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Abstract 

The infectious disease known as COVID-19 has spread dramatically all over the world since 

December 2019. The fast diagnosis and isolation of infected patients are key factors in slowing down 

the spread of this virus and better management of the pandemic. Although the CT and X-ray modalities 

are commonly used for the diagnosis of COVID-19, identifying COVID-19 patients from medical images 

is a time-consuming and error-prone task. Artificial intelligence has shown to have great potential to 

speed up and optimize the prognosis and diagnosis process of COVID-19. Herein, we review 

publications on the application of deep learning (DL) techniques for diagnostics of patients with COVID-

19 using CT and X-ray chest images for a period from January 2020 to October 2021. Our review 

focuses solely on peer-reviewed, well-documented articles. It provides a comprehensive summary of 

the technical details of models developed in these articles and discusses the challenges in the smart 

diagnosis of COVID-19 using DL techniques. Based on these challenges, it seems that the 

effectiveness of the developed models in clinical use needs to be further investigated. This review 

provides some recommendations to help researchers develop more accurate prediction models. 
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ABBREVIATION DEFINITION 

Acc Accuracy 

AUC the Area Under the ROC Curve 
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COVID-19 Coronavirus disease 2019 

CT Computed Tomography 

DL Deep Learning 

GAN Generative Adversarial Network 

GRAD-CAM Gradient-weighted Class Activation Mapping 

HIS Hyperspectral Imaging 

LRN Local Response Normalization 
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PET Positron Emission Tomography 

Pre Precision 

ResNet Residual Network 

ROI Region of Interest 

RT–PCR Reverse Transcriptase-Polymerase Chain Reaction 

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2 

SEM Scanning Electron Microscopy 

Sen Sensitivity 

Spe Specificity 

SVM Support Vector Machine 

Te Test 

Tr Training 

V Validation 

WHO World Health Organization 

Highlights  

 We survey different DL techniques developed in the literature for the smart diagnosis of 

COVID-19 based on CT and X-ray chest images. 

 We search for relevant studies published in the period from January 2020 to October 2021. 

Compared to other review articles, we cover a longer period for literature review. 
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 We only focus on peer-reviewed, well-documented articles. This way, our review provides 

researchers with informative works in this domain. 

 Our paper provides a comprehensive summary of the technical details of DL models 

developed in reviewed articles. Therefore, researchers will be able to compare developed DL 

models, determine the best model settings, and find the main challenges. 

 The challenges in the smart diagnosis of COVID-19 using DL models are discussed and 

some recommendations are given for alleviating challenges and developing models with 

higher quality.

1. Introduction 

In early December 2019, the first case of COVID-19, the disease caused by the virus Severe Acute 

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), was confirmed by the authorities in Wuhan, 

China. COVID-19 developed rapidly into a global outbreak and spread all across the world. The World 

Health Organization (WHO) described the outbreak as a Public Health Emergency of International 

Concern on 30 January 2020 and declared it a pandemic on 11 March 2020. Globally, as of 6:06pm 

CEST, 19 October 2022, there have been 623,000,396 confirmed cases of COVID-19, including 

6,550,033 deaths, reported to WHO (https://covid19.who.int).  

Although Reverse Transcriptase-Polymerase Chain Reaction (RT–PCR) is the gold standard for 

diagnosing COVID-19 [1], the sensitivity of the test is relatively poor, and thus even in patients with a 

negative RT–PCR result, COVID-19 infection cannot be entirely excluded [2,3]. Therefore, medical 

imaging, especially chest computed tomography (CT) scan and X-ray, is often used to complement the 

RT–PCR test to achieve more diagnostic certainty. These imaging techniques have a higher sensitivity 

than RT–PCR and play a critical role not only in the early diagnosis and treatment of COVID-19 

patients but also in monitoring the progress of the disease [2,3]. However, the accuracy of COVID-19 

diagnosis using CT and X-ray chest images depends on radiological expertise, and some radiologists 

may fail to interpret accurately the results of these images, hence leading to reduced sensitivity [4,5]. 

With recent advances in machine learning techniques, particularly deep learning (DL), and the 

success of these techniques in medical image processing, scientists and clinicians hope to improve the 

accuracy of COVID-19 diagnosis by applying deep learning methods to chest medical images. These 

methods have the potential in providing decision support for clinicians and reducing medical errors. In a 
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short period, we have witnessed a large number of DL models developed for a very broad range of 

COVID-19-related applications. The purpose of the present review is to give more insight into deep 

learning applications in the diagnostics of COVID-19. We survey the literature on diagnosing patients 

infected by COVID-19 using DL techniques for a period from January 2020 to October 2021. Herein, 

our main focus is on classification and segmentation models proposed based on CT and X-ray chest 

images. Our review only includes peer-reviewed, well-documented articles and summarizes the 

technical details of models developed in these articles. We also discuss the challenges of using deep 

learning for the smart diagnosis of COVID-19. The challenges show that the performance of the models 

developed in the reviewed articles is probably optimistic and these models are not of potential for 

clinical use. We finally provide some recommendations that can help researchers develop more 

accurate and practical models for the COVID-19 diagnosis. 

2. Methods 

2.1. Data Sources and Search Strategy 

This search was intended to address the question: “What deep learning techniques have been 

developed for the COVID-19 diagnosis using CT and X-ray images?”. For a period from January 2020 

to October 2021, we conducted systematic searches of the following on-line databases in order to 

identify relevant works: IEEE Xplore, ScienceDirect, Springer, PubMed, and Google Scholar.  

2.2. Search terms 

The keywords used for the literature search were “COVID-19; Coronavirus; Diagnosis; Detection; 

Artificial Intelligence; Machine Learning; Deep Learning; Medical Imaging; CT-Scan; X-ray.’’ They were 

connected using “and’’, or “or’’ to identify the articles that deal with the diagnosis of COVID-19 using DL 

techniques on medical images. 

2.3. Selection criteria 

The studies with the following criteria were included in the review: 1) Articles that employed machine 

learning or deep learning techniques for the COVID-19 diagnosis, 2) Articles that utilized techniques to 

analyze radiographic images (CT scan, and/or X-ray), 3) Articles that applied classification and 

segmentation models. 
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The following exclusion criteria were used to eliminate studies from consideration: 1) Articles that 

were not in the English language, 2) Articles that were not published in peer-reviewed journals, 3) 

Review Articles, 4) Articles that did not use ML/DL approaches for diagnosing COVID-19 based on 

medical images, 5) Articles that did not provide a clear explanation of the implemented model and its 

results. 

3. Technical Background 

This review paper aims to survey different DL models developed in the literature for the smart 

diagnosis of COVID-19 in people with suspected infection. We focus on classification and/or 

segmentation techniques using CT and X-ray chest images. For this purpose, this section briefly 

discusses various DL architectures applied in the reviewed articles. 

3.1. Classification Models 

In this section, the different deep neural networks for COVID-19 classification based on CT and X-

ray chest images are discussed.  

Standard CNN. The architecture of convolutional neural networks (CNN) is inspired by human and 

animal brains. The main advantage of CNN is detecting relevant features automatically and without any 

human supervision. CNN tries to overcome the overfitting problem by using convolutional layers. Figure 

1 depicts the architecture of standard deep CNN. The different parts of this architecture are described 

below: 

 

Fig. 1. A CNN model for COVID-19 Detection [6]
 

 The convolutional layer is the main building block of a CNN and applies a convolution 

operation to the input. 

 The pooling layer reduces the dimensions of the feature maps. 

 The fully connected layer is usually placed at the end of CNN architecture to do the 

classification task. 
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 The loss function calculates the prediction error. Through network learning, this value is 

optimized. 

 Various techniques such as dropout, batch normalization, and data augmentation that are 

applied for better learning. 

AlexNet. AlexNet is one of the earliest and most widely cited deep neural networks and a leading 

architecture for any object-detection task. It first introduced two new concepts named Local Response 

Normalization (LRN) and dropout to help the deep neural network learn better [7]. As a normalization 

layer, LRN implements the idea of lateral inhibition. Dropout is one of the regularization approaches to 

avoid the overfitting problem. It randomly skips some neurons during training and forces the other 

neurons in the layer to pick up the slack. The architecture of AlexNet is shown in Figure 2.  

SqueezeNet. SqueezeNet is a convolutional neural network that utilizes design strategies to reduce 

the number of weights and is considered a more compact replacement for AlexNet [9]. On the 

ImageNet dataset, it achieves accuracies comparable to AlexNet while performing 3x faster and 

containing up to 50x fewer parameters. ImageNet (http://www.image-net.org) is a large-scale 

hierarchical dataset of annotated images for computer vision and machine learning research [10]. 

Figure 3 depicts a combined architecture of AlexNet, SqueezeNet, GoogleNet, and MobileNetV2. 

 

Fig. 2. AlexNet Architecture used for COVID-19 classification [8]
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Fig. 3. A combined architecture of AlexNet, SqueezeNet, GoogleNet, and MobileNetV2 for COVID-19 detection [12] 

VGGNet. VGG is a classical CNN architecture. It consists of a few convolutional layers that apply 

the RELU activation function [11]. The number of convolution layers differs in various versions of VGG. 

A single max-pooling layer and three fully connected layers are placed following these activation layers, 

As shown in Figure 4. This architecture uses the Softmax classifier. 

GoogleNet. GoogleNet, also called InceptionNet-V1, proposed the novel Inception blocks that 

improve recognition accuracy. The distinctive features of this architecture (see Figure 3) are the large 

convolution masks, the less dimensional space, and reduced computational complexity. GoogleNet is 

deeper with much fewer parameters compared to its ancestors AlexNet and VGG [11]. 

 

Fig. 4. The structure of VGG16 for COVID-19 detection [13] 

MobileNet. The main characteristic of MobileNet (see Figure 3) is using depth-wise separable 

convolution that consists of two layers named depth-wise convolution and point-wise convolution. Using 

these layers, MobileNet provides an intensive reduction in model size and decreases computational 
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cost by about 8-9 times compared to standard convolutions. A RELU and batch normalization are 

placed after both of these layers. MobileNet is simple but efficient for mobile and embedded machine 

vision applications [14]. 

DenseNet. As a type of convolutional neural network, DenseNet utilizes dense connections 

between convolutional layers where each layer is connected to every other layer. DenseNet was 

introduced to overcome the issue of vanishing gradient. With effective usage of feature reuse, the 

network parameters decrease dramatically [15]. Figure 5 depicts the architecture of a DenseNet 

network. 

 

Fig. 5. DenseNet architecture designed for COVID-19 classification [16] 

ResNet. The core idea of the Residual network (ResNet) is introducing a technique called skip 

connection (or Shortcut Connection) that skips some of the layers in the network and feeds the output 

of a layer as the input to later layers, as shown in Figure 6. There are different variants of ResNet 

architecture composed of a different number of layers. The most popular type of ResNet network is 

ResNet50 including 49 convolutional layers followed by one fully connected layer [17]. 

 

Fig. 6. ResNet architecture for COVID-19 image classification [18]
 

EfficientNet. The EfficientNet network relies on a compound scaling method that uniformly scales 

all three dimensions of depth/width/resolution while maintaining a balance between all network 

dimensions. using the compound scaling technique, the authors scaled the baseline network 

EfficientNet-B0 to get different variations including EfficientNet-B1 to B7. In comparison to squeeze-
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and-excitation networks, EfficientNet is 7.7 x smaller and 10 x faster [19]. Figure 7 describes the 

architecture of an EfficientNet model proposed for COVID-19 image classification. 

 

Fig. 7. EfficientNet model for COVID-19 classification  [20] 

InceptionNet. An inception network is composed of repeating components referred to as Inception 

modules. InceptionNet employs the idea of auxiliary classifiers to address the gradient vanishing 

problem and improve the convergence of very deep networks. It also applies different convolution 

kernels of various sizes in parallel. This architecture helps to extract similar features in different sizes 

simultaneously. The popular versions of InceptionNet are InceptionV1 to V3 (as shown in Figure 8) and 

Inception-ResNet. 

3.2. Segmentation Models 

The most common deep learning model developed for image segmentation, U-Net, has been widely 

utilized for lung region segmentation to diagnose COVID-19 patients: 

U-NET. U-Net architecture is primarily designed for segmentation applications. Its good 

performance in segmenting medical images makes it the primary tool for segmentation in this field. The 

U-Net architecture is an almost symmetrical u-shape network that consists of two paths called decoder 

and encoder. It is much faster than other segmentation networks, because of its context-based learning 

[21]. The architecture of U-Net is described in Figure 9.  

 

Fig. 8. InceptionV3 architecture for COVID-19 classification [16] 
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Fig. 9. The architecture of U-Net for COVID-19 segmentation [22] 

3.3. Generative Adversarial Networks 

Generative Adversarial Network (GAN) is an unsupervised approach and a powerful method to 

produce unseen data samples with the same statistics as the training set. This way, it can overcome 

overfitting and data shortage problems and improve deep network performance. GAN architecture (as 

shown in Figure 10) is composed of two sub-models named generator model and discriminator model 

contesting each other in a game. The generator model tries to generate new plausible images similar to 

real data. The discriminator model tries to distinguish between real and fake samples. This process 

continues until the generator samples become close to the actual input samples [11]. 

4. Results 

From all the databases considered for finding relevant works (see Section 2.1 for more information), 

we identified 15,417 articles that satisfied our search terms, of which, 6209 articles were preprints (not 

peer-reviewed) and excluded from this review. For duplicate studies (157 articles), we ensured that the 

latest version of the article was considered. The titles, abstracts, and full texts were screened for 

relevance and eligibility. We removed 8983 articles that were irrelevant or not documented with enough 

detail to allow other researchers to reliably reproduce the results. Finally, our investigation retained 68 

peer-reviewed, well-documented articles for consideration in this review. This section presents all the 

technical details of DL models developed in these articles for COVID-19 diagnosis in summary and 

explains the advantages and disadvantages of the used techniques. Table 1 summarizes the reviewed 

articles and reports informative details for them.  
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Fig. 10. A GAN architecture for COVID-19 detection [23] 

Generally, imaging modalities considered in COVID-19 diagnosis are X-ray, Computed Tomography 

(CT), and ultrasound. Although ultrasound imaging is a more widely available, cost-effective, safe, and 

real-time imaging technique [24], it has a relatively lower sensitivity in comparison to chest CT-Scan 

[25] and cannot usually detect lesions that are deep and intrapulmonary [26,27]. Since more deep 

learning-based COVID-19 detection and segmentation works focus on CT and X-ray modalities, we 

only reviewed articles that have used these modalities. The column Imaging Modality in the table 

indicates which imaging modalities have been used as the input to the DL network developed in each 

article. Chest radiological imaging, such as CT and X-ray, has a vital role in the early diagnosis and 

treatment of COVID-19 disease [28].  

The second column Dataset refers to image datasets collected by or utilized in the reviewed articles. 

These datasets contain CT and/or X-ray images from healthy, COVID-19, and Non-COVID patients. 

Since COVID-19 is a new disease, there is no dataset of appropriate size for its diagnosis purpose. 

Therefore, many works combine images from several different publicly available datasets, gather chest 

images from multiple institutions, or use a combination of their clinical images and public datasets. 

The column # Cases Per Class indicates the number of images/patients in each class. In other 

words, the value of each cell in this column shows which classes have been considered in the 

corresponding article, and how many images or patients there are in each class. COVID-19 datasets 

are strongly imbalanced which can impact the model accuracy. Hence, several studies have proposed 

different class balancing techniques to overcome the data imbalance issue [29]. 

The column Test Method shows which technique has been used for splitting data into three non-

overlapping parts including the Training (Tr) set, Validation (V) set, and Test (Te) set. The division of 

input data into these three subsets is crucial in the creation of robust prediction models to avoid 

overfitting, as well as to increase generalization. Overfitting is one of the main issues in the training of 

machine learning algorithms [30]. It occurs when the training error is low, and the generalization error is 
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high. Although a small training dataset is the main reason for the overfitting problem, the complexity of 

the model can be another reason [31]. Many works apply a validation set to identify the overfitting 

problem during the model training by controlling the model complexity [32]. It can help the model 

determine when to stop the training process. For simplicity, we use two different patterns for reporting 

the test method. The first pattern is Tr%: V%: Te% which indicates the percent of data assigned to each 

part, and the second pattern is Tr-V-Te showing the number of data assigned to each part. We use the 

phrase “Separate DB” for indicating the studies which have utilized separate datasets for training and 

testing their DL models. 

The column Validation Method refers to the validation method used to evaluate the efficiency of DL 

models. The applied validation methods contain K-fold cross-validation and the holdout method. The K-

fold cross-validation technique ensures that every observation from the original dataset has the chance 

of appearing in the training and test sets [33]. In this approach, at first, the data is randomly split into K 

equal-sized folds (the K value is usually selected in the range of five to ten depending on the data size). 

Then, the model is trained on the K-1 folds and validated on the remaining fold. This process is 

repeated K times, with each of the K folds used exactly once as the test set. This technique is one of 

the best validation approaches if there are not enough instances to train on [34]. On the other hand, the 

holdout method partitions data randomly into two sets, training, and test. The size of the test set is 

typically smaller than that of the training set. Since the method involves a single run, results depend on 

how the data is split into these two sets [35]. The holdout method is not effective for comparing multiple 

models and tuning their hyper-parameters. Therefore, another very popular form of this method is 

usually utilized which splits data into three separate sets including training, validation, and test sets 

[36]. The validation set which is a holdout subset from the training set is used to tune various hyper-

parameters and choose the best performing model. The final model is evaluated by the test set and the 

found error is considered the generalization error. 

The dataset used for the transfer learning process is reported in the column Transfer Learning. The 

philosophy behind transfer learning is that people can intelligently utilize knowledge learned in the past 

to solve new problems faster or more efficiently [37]. Transfer learning is an approach in machine 

learning where knowledge learned in one or more tasks is transferred to improve learning in another 

related task [38]. The main goal of this technique is to decrease training task time, improve 

generalization performance [39], and deal with small input dataset problems [40]. Transfer learning has 
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been widely adopted in many COVID-19 studies to compensate for the scarcity of large-scale public 

datasets for this disease. 

The column Learning Method can contain the values Supervised, Unsupervised, Semi-supervised, 

and Weakly-supervised, showing which machine learning approach has been used for training the deep 

neural network. Supervised learning refers to a class of methods that learn on a labeled dataset, where 

each training sample is a pair of inputs and its desired output [41]. In an unsupervised learning model, 

in contrast, the algorithm tries to extract features and patterns from unlabeled data. In other words, the 

algorithm does not receive any feedback from the environment [42]. Clustering, association, and 

dimensionality reduction are three main tasks in unsupervised learning. A weakly-supervised model 

utilizes training data with incomplete, inexact, and inaccurate annotation [43]. Finally, semi-supervised 

learning describes a class of algorithms that seek to learn from both unlabeled and labeled samples 

typically assumed to be sampled from the same or similar distributions [44].  

Since labeling lesion annotations is time-consuming and impractical for clinicians [45], Noisy labels 

exist widely for the segmentation of large-scale 3D medical images. It can be either due to challenges 

for accurate annotation, such as low contrast, ambiguous boundaries, and complex appearances of the 

target, or caused by low-cost inaccurate annotations such as annotations provided by non-experts, 

human-in-the-loop strategies [46], and some algorithms generating pseudo labels [47,48]. For this 

reason, some COVID-19 studies have applied weakly supervised or semi-supervised learning 

frameworks in their segmentation tasks. 

The pre-processing functions applied to input images are shown in the column Pre-processing. In 

image processing, the pre-processing phase aims to process raw input images to improve the quality of 

images, produce a more understandable format for the algorithm, enhance accuracy, increase the 

number of data, reduce the processing time, or standardize data acquired from multiple devices [49,50]. 

There are several important steps in the pre-processing phase, such as data augmentation, histogram 

equalization, image normalization, morphological operators, segmentation, standardization, etc. 

The column Classification categorizes COVID-19 classification models into two main groups: 

COVID-19 from Non-COVID and COVID-19 from Other Pneumonia. The former indicates a two-class 

classification where the class Non-COVID includes common pneumonia cases and non-pneumonia 

cases, and the latter shows a multi-class classification that distinguishes among COVID-19, other types 

of pneumonia, and healthy cases.  
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The column Segmentation classifies COVID-19 segmentation models into two categories. The first 

category, called the Lung-Region-Oriented method [49,51,52], is a prerequisite step in COVID-19 

applications and separates the whole lung region and lung lobes from other regions in input images. 

The second category, called the Lung-Lesion-Oriented method [46,53], aims to separate lesions or 

metal and motion artifacts from the lung regions which is a challenging detection task. 

The column DNN, which stands for deep neural network, shows the networks utilized for 

classification and segmentation tasks. In addition to well-known models, some new DNNs have been 

also introduced in the reviewed articles to detect COVID-19 infection in CT and X-ray chest images. 

The value of the column Classifier indicates the classifier algorithm used in deep learning models for 

COVID-19 diagnosis purposes. These functions are applied in the last layer of a neural network. Some 

of the most used classifiers are introduced as follows. The Softmax function [54] normalizes the real 

values of the input vector into a probability distribution consisting of probabilities. The output values are 

in the interval (0,1). The support vector machine (SVM) [55] constructs a set of hyperplanes that 

provide the maximum margin distance to generate the least generalization error. The Sigmoid function 

[54], also called the logistic function, is a very popular activation function for artificial neural networks. 

The input value to this function is transformed into a probability that is between 0 and 1. The Majority 

Voting classifier [56] merges different classification rules to produce a classifier that is superior to any of 

the individual ones. It classifies each input value in the class that obtains a large number of votes. 

The column Post-processing shows post-processing procedures applied to the output of a deep 

neural network. Some of the most common post-processing techniques include generating heat-map, 

heat-map visualization, calculating infection confidence, and GRAD-CAM (Gradient-weighted Class 

Activation Mapping). 

Finally, the column Performance Criteria reports the performance of deep learning models 

developed in the studies. The common performance criteria contain Accuracy (Acc), Sensitivity (Sen), 

Specificity (Spe), F1-score, Precision (Pre), Recall, and the area under the ROC curve (AUC).  

It is worth mentioning that some of the reviewed articles have proposed several DL models for 

COVID-19 diagnosis purposes or evaluated their models in two-class and multi-class modes. In these 

cases, for each study, we only provide the details of the model which has obtained the best result that 

may be the most helpful to researchers. 
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5. Discussion 

During the recent coronavirus pandemic, RT-PCR frequently produced false-negative findings that 

increased over time [57]. Due to high false-negative rates, this test sometimes considers COVID-19 

patients to be healthy people, which has severe consequences. The probability of a false-negative 

result on one day a patient has contracted the virus is 100% and falls to 67% over the four days of 

infection. On day five, the typical time of symptom onset, the chance of a false-negative result is 38% 

and drops to 20% on day eight. Then it begins to increase again, from 21% on day nine to 66% on day 

21 [58]. As a result, an earlier diagnosis tool is necessary to reduce the spread of the disease. 

Chest imaging could be a part of COVID-19 diagnosis in suspected or portable COVID-19 patients 

in the absence of an RT-PCR test, or where the RT-PCR test results are delayed or are negative in the 

early infection stage in the presence of symptoms indicative of COVID-19 [59]. Benmalek et al. [60] 

reported the typical imaging features for confirmed COVID-19 pneumonia cases which can help in the 

early screening and tracking of the disease.  

The chest CT scan has been found to have a sensitivity value of 98% and is one of the most precise 

methods for diagnostics of this disease [61]. Hence, a chest CT may be viewed as a reliable 

complementary diagnostic measure for RT-PCR to help physicians assess patients more perfectly [20]. 

The report by Li et al. [62] showed that an initial CT scan performed as early as 5 days after the onset 

of symptoms would allow for a confident separation of severe and non-severe patients. Lung 

abnormalities on chest CT peak within 6–13 days after the initial onset of symptoms reaching the 

highest severity score [63–65]. On the other hand, X-ray has a reported sensitivity of 69% for COVID-

19 diagnosis [66]. However, compared to CT, it is faster, less harmful, easy to perform, and costs less 

[67]. The radiographic findings detected on chest X-ray in COIVD-19 patients show the greatest 

severity on days 5–10 of symptom onset [68]. 
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Table 1: Summary of recent DL techniques for COVID-19 diagnosis 

Ref. Modality Dataset # Cases per Class Test Method 
Validation 

Method 

Transfer 

Learning 

ML 

Approach 
Preprocessing Classification Segmentation DNN Classifier Postprocessing Performance Criteria (%) 

[69] X-ray 
Combination of 

Two Different DBs 
142 COVID-19, 142 Normal Img. 70%:30% Hold-out ImageNet Supervised Resizing, Data Augmentation 

COVID-19 from 

Non-COVID-19 
NA 

NCOVnet (Based on 

VGG-16) 
Softmax NA 

Acc=97.62,Sen=97.62, 

Spe=78.57 

[70] X-ray 
Combination of 

Two Different DBs 

295 COVID-19, 65 Normal, 98 

Pneumonia Img. 
70%:30% 5-fold NA Supervised 

Fuzzy Color Method, Image 

Stacking Technique 

COVID-19 from 

Other 

Pneumonia 

NA 
MobileNetV2, 

SqueezeNet 
SVM 

Social Mimic Optimization 

Method 
Acc=99.27 

[71] X-ray 
Combination of 

Two Different DBs  

105 COVID-19, 11 SARS, 80 Normal 

Img. 
70%:30% Hold-out ImageNet Supervised 

Data Augmentation, Histogram, 

Feature Extraction using AlexNet, 

PCA, K-means 

COVID-19 from 

Other 

Pneumonia 

NA 

DeTraC (Based on 

ResNet18), AlexNet 

(Feature Extraction) 

Softmax Composition Phase 
Acc=95.12,Sen=97.91, 

Spe=91.87 

[72] X-ray COVIDx 
76 COVID-19, 1583 Normal, 4290 

Pneumonia Img. 
80%:10%:10% Hold-out NA Supervised 

Data Augmentation, RGB format, 

Normalizing 

COVID-19 from 

Other 

Pneumonia 

NA 

COVIDiagnosis-Net 

(Based on Deep 

SqueezeNet with Bayes 

Optimization) 

Decision-

Making 

System 

Class Activation Mapping 

Visualization (Heat Map) 

Acc=98.3,Spe=99.13, F1-

Score=98.3 

[73] X-ray 
Combination of 

Two Different DBs  

127 COVID-19, 500 No-Findings, 500 

Pneumonia Img. 
80%:20% 5- fold NA Supervised NA 

COVID-19 from 

Non-COVID-19 
NA 

DarkCovidNet (Based 

on CNN) 
Linear Heatmaps Visualization  

Acc=98.08,Spe=95.3, 

Sen=95.13,Pre=98.03, F1-

Score=96.51 

[74] X-ray RYDLS-20 

90 COVID-19, 10 MERS, 11 SARS, 

10 Varicella, 12 Streptococcus, 11 

Pneumocystis Img. 

70%:30% Hold-out ImageNet Supervised 

Different Features, Early Fusion, 

Late Fusion, Different Resampling 

Algorithms 

COVID-19 from 

Other 

Pneumonia 

NA Inception-V3 

Clus-HMC 

Framewor

k 

Friedman Statistical Test 

for Ranking 
F1-Score=88.89 

[75] X-ray 
Combination of 

Two Different DBs  

284 COVID-19, 310 Normal, 330 

Pneumonia Bacterial, 327 Pneumonia 

Viral Img. 

75%:25% 4-fold ImageNet Supervised Rescaling 

COVID-19 from 

Other 

Pneumonia 

NA 
CoroNet (Based on 

Xception Architecture) 
Softmax NA 

Acc=89.5,Pre=97, F1-

Score=98 

[76] X-ray 
Combination of 

Four Different DBs  

455 COVID-19, 2109 Non-COVID 

Img. 
90%:10% 10-fold NA Supervised Rescaling, Data Augmentation 

COVID-19 from 

Non-COVID-19 
NA MobileNet V2 NA NA 

Acc=99.18,Sen=97.36, 

Spe=99.42 

[23] X-ray 
Combination of 

Three Different DBs  

403 COVID-19, 721 Non-COVID 

Img. 
932-192 Hold-out NA Supervised 

Resizing, Normalization, Data 

Augmentation using CovidGAN 

Based AC-GAN 

COVID-19 from 

Non-COVID-19 
NA VGG16 Softmax PCA Visualization Acc=95,Sen=90, Spe=97 

[77] X-ray 
Combination of 

Three Different DBs 

69 COVID-19, 79 Normal, 79 

Pneumonia Viruses, 79 Pneumonia 

Bacterial Img. 

72%:18%:10% Hold-out ImageNet Supervised Data Augmentation using GAN 
COVID-19 from 

Non-COVID-19 
NA GoogleNet Softmax NA 

Acc=100,Pre=100,F1-

Score=100 

[78] X-ray 
Combination of 

Three Different DBs 
224 COVID-19, 504 Healthy, 400 

Bacteria, 314 Viral Pneumonia Img. 
90%:10% 10-fold ImageNet Supervised Resizing 

COVID-19 from 

Non-COVID-19 
NA MobileNet NA NA 

Acc=96.78,Sen=98.66, 

Spe=96.46 

[49] X-ray 

Pediatric cxr,Twitter 

COVID-19 cxr, 

Montreal COVID-

19 cxr DBs 

7595 Normal, 6012 Pneumonia of 

Unknown Type, 2780 Bacterial, 313 

COVID-19 Img. 

72%:18%:10% Hold-out ImageNet Supervised 

Pixel Rescaling, Median Filtering 

for Noise Removal and Edge 

Preservation, Normalization, 

Standardization for Identical Feature 

Distribution 

COVID-19 from 

Other 

Pneumonia 

Lung Region-

Oriented 

Method 

U-Net (Segmentation), 

Ensemble of Pruned 

Models: VGG-16, 

VGG-19, and Inception-

V3 (Classification) 

Softmax Grad-CAM 

Acc=99.01,Sen=99.01, 

Pre=99.01,F1-Score=99.01, 

AUC=99.72,MCC=98.2 

[79] X-ray 
Combination of 

Two Different DBs 

180 COVID-19, 6054 Pneumonia, 

8851 Normal Img. 
3784-11302 5-fold ImageNet Supervised Data Augmentation 

COVID-19 from 

Other 

Pneumonia 

NA 

Concatenation of the 

Xception and 

ResNet50V2 

Softmax NA Acc=91.4 

[80] X-ray 
Combination of 

Two Different DBs 
181 COVID-19, 364 Healthy Img. 80%:20%:20% Hold-out ImageNet Supervised Normalization, Resizing 

COVID-19 from 

Non-COVID-19 
NA VGG-19 Softmax NA Acc=96.3 

[39] X-ray 
Combination of 

Three Different DBs 

250 COVID-19, 2753 Other 

Pulmonary Diseases, 3520 Healthy 

Img. 

2000-803-1100 Hold-out ImageNet Supervised Resizing, Data Augmentation 

COVID-19 from 

Other 

Pneumonia 

NA VGG-16 Softmax Grad-CAM 
Acc=98,Sen=87, 

Spe=94,F1-Score=89 

[53] X-ray 
Combination of 

three Clinical DBs 

610 COVID-19, 1493 Non-COVID-

19, 1888 Normal, 305 Pneumonia 

Viral, 3085  Bacterial Pneumonia Img. 

80%:20% 5-fold Clinical Supervised 
Reshaping to Different Resolutions, 

Normalization 

COVID-19 from 

Non-COVID-19 
NA 

Stacked Multi-

Resolution CovXNet 

Stacking 

using 

Meta-

Learner 

Grad-CAM 

Acc=97.4,Spe=94.7, F1-

Score=97.1, 

Recall=97.8,Pre=96.3, 

AUC=96.9 

[81] X-ray 
Combination of 

Different DB 

162 COVID-19, 2003 Healthy, 4280 

Viral and Bacterial Pneumonia, 400 

Tuberculosis Img. 

90%:10% 10-fold ImageNet Supervised 

Resizing, Normalization, Data 

Augmentation using CovidGAN 

Based AC-GAN 

COVID-19 from 

Other 

Pneumonia 

NA 
Truncated InceptionNet 

V3 
Softmax 

Activation Maps 

Generation 

Acc=98.77,Sen=95, 

Spe=99,Pre=99, F1-

Score=97 

[82] X-ray 
Combination of 

Five Different DBs 

180 COVID-19, 191 Normal, 54 

Bacterial Pneumonia, 20 Viral 

Pneumonia Img. 

70%:10%:20% Hold-out ImageNet Supervised 

Standard Preprocessing, 

Segmentation, Data Type Casting, 

Histogram Equalization, Gamma 

COVID-19 from 

Other 

Pneumonia 

Lung Region-

Oriented 

Method 

ResNet18 

(Classification), FC-

DenseNet103 

Majority 

Voting 

Probabilistic Grad-CAM 

Saliency Map Visualization 
Sen=100,Pre=76.9 
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Correction, Resizing (segmentation) 

[83] X-ray 
COVIDx, Clinical 

DB 

9466 Normal, 9501 Non-COVID 

Pneumonia, 283 COVID-19 Img. 
90%:10% 10-fold NA Supervised NA 

COVID-19 from 

Non-COVID-19 
NA Faster R–CNN NA NA 

Acc=97.36,F1-

Score=98.46,Pre=99.29, 

Spe=95.48,Sen=97.65 

[40] X-ray 
Combination of 

Two Different DBs 

1428 COVID-19, 700 Bacterial 

Pneumonia, 504 Healthy Img. 
70%:30% Hold-out ImageNet Supervised Data Augmentation 

COVID-19 from 

Non-COVID-19 
NA VGG-16 Softmax Grad-CAM Acc=96 

[84] X-ray 
Combination of 

Three Different DBs 
585 Abnormal, 585 Normal Img. 1000-170 Hold-out ImageNet Supervised Resizing, Data Augmentation 

COVID-19 from 

Non-COVID-19 
NA ResNet18 Softmax NA 

Acc=98,Sen=99, 

Spe=97,Pre=97, AUC=98 

[85] X-ray 
Combination of 

Three Different DBs 
137 COVID-19, 150 Pneumonia Img. 80%:20% 5-fold ImageNet Supervised 

Resizing, Data Augmentation, 

Normalization 

COVID-19 from 

Other 

Pneumonia 

NA Inception V3 Softmax Grad-CA, resize 
AUC=1,Acc=100, 

Sen=99,Spe=100 

[50] X-ray 

BIMCV-

COVID19+, 

PadChest, Clinical 

DB 

2589 COVID-19, 4337 Normal Img.  80%:20% 5-fold NA Supervised 

Histogram Matching Process, Rib 

Shadows Suppression, Convert to 

Grayscale, Contrast Enhancement 

by Contrast Limited Adaptive 

Histogram Equalization, Data 

Augmentation, Random Rotations, 

Width and Height Shift, Shear, 

Zoom, Horizontal Flips 

COVID-19 from 

Non-COVID-19 

Lung Region-

Oriented 

Method 

U-Net (Segmentation), 

COVID-Xnet (Based on 

CNN, Classification) 

Softmax Grad-CAM 

Acc=94.43,AUC=98.8, F1-

score=93.14, 

Pre=93.76,Spe=96.3, 

Sen=92.53 

[86] X-ray 
Combination of 

Four Different DBs 

219 COVID-19, 1341 Normal, 1345 

Viral Pneumonia Img. 
70%:30% Hold-out NA Supervised Data Augmentation 

COVID-19 from 

Other 

Pneumonia 

NA CNN SVM NA 
Acc=98.97,Sen=89.39, 

Spe= 99.75,F1-Score=96.72 

[6] X-ray Clinical 659 Normal, 295 COVID-19 Img. 80%:20% Hold-out NA Supervised NA 
COVID-19 from 

Non-COVID-19 
NA CNN Sigmoid NA 

Acc=97.5,F1-

Score=97.5,Pre=97.5, 

Recall=97.5,ROC=0.975 

[87] X-ray 
Combination of 

Two Different DBs 

202 COVID-19, 300 Normal, 300 

Pneumonia Img. 
80%:20% 5-fold ImageNet Supervised 

Intensity Normalization, Class-label 

Encoding, Data Augmentation by 

CycleGAN, Width and Height Shift, 

Random Rotation, Horizontal Flips 

COVID-19 from 

Other 

Pneumonia 

NA EfficientNetB0 Softmax Grad-CAM Acc=96.8 

[88] X-ray 
Combination of 

Two Different DBs 

224 COVID-19, 700 Bacterial, 504 

Healthy 

Patients 

70%:30% Hold-out ImageNet Supervised Data Augmentation, Resizing 
COVID-19 from 

Non-COVID-19 
NA VGG-16 Softmax 

Grad-CAM (to highlight 

the regions of interest) 

Acc=96,spec=97.27, 

Sen=92.64 

[89] X-ray 
Combination of 

Different DBs 

2665 COVID-19, 3692 Pneumonia, 

3692 Normal 
9149- 450- 450 NA ImageNet Supervised 

Data Augmentation, Resizing, Lung 

Segmentation, CLAHE histogram 

equalization, Denoising 

COVID-19 from 

Non-COVID-19 

Lung Region-

Oriented 

Method 

VGG-19 

(Classification), U-Net 

(Segmentation) 

Naive 

Bayes  
Grad-CAM visualization 

Acc=98.67,Kappa 

score=0.98,F1-Score=100 

[90] X-ray Cohen and Kaggle 

455 Normal, 457 Bacterial 

Pneumonia, 470 Viral Pneumonia 

(Stage1),  480 Viral Pneumonia 

(Stage2), 440 COVID-19 Img. 

80%:20% 5-fold ImageNet Supervised 
Resizing, Normalization, Data 

Augmentation 

COVID-19 from 

Other 

Pneumonia 

NA Resnet101 Softmax Grad-CAM visualization 

Acc=98.93,Sen=98.93, 

Spec=98.66,Pre=96.39, F1-

score=98.15 

[5] X-ray COVIDx 
8066 Normal, 5521 Pneumonia, 183 

COVID-19 Img. 
13569-231 NA ImageNet Supervised 

Intensity Normalization, Resizing, 

Data Augmentation 

COVID-19 from 

Other 

Pneumonia 

NA EfficientNet Swish NA 
Acc=93.9,Sen=96.8, 

PPV=100 

[91] X-ray Kaggle 
219 COVID-19, 1341 Normal, 1345 

Viral Pneumonia Img. 
70%:10%:20% 5-fold NA Supervised Cropping, Resizing 

COVID-19 from 

Other 

Pneumonia 

NA CVDNet Softmax NA Acc=96.69 

[92] X-ray 
Combination of Six 

Different DBs 

900 COVID-19, 900 Normal, 900 

Pneumonia Img. 
70%:30% Hold-out ImageNet Supervised Resizing, Converting to Color Image 

COVID-19 from 

Other 

Pneumonia 

NA E‑DiCoNet ELM NA 
Acc=94.07,Sen=98.15, 

Spec=91.48 

[93] X-ray 
Combination of 

Three Different DBs 

543 COVID_19, 600 Normal, 600 

Pneumonia Img. 
1220-523 Hold-out ImageNet Supervised Resizing 

COVID-19 from 

Other 

Pneumonia 

NA AlexNet, ReliefF SVM NA 
Acc=98.64,Spec=98.64, 

Sen=98.64, F-score=98.63 

[94] X-ray 
chest X-ray (CXR) 

dataset 

27 Normal, 220 SARS, 17 

Streptococcus Img. 
80%:20% 5-fold ImageNet Supervised Noise Removal by Wiener Filtering 

COVID-19 from 

Other 

Pneumonia 

NA FM-CNN MLP NA 
Acc=98.06,Spec=98.29, 

Sen=97.22, F-score=97.93 

[95] X-ray 
Combination of 

Different DBs 

423 COVID-19, 1341 Normal, 1345 

Viral PNA Img. 
80%:20% 5-fold ImageNet Supervised 

Image Resize, CLAHE Image 

Enhancement, Image Augmentation 

COVID-19 from 

Other 

Pneumonia 

NA VGG-19 

LMPL 

(Large 

margin 

piecewise 

linear) 

Heatmap Visualization 

Acc=99.39,F1-

score=99.45,Pre=99.47, 

Sen=99.42 
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[96] CT-Scan Clinical 
219 COVID-19, 224 Other 

Pneumonia, 175 Healthy Img. 
85.4% : 14.6% Hold-out NA Supervised Segmentation, Data Augmentation 

COVID-19 from 

Other 

Pneumonia 

Lung Region-

Oriented 

Method 

ResNet-18 

(Classification), VNET-

IR-RPN (Segmentation)  

Voting 

Strategy 

Total Infection Confidence 

Score Calculation using 

Probability Formula of the 

Noisy-or Bayesian 

Function 

Acc=86.7,Pre=81.3,F1-

Score=83.9 

[97] CT-Scan COVID-19 DB 
1262 Positive COVID-19, 1230 

Negative COVID-19 Img. 
68%:17%:15% Hold-out ImageNet Supervised Data Augmentation 

COVID-19 from 

Non-COVID-19 
NA DenseNet201 Sigmoid NA 

Pre=96.29,Recall=96.29, 

F1-Score=96.29, 

Spe=96.21,Acc=96.25 

[98] 

CT-Scan 

Clinical 
368 COVID-19 Patients, 127 Patients 

with Other Pneumonia 
395-50-50 Hold-out NA Supervised 

Segmentation using Threshold 

Segmentation and Morphological 

Optimization Algorithms, Rescaling, 

Multi-view Fusion 

COVID-19 from 

Other 

Pneumonia 

Lung Region-

Oriented 

Method 

ResNet50   
Dense 

Layer 
NA 

Acc=76,Sen=81.1, 

Spe=61.5 

[99] CT-Scan 
Combination of 

Different DBs 

1029 COVID-19, 1695 Non-COVID 

Img. 
1059-328-1337 Hold-out NA Supervised 

Clipping, Cropping, Data 

Augmentation by Image Intensity 

and Contrast Adjustment, Random 

Gaussian Noise, Flipping, and 

Rotation 

COVID-19 from 

Non-COVID-19 

Lung Region-

Oriented 

Method 

DensNet-121 

(Classification), AH-Net 

(Segmentation, Based 

on ResNet50) 

NA Grad-CAM 

Acc=90.8,Sen=84, 

Spe=93,ppv=79.4, 

npv=94.8,Auc=94.9 

[100] CT-Scan Clinical 
108 COVID-19, 86 Non-COVID 

Patients 
80%:20% Hold-out ImageNet Supervised Different Methods 

COVID-19 from 

Non-COVID-19 
NA ResNet-101, Xception Softmax NA 

Sen=98.04,Spe=100, 

Acc=99.02 

[101] CT-Scan Clinical 
3389 COVID-19, 1593 Non-COVID 

Img. 
Separate DB 5-fold NA Supervised 

Standard Preprocessing, VB-Net 

Toolkit for Segmentation, Lung 

Mask Generation 

COVID-19 from 

Non-COVID-19 

Lung Lesion-

Oriented 

Method 

3D ResNet34 

(Classification), VB-Net 

(Segmentation) 

Ensemble 

Learning 
Grad-CAM 

Acc=87.5,Sen=86.9, 

Spe=90.1,AUC=94.4, F1-

Score=82.0 

[102] CT-Scan Clinical 
146 COVID-19, 149 Non-COVID 

Img. 
135-20-140 Hold-out NA Supervised Data Augmentation 

COVID-19 from 

Non-COVID-19 

Lung Region-

Oriented 

Method 

DenseNet 

(Classification) 
Softmax CAM 

Acc=92,Sen=97,Spe=87, 

F1-Score=93 

[103] CT-Scan Clinical 558 COVID-19 Patients 60%:20%:20% 5-fold NA 

Weakly-

supervised 

learning 

NA 

COVID-19 from 

Other 

Pneumonia 

NA 
AD3D-MIL (Based on 

CNN) 
NA Proposed Loss Function Dice=80.72,RVE=15.96 

[104] CT-Scan 
Combination of 

Two Different DBs 

1118 COVID-19, 96 Pneumonia, 107 

Healthy Img. 
70%:30% Hold-out NA Supervised 

 Binary Mask, Lung Segmentation 

using Histogram Thresholding, 

Morphological Operation (Dilation, 

Hole Filling), and Removing All 

Small Connected Objects 

COVID-19 from 

Other 

Pneumonia 

Lung Region-

Oriented 

Method 

CNN LSTM NA Acc=99.68 

[105] CT-Scan Clinical 
151 COVID-19, 498 Non-COVID 

Patients 
490-82-77 Hold-out NA Supervised 

Resizing, Padding, Data 

Augmentation 

COVID-19 from 

Non-COVID-19 
NA CNN Softmax Visual Interpretation AUC=70 

[106] CT-Scan 
Combination of 

Two Different DBs 

413 COVID-19, 439 Normal or 

Pneumonia Img. 
50%:10%:40% 10-fold ImageNet Supervised NA 

COVID-19 from 

Non-COVID-19 
NA ResNet Softmax NA 

Acc=93.01,Spe=94.77, 

Sen=91.45,Pre=95.18 

[107] CT-Scan Clinical 73 COVID-19 Patients NA 20-fold NA Supervised 
Hyper-Parameter Tuning using 

MODE Algorithm 

COVID-19 from 

Non-COVID-19 
NA CNN NA NA 

Acc=92,F1-Score=90, 

Sen=90,Spe=90 

[108] CT-Scan Clinical 
98 COVID-19, 103 Non-COVID 

Patients 
80%:10%:10% Hold-out NA Supervised Visual Inspection 

COVID-19 from 

Non-COVID-19 
NA BigBiGAN Linear NA AUC=97.2,Sen=92, Spe=91 

[109] CT-Scan COVID-19 Set 470 COVID-19  Suspects 370-100 Hold-out COPDGene Supervised 
Standardization, Re-scaling, Down 

Sampling, Zero padding 
NA 

Lung Region-

Oriented 

Method 

RTSU-Net (Based on 

RU-Net) 

Sigmoid, 

Softmax 
Upsampling IOU=92.2,ASSD=86.6 

[46] CT-Scan Clinical 

79 COVID-19, 100 Common 

Pneumonia, 130  Patients without 

Pneumonia 

378-50-130 5-fold NA 
Semi-

supervised 
Data Augmentation NA 

Lung Lesion-

Oriented 

Method 

AD3D-MIL (Based on 

CNN) 

Bernouli 

Distributio

n 

CAM 

Acc=97.9,AUC=99, F1-

Score=97.9,Pre=97.9, 

Recall=97.9 

[110] CT-Scan 
COVID-19 Clinical 

DB 

150 COVID-19, 150 CAP, 150 NP 

Img. 
80%:20% 5-fold TCIA 

Weakly-

supervised 

Data Augmentation, Fixed-Sized 

Sliding Window, Segmentation  

COVID-19 from 

Other 

Pneumonia 

Lung Region-

Oriented 

Method 

CNN (Classification), 

U-Net (Segmentation) 
Softmax 

Multi-Window Voting, 

Sequential Information 

Attention Module, CAM 

(Class Activation Maps), 

Categorical- Specific Joint 

Saliency 

Acc=96.2,Pre=97.3, 

Sen=94.5,Spe=95.3, 

AUC=97 

[47] CT-Scan COVID-SemiSeg 
150 COVID-19, 150 CAP, 150 NP 

Img. 
45-5-50 Hold-out 

1600 CT 

images 

with 

pseudo 

labels 

Semi-

supervised 
Pseudo Label Generation, Resizing NA 

Lung Lesion-

Oriented 

Method 

Semi-Supervised Inf-

Net 
Sigmoid NA 

Dice=73.9,Sen=72.5, 

Spe=96,MAE=6.4 

[45] CT-Scan Clinical 1315 COVID-19, 3342 Non-COVID 3997- 60 - 600 5-fold NA Weakly- Lobe Segmentation, Cropping, COVID-19 from Lung Region- 3D-ResNets Softmax Heatmap Visualization Acc=93.3,Sen=87.6, 
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Img. supervised Resizing, Data Augmentation Other 

Pneumonia 

Oriented 

Method 

(Classification), 3d-U-

Net (Segmentation) 

Spe=95.5 

[52] CT-Scan Clinical 
296 COVID-19, 1735 CAP, 1325 

Non-Pneumonia Img. 
Separate DB NA NA Supervised Lung Segmentation using U-net 

COVID-19 from 

Other 

Pneumonia 

Lung Region-

Oriented 

Method 

COVNet (Classification, 

Based on ResNet), U-

Net (Segmentation) 

Softmax Grad-CAM AUC=96,Sen=90, Spe=96 

[111] CT-Scan Clinical 
1266 COVID-19, 4106 Lung Cancer 

Patients 
Separate DB NA Clinical Supervised 

Lung Segmentation, 3-Dimensional 

Bounding Box, Non-Lung Area 

Suppression Operation 

COVID-19 from 

Other 

Pneumonia 

Lung Region-

Oriented 

Method 

DenseNet 

(Segmentation), 

COVID-19Net 

(Classification) 

Sigmoid 

Combining Feature 

Vectors, Multivariate Cox 

Proportional Hazard 

Model, Visualizations 

Acc=81.24,AUC=0.90, 

Sen=78.93,Spe=89.93, F1-

Score=86.92 

[20] CT-Scan Clinical 
521 COVID-19, 665 Non-COVID 

Patients 
70%:20%:10% Hold-out ImageNet Supervised 

Lung Segmentation using 

Thresholding and The Manual 

Active Contour Segmentation 

Method, Padding, Resizing, Lung 

windowing, Normalization, 

Standardization 

COVID-19 from 

Non-COVID-19 

Lung Region-

Oriented 

Method 

EfficientNet B4 Sigmoid Generating Heat Map Acc=96,Sen=95, Spec=96 

[112] CT-Scan 
Combination of 

Two Different DBs 

1272 COVID-19,1230 Non-COVID 

Img. 
70%:30% 

5-fold and 

10-fold 
NA 

Semi-

supervised 
Normalization, Standardization. 

COVID-19 from 

Non-COVID-19 

Lung Region-

Oriented 

Method 

PQIS-Net 

(Segmentation) 

Majority 

Voting 

Patch-Based Classification 

on Segmented Lung CT 

Images 

Acc=93.1,Pre=89, 

Recall=83.5,F1-

Score=82.6,AUC=98.2 

[113] CT-Scan 
Combination of 

Different DBs 

1194 COVID-19, 1357 Non-COVID 

Pneumonia, 1442 Nonpneumonia Img. 
80%:20% Hold-out ImageNet Supervised 

Converting to One-channel 

Grayscale PNG Images, Rescaling, 

Normalizing, Data Augmentation 

COVID-19 from 

Other 

Pneumonia 

NA ResNet-50 Softmax Grad-CAM 
Acc=99.87,Spec=100, 

Sen=99.58 

[48] CT-Scan 
Clinical DB, SPIE-

AAPM-NCI 

111 COVID-19, 115 CAP, 109 

Normal Patients 
300-15-20 Hold-out NA Supervised 

Generating Pseudo-Infection 

Anomalies using Perlin Noise, 

Resampling, Resizing, 

Normalization 

COVID-19 from 

Other 

Pneumonia 

Lung Lesion-

Oriented 

Method 

BCDU-Net 

(Segmentation), CNN 

(Classification) 

NA NA 
Acc=86.66,Spec=100, 

Sen=90.91 

[114] CT-Scan Clinical 
255 COVID-19, 420 Typical Viral 

Pneumonia Img. 
Separate DB Hold-out ImageNet Supervised 

Converting to Grayscale, Grayscale 

Binarization, Background Area 

Filling, Reverse Color, Cropping To 

Obtain ROI Images 

COVID-19 from 

Non-COVID-19 
NA 

M-inception (Based on 

GoogleNet Inception-

V3) 

Softmax NA 

Acc=79.3,Spec=83, 

Sen=67,AUC=81,F1-Score 

= 63 

[115] CT-Scan Clinical 
51 COVID-19 Patients, 55 Patients 

with Other Diseases 
Separate DB Hold-out ImageNet Supervised NA NA 

Lung Lesion-

Oriented 

Method 

UNet++ (Based on 

ResNet-50) 
NA NA 

Acc=96,Spec=94, 

Sen=98,PPV=94.23, 

NPV=97.92 

[116] CT-Scan Clinical 
777 COVID-19, 505 Bacteria 

Pneumonia, 708 Normal Img. 
60%:10%:30% Hold-out ImageNet Supervised 

Lung Detection, Filling the 

Blank Area of Image with Its 

Rotational Lung Areas 

COVID-19 from 

Other 

Pneumonia 

NA 
DRENet (Based on 

ResNet-50 and FPN)  
NA Grad-CAM 

Pre=93,Recall=93, 

Acc=93,Spec=93, F1-

Score=93 

[117] CT-Scan Mosmed Dataset 1100 COVID-19, 1980 Normal Img. 1980-1100 NA ImageNet Supervised Resizing, Random Crops 
COVID-19 from 

Non-COVID-19 
NA ResNet-50 

Majority 

Voting 
NA 

Acc=96,AUC=90, 

Sen=100,Spec=96 

[118] CT-Scan COVID-CTx 324 COVID-19, 504 Normal Img. 60%:20%:20% 3-fold NA Supervised 

Resizing, Lung Segmentation, K-

means Clustering, Contrast 

Enhancement, Morphological 

Closing, Hole Filling, Data 

Augmentation 

COVID-19 from 

Non-COVID-19 

Lung Region-

Oriented 

Method 

AM-SdenseNet 

(classification), U-Net 

(Segmentation) 

Sigmoid NA 

Acc=99.18,Pre=99.32, 

Recall=98.97,F1-

score=91.14 

[119] CT-Scan 
Combination of 

Two Different DBs 

1601 COVID-19, 1626 Non-COVID 

Img. 
80%:20% Hold-out NA Supervised NA 

COVID-19 from 

Non-COVID-19 
NA 

EfficientNet and 

Convolutinal Block 

Attention Module 

(CBAM) 

SVM NA 

Acc=98, 

Pre=98,Sen=98, 

F1-score=98 

[120] CT-Scan 
Combination of 

Two Different DBs 

259 COVID-19, 171 Non-COVID-19 

Patients 
NA 10-fold 

DeepLesi 

LIDC-IDRI  
Supervised 

 Image Resize, Image Augmentation 

(Resizing, Random Flipping, 

Random Cropping, Color 

Distortions) 

COVID-19 from 

Non-COVID-19 
NA Prototypical Network Relu NA 

Acc=88.5,Pre=89.9, 

Recall=88.6,AUC=94.5 

[121] 
CT-Scan, 

X-ray 

Combination of 

Two Different DBs 

3065 COVID-19, 3065 Non-COVID 

Img. 
70%:30% NA NA Supervised Data Augmentation 

COVID-19 from 

Non-COVID-19 
NA ConvLSTM NA NA 

Acc=98.45,F1-

score=98.07,Mcc=96.81 

[51] 
CT-Scan, 

X-ray 

Combination of 

Two Different DBs 

2780 Bacterial Pneumonia, 1493 Viral 

Pneumonia, 231 COVID-19, 1583 

Normal Img. 

80%:20% NA ImageNet Supervised 
Intensity Normalization, CLAHE 

Method, DA, Resizing 

COVID-19 from 

Other 

Pneumonia 

Lung Region-

Oriented 

Method 

U-Net (Segmentation), 

Inception ResNetV2 

(Classification)                

MLP NA 

Acc=92.18,Sen=92.11, 

Spec=96.06,Pre=92.38, F1-

Score=92.07 
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The work carried out by Shazia et al. [16] states that applying deep learning techniques to 

radiological images for novel coronavirus identification has the potential to reduce the workload of 

medical practitioners and increase the accuracy and efficiency of COVID-19 diagnosis. In what follows, 

we discuss the reviewed articles on developing DL models for the early diagnosis of COVID-19 using 

medical images, and attempt to answer these research questions: What are the most commonly used 

DL techniques for COVID-19 detection using medical images? What challenges may we face during the 

deep neural network training process on chest images, and how can we cope with them? What are the 

advantages and disadvantages of each imaging modality in classification and segmentation tasks? 

5.1. Deep neural networks for COVID-19 diagnosis 

A revolution in image processing and machine vision has taken place with the advent of deep 

learning techniques [122]. Deep neural networks have been used in the domain of image processing to 

solve difficult problems including image classification, detection, and segmentation [123]. These 

networks eliminate the need for manual feature extraction. They have introduced the concept of end-to-

end learning by receiving annotated images as input and discovering the underlying patterns in each 

image class automatically [124]. A convolutional neural network can have hundreds of layers where 

each layer learns to detect different image features. DNNs have also achieved great success in 

analyzing medical images by providing high accuracy, stability, scalability, and efficiency [125]. They 

can provide Health professionals with more details about the internal organs and patient's tissues, and 

help physicians diagnose many types of disease, such as pneumonia, brain injuries, cancer, internal 

bleeding, and pneumonia, brain injuries, cancer, internal bleeding, etc [126]. Not only in medical image 

analysis for the diagnosis of such diseases but also during the recent COVID-19 pandemic, deep 

learning has proved its success [25]. Gaur et al. [127] give evidence on the successful application of 

deep learning techniques for COVID-19 infection detection. Their work confirms that deep machine 

vision models can be implemented in the healthcare sector to screen and detect COVID-19 from chest 

X-rays. Sethi et al. [128] also utilize different deep CNN architectures to provide doctors with diagnosis 

recommendations for COVID-19. They show that CNN-based architectures have the potential to 

diagnose COVID-19 disease using chest X-ray Images. 

A variety of deep neural networks developed for COVID-19 diagnosis purposes is shown in Figure 

11. This figure also shows which classifiers and how many times have been used in each DNN.  Due to 

using different datasets with different sizes and properties, a direct comparison between deep networks 
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considering performance metrics is not possible. However, based on our review, Res-Net and VGG are 

the most common networks used in classification tasks, and for segmentation tasks, various versions of 

U-Net deep neural networks have been utilized. 

 

Fig. 11. Number of times that each pair of DNNs and classifiers has been used in reviewed papers for COVID-19 diagnosis. 

Different experimental studies have proved good results of the state-of-the-art deep architectures 

VGG and ResNet for challenging recognition and localization problems such as image segmentation 

[129]. The main advantage of VGG architecture is its good generalization ability in new datasets [130]. 

In the 2014-ILSVRC competition, VGG became famous, despite being in 2nd place, due to its 

simplicity, homogenous topology, and increased depth [129]. On the other hand, ResNet can prevent 

the degradation problem of deep CNNs. This problem occurs when the accuracy gets saturated and 

quickly degrades with network depth increasing [131]. ResNet has shortcut connections that skip one or 

more layers and facilitate deep network training without adding extra parameters or computational 

complexity. ResNet also lets feature maps from the initial layers that usually include fine details easily 

propagate to the deeper layers [132]. 

It is clear also from Figure 11 that the majority of works have utilized the Softmax classifier in their 

models. As mentioned before, this classifier represents a probability distribution over class labels, and 

its output can be directly displayed. Besides, since output values are between 0 and 1, they can be 

directly fed into any other model without the need for normalization. 

It is worth mentioning that using different pre-processing approaches, diverse classifiers, applying 

the transfer learning method, and other techniques employed for compensating for data shortage could 

directly affect the results of DNNs. A sufficient number of clinically annotated data is critical for the 

training step. However, there are very few clinical datasets on COVID-19 which are publicly available 
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and these datasets contain a limited number of COVID-19 cases. Several reviewed studies [20,23,81–

87,105,39,47,53,76–80] have applied transfer learning and image preprocessing techniques such as 

image augmentation or used a combination of different datasets to overcome the COVID-19 data 

leakage and data imbalance problems and enhance their performance. However, these approaches 

may lead to high variance estimation of deep learning models’ performance during the test phase [133]. 

Since many of the COVID-19 prediction models are poorly reported, and at high risk of bias and model 

overfitting [134], more investigation will be needed to ensure the performance of these models in 

clinical use. 

5.2. Classification and segmentation techniques for COVID-19 diagnosis 

Figure 12 shows the total number of studies conducted in the field of segmentation and/or 

classification for diagnosing COVID-19 patients. Based on the results of this figure, most studies have 

only focused on the classification task. As mentioned before, we categorized COVID-19 classification 

approaches into two main classes named COVID-19 from Non-COVID, and COVID-19 from Other 

Pneumonia, which respectively refer to two-class and multi-class classifications. Although the 

differentiation of COVID-19 from other types of pneumonia is sometimes challenging, an equal number 

of studies have modeled the COVID-19 diagnosis problem as a two-class and multi-class classification 

task. Some researchers have also taken advantage of both classification and segmentation techniques 

to improve model accuracy. These models first extract the ROI (Region of Interest) of the image in the 

pre-processing phase and then search within the ROI region instead of the whole region. However, 

most classification works have preferred to process the whole of the image rather than the ROI region. 

The main reason is that annotating COVID-19 medical images for a segmentation task is difficult and 

time-consuming for clinicians. 

5.3. Imaging modalities for COVID-19 diagnosis 

The most common imaging modalities for COVID-19 infection identification are CT scan, Lung 

Ultrasound (LUS), and Chest X-ray radiography. The chest X-ray is low cost, easy to perform, and has 

low radiation. It also is fast and immediately available for radiologist analysis; the last feature has made 

it one of the first imaging modalities during the COVID-19 pandemic [135]. Nevertheless, it has limited 

sensitivity in detecting lung lesions in the early stages of infections [136]. While the Chest CT, being a 

rapid imaging procedure, may be more sensitive and accurate for the early diagnosis of COVID-19, it 
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exposes patients to more radiation than typical X-rays. Moreover, it is time-consuming for radiologists 

to diagnose COVID-19 from CT-scan images (about 21.5 minutes for experienced ones).  After each 

patient, CT scanners will need to be sanitized which is a time-consuming, tedious, and expensive 

process [137,138].       

 

Fig. 12. Total number of research works conducted in 

COVID-19 classification and segmentation, and number of 

studies done in each sub-class. 

 

Fig. 13. Total number of studies conducted on each 

modality, and number of classification and segmentation 

works done for each modality.  

Compared to the other two modalities, chest ultrasound is low-cost and radiation-free. It can 

accurately detect the location of objects in real-time and be applied to different lung diseases [139]. 

Ultrasound has a low false-negative rate in COVID-19 diagnosis [140]. All COVID-19 abnormalities 

which are visible in CT scan images are also presented on ultrasound images just as clearly [141].  Its 

accuracy in identifying lung pathologies is better than Chest X-ray, it also is portable, safe, non-

invasive, repeatable, and easy to use [136]. However, it shows low sensitivity in comparison to chest X-

rays, and it cannot detect deep and intrapulmonary lesions [142]. 

In the absence of a CT scan, a chest MRI could be recommended for suspected or confirmed 

COVID-19 patients. Although MRI has low anatomic resolution and is in danger of inevitable artifacts 

because of breathing motion, its ability to visualize variations in lung structure is constantly evolving 

[143].  

Some other imaging techniques have also been utilized for the COVID-19 diagnosis such as 

Hyperspectral Imaging (HSI), Scanning Electron Microscopy (SEM), and Positron Emission 

Tomography (PET). HSI is a medical imaging technique that offers noninvasive disease diagnosis. HSI, 

also known as Imaging Spectroscopy, can capture spectral information for multiple wavelengths at 
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each image pixel [144]. The maximum contrast in hyperspectral imaging is related to the maximum 

particle concentration [145]. The main disadvantages of hyperspectral imaging are its cost and 

complexity. To analyze hyperspectral data, fast computers, sensitive detectors, and large data storage 

capacities are required.  

SEM is a powerful tool for infectious disease diagnosis and scans the sample surface morphology 

by bright focused electron beam emission [146]. It can produce high-resolution and high-quality images 

that reveal complex and delicate structures. However, it has several cons. In this technique, samples 

must always be in a vacuum, so this technique cannot be used for live specimens. Electron 

microscopes are large and need plenty of space in a laboratory. They also are high-sensitive and could 

be affected by magnetic fields and vibrations of other lab equipment. Artifacts may be present in SEM 

images and need to be avoided [147].  

PET is a type of nuclear medicine imaging. It applies a small amount of radioactive material to 

visualize and measure variations in metabolic processes. This non-invasive approach can display very 

early changes in the cells. Despite the advantages of the PET approach, it is not a routine examination 

for COVID-19 diagnosis because of its low global accessibility, high inspection cost, complex scanning 

procedures, and concurrent risks of virus spreading. 

 Considering the importance and the role of CT and X-ray chest images in diagnosing COVID-19 

patients, our review has investigated machine vision-based techniques developed in the literature for 

the early diagnostics of COVID-19 and other types of pneumonia using these imaging modalities. 

Figure 13 illustrates the total number of research works reviewed for each one. It also shows the 

number of classification and segmentation tasks conducted for each modality. As one can see, most 

researchers have selected to work on the X-ray modality. Also, the combination of CT-Scan and 

segmentation in the diagnosis of COVID-19 patients is more common than X-ray and segmentation. 

The reason is that CT-Scan produces a 3D view of the chest region and allows for a more detailed view 

compared to X-ray. Most X-ray modality-based studies have focused on classification for COVID-19 

diagnosis, which is a less challenging task. 

6. Challenges 

Deep learning approaches require a large amount of data to build a robust predictive model. 

However, COVID-19 is a new infectious disease, and the lack of large-scale labeled data is the main 

challenge in this area. It might lead to overfitting and reduce the accuracy of DL-based models. To 
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overcome this challenge, a majority of works [23,39,53,76–87] have combined several public datasets 

to compensate for the scarcity of well-annotated datasets of appropriate size. However, duplication of 

images across these datasets is a potential risk during data combination tasks. 

Transfer learning is another technique to cope with overfitting and data shortage problems. It is 

more likely to have a more accurate model by fine-tuning the pre-trained model than training the model 

from scratch on a small dataset [79,80,148]. Some studies [20,47,49,51,82,115] have used transfer 

learning to effectively train models on relatively small labeled datasets in COVID-19 segmentation 

tasks. However, they have mostly applied deep neural networks pre-trained on the ImageNet dataset 

which includes images that are entirely different from chest images. A small number of segmentation 

tasks have also used chest images with pseudo labels for the pre-training stage [47]. Preparing noisy 

labels for the segmentation task is much easier than obtaining clean annotations at the pixel level. 

Consequently, some research works have attempted to develop a framework to learn from noisy label 

images [46].  

Class imbalance is another main issue in COVID-19 diagnosis since the number of data related to 

COVID-19 is much less than other pneumonia diseases. Several works [23,39,69,71,72,102,105] 

applied data augmentation methods to compensate for the small COVID-19 datasets and avoid 

unbalancing data problems. Also, some researchers [23,77,81,87] used the Generative Adversarial 

Network (GAN) framework in the pre-processing phase to generate synthetic images to deal with this 

problem.   

Most of the COVID-19 images compress into Non-DICOM formats leading to quality loss. Since the 

quality of public health information is essential for health monitoring, the lack of image quality remains a 

challenge in the COVID-19 diagnosis problem. The work carried out by Harmon et al. [99] has 

reconstructed CT images by super-resolution technique to achieve better accuracy. This technique 

improves the accuracy of algorithms by making enhanced images with higher contrast. 

Generally, lung segmentation can improve the accuracy of a classification task and reduce 

misdiagnosis [149]. As mentioned before, we grouped the COVID-19 segmentation approaches into 

two main categories, named the lung-region-oriented methods and the lung-lesion-oriented methods. 

Lesion detection is a challenging task in the medical imaging area as the lesion size is small in 

comparison to the whole lung size. In addition, the shape of lesions and their texture and location are 

very diverse. Most works [110,150–152] applied U-Net architecture or Attention-based U-Net to 
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segment lesions and lung regions in COVID-19 automatic detection tasks. Another challenging task is 

to discriminate COVID-19 from other types of viral pneumonia since COVID-19 is similarly caused by 

an infective agent. Several DL-based models have been developed in the literature to distinguish 

between them [53,70].  

7. Recommendations  

The awareness and knowledge of the different clinical features of COVID-19 are essential in the 

early diagnosis and management of the recent pandemic. Some studies were conducted to compare 

the clinical presentations of COVID-19 patients versus patients infected with other types of pneumonia 

[153–157]. Researchers found that considering a combination of information such as background and 

clinical findings of patients, the duration of the symptoms, ancillary imaging findings, and follow-up CT-

Scan imaging when needed would be helpful in the differential diagnosis [154]. Based on this, we 

strongly recommend developing DL-based models that utilize clinical text data, as well as CT and X-ray 

images to provide a more accurate diagnosis of COVID-19. While many DL-based techniques have 

been proposed in the literature for detecting COVID-19 patients based on X-ray images, CT-scan 

images, or both, less work is being done on diagnosis and prediction using clinical text data. Moreover, 

to the best of our knowledge, there is no research work in the literature focusing on COVID-19 

diagnosis based on both medical images and textual data. 

As we mentioned before, dealing with small-size datasets is the main challenge in the COVID-19 

diagnosis area which can lead to overfitting and reduce the model generalization performance. 

Researchers may address this problem through various model enhancement and data generation 

techniques. Since more complex models with more hyper-parameters are more overfitting-prone than 

shallower ones, the adaptation of model complexity to the complexity of data can help researchers 

overcome the issue of overfitting [158]. Another effective way to have more accurate predictions is 

combining the results of multiple models, which is called ensemble learning [159]. This approach 

involves several individual models combined in some way such as weighted averaging, and voting. The 

ensemble model obtains better generalization performance compared to any of the individual models.  

Data imbalance is another main issue in diagnosing COVID-19 patients which can undermine model 

predictability. The oversampling methods can alleviate both data scarcity and data imbalance problems 

[160]. One approach to oversampling is generating synthetic samples using augmentation techniques 

such as GAN. 
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8. Conclusion 

COVID-19 has spread dramatically in a short time around the world. The SARS-CoV-2 infection 

causes symptoms from weak to severe in different people, and to date, more than 6.5 million deaths 

have been reported to WHO (https://covid19.who.int). Early diagnosis of COVID-19 can help to prevent 

the spread of this pneumonia, and save many lives. Although the standard test for COVID-19 diagnosis 

is RT-PCR, this test is time-consuming, and it is possible to show false-negative results [161]. 

Therefore, many researchers applied deep learning models to detect COVID-19 in the early stage using 

X-ray and CT images. Chest imaging has a useful role in the detection and management of COVID-19, 

even in the early stage of the disease. It helps in suspected patients’ identification, Breaking the 

disease transmission chain, and preventing the further spread of infection [115]. Deep learning 

approaches can extract rich features from chest images. They are capable of interpreting medical 

images and distinguishing different types of pneumonia. Physicians can predict COVID-19, estimate its 

severity, and extract and interpret the infected region by the data extracted from these networks [67]. 

During the course of this study, we have undertaken a comprehensive review of some 60 papers 

that have appeared in the literature on the subject of deep learning-based COVID-19 segmentation and 

classification using X-ray and CT images. We reported the informative details of each model proposed 

in the reviewed papers. We also listed the public datasets for diagnosing COVID-19 patients and 

provided several charts summarizing various techniques used in the different phases of developing a 

DL-based diagnostic model for COVID-19. 

Finally, we discussed the challenges in the research on COVID-19 diagnosis based on medical 

imaging. We found that the reviewed models are at high risk of bias especially because of the 

overfitting problem, and their generalization performance is therefore unreliable. Consequently, none of 

these models are recommended for clinical use. Since the scarcity of large-scale public annotated 

datasets is one of the main challenges leading to overfitting, the compilation, curating, and sharing of 

well-annotated datasets is urgently needed in order to develop and validate more accurate models for 

diagnosing COVID-19.  
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