell line was normalized to control wells that received a different

gRNA and the same antibody.

Co-essentiality modules and enrichment
Modules were generated using DepMap 21Q2 Project Achilles data43. This data was altered to account for gene proximity effects

using the method described by FIREWORKS47. The proximity corrected data was then converted to modules using an existing

method48. Module enrichments for gene subsets were calculated from the hypergeometric distribution implemented in scipy

v1.6.3102. Gene Ontology103 (GO) terms were generated from PANTHER version 14 along with the tool’s implementations of term

enrichment and FDR control104. All GSEA analysis was performed with gseapy v.0.10.469 with 10,000-100,000 iterations as negative

control. Networks were constructed for all modules with a hypergeometric test FDR less than 0.01. t-Distributed Stochastic Neighbor

Embedding (t-SNE)105 algorithm was used to reduce the dimensionality of the Achillies proximity corrected data, and the first and

second principal components were used as the X and Y coordinates of the genes, respectively.

Exome rare variant analysis
UKB variant extraction is performed using Hail v0.2.66106. Variant allele frequencies were estimated from the Genome Aggregation

Database (gnomAD v2.1)107. Variants were included with population maximum allele frequencies of <= 0.001 (Ensembl gnomAD plu-

gin)108. Functional consequences and computational score predictions come from Variant Effect Predictor v99109 leveraging the

dbNSFP v4.0 plugin110. Variant functional consequences terms were called deleterious if the VEP consequence indicated frameshift,

nonsense, start lost, splice donor/acceptor disruption, or stop lost.

Individuals carrying multiple coding variants in the same gene were assigned the variant with the more impactful functional conse-

quence (Deleterious, Missense). If multiple variants have the same worst functional consequence, the variant with the lowest pop-

ulation maximum allele frequency is selected. Consistent with our prior analysis we filtered the most severe variant using CADD

score111. Therefore, if the allele frequencies are the same, the variant with the highest CADD63 score is chosen. Comparisons be-

tween carriers and non-carriers are performed with the Mann-Whitney U test utilizing scipy v1.6.3.102

Phenotypic adjustments are performed through ten-fold cross validation on a linear regression. Adjustments are made by

fitting a regression to predict LDL-C. From the fit model’s parameters we subtract feature weights associated with each covar-

iate multiplied by each individual’s covariates from their original LDL-C value. Linear regressions were performed using scikit-

learn v0.24.0.112

Clinvar analysis was restricted to all Pathogenic and Benign coding missense variants as reported in the May 2022 release.

Cox proportional hazard analyses were performed using lifelines v0.27.4113. Regressions were performed with presence of a rare

missense variant and presence of an LOF variant as binary features. Most severe variant was determined using the same strategy

previously mentioned. Exon coordinates were determined for genes of interest using MANE transcripts, with an additional 5nt re-

tained up- and downstream of each coding region to capture splice acceptor and donor region variants. Gene-level VCF files

were extracted from the UK BiobankWES joint-called pVCFs using bcftools. The VCF files were then normalized to flatten multiallelic

sites and align variants to the GRCh38 reference genome. Variants located in NIST Genome in a Bottle ‘‘difficult regions’’ were

removed from analysis, as were variants with a minor allele frequency greater than 0.1% in the UK Biobank cohort. Further filtering

removed variants where more than 10% of samples were missing genotype calls114 and variants that did not appear in the UK Bio-

bank cohort. To mitigate differences in sequencing coverage between individuals who were sampled at different phases of the UK

Biobank project, variants were only retained in the final set if at least 90% of their called genotypes had a read depth of at least 10. All

filtering took place by running bcftools through the Swiss Army Knife app on the UK Biobank Research Analysis Platform. Case def-

initions for coronary artery disease were defined in the UKB using a combination of self-reported data confirmed by trained health-

care professionals, hospitalization records, and national procedural, cancer, and death registries, previously described at the disor-

der level, and Estimated untreated levels obtained using adjustments for lipid-lowering therapies were used in analyses, as described

in this prior supplement115.
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Gene overexpression and RAB10 pathway imaging analysis
To construct HepG2 cell lines with inducible gene overexpression, we first made a stable HepG2 rtTA expressing cell line by perform-

ing lentiviral infection with pLenti_rtTA-P2A-BFP_HygroR and sorting stably expressing cells for BFP expression. We then replaced

the insert in the Tet promoter-containing vector pCW-Cas9-Blast (Addgene 83481) for LDLR-mCherry, RAB10-T2A-RABIF-P2A-

mCherry, OTX2-P2A-mCherry, CSK-P2A-mCherry, or P2A-mCherry as a control. We made stable lines using lentiviral transduction

into HepG2-rtTA-BFP cells using Blasticidin selection to select for cells that received the insert.

For LDL-C uptake experiments, we used the protocol above for individual gRNA testing, comparing mCherry+ gene-overexpress-

ing cells with mCherry- wild-type control cells.

To examine the role of the RAB10 pathway in LDLR expression and LDL-C uptake, we infected HepG2 cells and HepG2-rtTA-

BFP + Tet-LDLR-mCherry cells with sgRAB10, sgDENND4C, and sgCTRL gRNA lentivirus and selected for infected cells with Pu-

romycin. To measure surface LDLR expression, we stained HepG2 KO cells with mouse anti-LDLR Clone C7 monoclonal antibody

(BD 565641) and donkey anti-mouse DyLight649 (Jackson ImmunoResearch) for 20 min on ice followed by flow cytometric analysis

using BD CytoFLEX. To track LDLR localization over time, we induced LDLR-mCherry expression in HepG2-rtTA-BFP + Tet-LDLR-

mCherry KO cells using 2 mg/mL Doxycycline for the specified time followed by fluorescent imaging using a Zeiss Apotome micro-

scope at 40x resolution. Images were processed using Zeiss ZEN software and ImageJ. We also performed flow cytometry on

HepG2-rtTA-BFP + Tet-LDLR-mCherry KO cells induced to express LDLR-mCherry with 2 mg/mL Doxycycline for the specified

time and chased with standard media for the indicated times.

RAB10 3’ UTR evaluation
We amplified the entire RAB10 3’ UTR sequence fromHepG2 genomic DNA and inserted it immediately after the stop codon of GFP-

RAB10 lenti (Addgene 130883). We also cloned an identical plasmid containing the minor allele of rs142787485. We performed len-

tiviral transduction of HepG2 with both plasmids, selecting to completion with Puromycin and performing flow cytometry using a BD

CytoFLEX to measure GFP levels.

Mouse AAV8 shRNA experiments
All animal care and experimental procedures used in this study were approved by the Institutional Animal Care and Use Committee at

National University of Singapore. Mice were housed under a 12-hour light-dark cycle with free access to water and normal chow diet.

Male C57BL/6 littermates were obtained from InVivos at 6 weeks of age. For studies with special diet, 12-week-old mice were placed

on western diet (TD.10885, Envigo) for a total period of 2 weeks.

To knock down hepatic Rabif, Otx2 or Csk in vivo, AAV8-scramble-shRNA (Vector Biolabs), AAV8-Rabif-shRNA (Vector Biolabs),

AAV8-Otx2-shRNA (Vector Biolabs), or AAV8-Csk-shRNA (Vector Biolabs) were administered to eight-week-old C57BL/6 male mice

via retro-orbital injection, with a dose of 6 x 1011 gc per mouse. Heparinized blood samples were taken at 2, 4 and 6 weeks post-

injection for plasma lipid analysis, western diet-feeding started at 4 weeks post-injection. Mice were sacrificed at 6 weeks post-in-

jection and livers and plasma were collected for further analysis.

Sequences of shRNAs used for in vivo gene targeting are as follows.

Rabif: GCAGACTTGTTGGTACTAATA

Otx2: GCTGTTACCAGCCATCTCAAT

Csk: GCCTTGAGAGAGAAGAAATTT

Blood was collected from tail tips after overnight fasting, and plasma was further isolated via centrifugation. Triglyceride and total

cholesterol levels were measured using Infinity Triglycerides Reagent (Thermo Fisher) and Infinity Cholesterol Reagent (Thermo

Fisher) respectively according to the manufacturer’s instructions. VLDL/LDL fraction of plasma was separated from HDL fraction us-

ing HDL and LDL/VLDL Quantitation Kit (Sigma) according to the manufacturer’s instructions.

Total RNA was extracted frommouse livers using Trizol reagent (Invitrogen). 1 mg of RNA was applied for reverse transcription with

usingMaxima HMinus cDNA synthesis system (Thermo). Quantitative real-time PCR (RT-PCR) was performed on a ViiATM 7 RT-PCR

system (Applied Biosystems Inc.). Melting curve analysis was carried out to confirm the RT-PCR products. Expression data is pre-

sented after calculating the relative expression level compared to the housekeeping gene Rplp0.

The protocol for hepatic lipid extraction was adapted from previously published work116 with slight modifications. Briefly, to mea-

sure the lipid (Triglyceride and cholesterol) levels of liver, snap-frozen liver samples wereweighed and homogenized in ten volumes of

ice-cold PBS. Two-hundred microliters of the homogenate was transferred into 1,200 ul of chloroform:methanol (2:1; v/v) mixture

followed by vigorous vortex for 30 seconds. One-hundred microliters of ice-cold PBS was then added into the mixture and mixed

vigorously for 15 seconds. The mixture was then centrifuged at 4,200 rpm for 10 minutes at 4 degree. Two-hundred microliters of

the organic phase (bottom layer) was transferred into a new tube and evaporated for dryness. Two-hundred microliters of 1% Triton

X-100 in ethanol was used to dissolve the dried lipid with constant rotation for 2 hours. Triglyceride and cholesterol content were

determined using the Infinity Triglycerides reagent (Thermo Scientific) and Infinity Cholesterol reagent (Thermo Scientific) respec-

tively, based on manufacturer’s instructions.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Number of replicates can be found in the Figure legends or in the Methods Details of STAR Methods. All measurements were taken

from distinct samples. All figures show mean with standard error bars unless specified otherwise. For CRISPR screens, MAGECK-

RRA95 was used to calculate p-values and FDR. For case-control comparisons, two-tailed t-tests and Mann-Whitney U-tests were

performed to compare treatment and control groups as indicated in Figure legends. For gene module analysis, hypergeometric tests

were used to calculate significance. For exome analysis, significance is reported based on a false discovery rate of 0.1 unless noted

otherwise. Tests are conducted using a two-sided MannWhitney U statistic comparing adjusted LDL-C values between rare-variant

carriers and non-carriers. False discovery rate corrections are done using the Benjamini-Hochberg procedure117 correcting for the

number of independent tests performed. For comparisons involving multiple dependent tests (e.g. genes at different groupings of

variants) we apply Simes method118 on the group of hypotheses to represent a single independent test. Testing groups include

limiting variants with increasing VEST4 predicted impact, taken with no limit, the top 25%, top 50%, and top 75% of VEST4 values.

P-values are represented by asterisks (*p<0.05, **p%0.01, ***p%0.001). Statistical analysis and visualization were carried out in

Graph Pad Prism version 9.3.1 and R version 3.6.3. Flow cytometric analysis was performed using FCS Express version 7.12 and

FloJo version 10.6.2.
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