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Abstract

Background The cyclic AMP-Protein Kinase A (cAMP-PKA) pathway is an evolutionarily conserved signal transduction
mechanism that regulates cellular growth and differentiation in animals and fungi. We present a mathematical model
that recapitulates the short-term and long-term dynamics of this pathway in the budding yeast, Saccharomyces
cerevisiae. Our model is aimed at recapitulating the dynamics of cAMP signaling for wild-type cells as well as single
(pde1� and pde2�) and double (pde1� pde2�) phosphodiesterase mutants.

Results Our model focuses on PKA-mediated negative feedback on the activity of phosphodiesterases and the Ras
branch of the cAMP-PKA pathway. We show that both of these types of negative feedback are required to reproduce
the wild-type signaling behavior that occurs on both short and long time scales, as well as the the observed responses
of phosphodiesterase mutants. A novel feature of our model is that, for a wide range of parameters, it predicts that
intracellular cAMP concentrations should exhibit decaying oscillatory dynamics in their approach to steady state
following glucose stimulation. Experimental measurements of cAMP levels in two genetic backgrounds of S. cerevisiae
confirmed the presence of decaying cAMP oscillations as predicted by the model.

Conclusions Our model of the cAMP-PKA pathway provides new insights into how yeast respond to alterations in
their nutrient environment. Because the model has both predictive and explanatory power it will serve as a
foundation for future mathematical and experimental studies of this important signaling network.
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Background
In eukaryotic cells, the cyclic adenosine monophosphate
(cAMP) – Protein Kinase A (PKA) pathway plays a cen-
tral role in mediating diverse biological responses such as
growth, development, and cell differentiation [1,2]. Stim-
uli such as hormones, neurotransmitters, nutrients, and
physiological stress agents trigger signaling cascades that
collectively mount a response through cAMP-mediated
PKA signaling [3-9]. In the budding yeast, Saccharomyces
cerevisiae, activation of PKA in response to essential
nutrients and fermentable carbon sources is directed by
intracellular levels of cAMP [10]. Synthesis of cAMP
from ATP is catalyzed by the enzyme adenylate cyclase
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(Cyr1) and governed by two different G-protein systems
(Figure 1) [10-12]. Ras2, a small GTP-binding protein, in
its GTP-bound (active) state stimulates adenylate cyclase,
causing a rapid increase in intracellular cAMP levels
(Figure 1, top right) [11]. Ras2 activity is positively regu-
lated by the guanine nucleotide exchange factors (GEFs)
Cdc25 and Sdc25 as a function of intracellular glucose lev-
els [13-20]. Conversely, GTPase activating proteins, Ira1
and Ira2, down regulate Ras2 activity by stimulating the
hydrolysis of GTP [21,22]. In parallel to Ras, a second
G-protein pathway, involving the proteins Gpr1, Gpa2,
and Rgs2, responds to extracellular levels of glucose and
increases adenylate cyclase activity (Figure 1, top left).
Gpr1 is a membrane bound G-protein coupled receptor
that activates the Gα protein Gpa2 in response to extracel-
lular glucose levels. The GTP bound form of Gpa2 in turn
stimulates adenylate cyclase activity [12,20,23,24]. cAMP
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Figure 1 Key interactions of the cAMP-PKA pathway in yeast. See the main text and Additional file 1: Supplementary Model for descriptions of
each reaction. Arabic numerals refer to equations in the Additional file 1: Supplementary Model that describe each reaction. The key interactions in
the model presented here are depicted with red lines.

synthesis through this pathway is negatively controlled by
Rgs2, the GTPase activating protein of Gpa2 [25,26]. An
increase in cellular cAMP levels upon glucose induction
activates cAMP-dependent PKA. PKA is a holoenzyme
that includes both regulatory (Bcy1) and catalytic sub-
units (Tpk1, Tpk2 and Tpk3) [27,28]. cAMP binding to
the regulatory subunits leads to the release of the catalytic
PKA subunits ([29]; Figure 1, bottom) which are then free
to interact with downstream targets such as metabolic
enzymes, transcription factors and other kinases [30-33].

Downstream of the adenylate cyclase, cAMP levels are
modified by the action of phosphodiesterases, enzymes
that catalyze the conversion of cAMP to AMP, thus pre-
venting cAMP accumulation in the cell [34,35]. In yeast
there are two phosphodiesterases, the low-affinity phos-
phodiesterase Pde1 and the higher affinity Pde2. Pde2
is a class II phosphodiesterase and shares homology

with other eukaryotic phosphodiesterases [36], while Pde1
homologues have been identified in only a small number
of eukaryotes [35]. The high-affinity Pde2 is thought to
play the key role in maintaining cAMP at steady state lev-
els [37]. The role of Pde1 is less well understood, though
genetic studies in both S. cerevisiae and the distantly
related yeast Candida albicans suggests that Pde1 is a tar-
get of PKA, and that PKA-mediated feedback on Pde1 is
an important component of maintaining tight regulation
of cAMP levels [35,38].

In this study we present a mathematical model of the
cAMP-PKA pathway in Saccharomyces cerevisiae. The
primary goal of this model is to explain the observed
response of wild-type cells and PDE mutants (pde1�,
pde2�, and pde1� pde2�) to glucose stimulation. Wild-
type cells exhibit a rapid, transient increase in cAMP
levels followed by a quick return to a new steady state;
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this response typically occurs on a time scale of 60-90
seconds [35]. pde2� mutants have approximately wild-
type dynamics, while pde1� mutants exhibit elevated
peak cAMP levels and a slow return to a steady state
that is higher than that of wild-type cells. Surprisingly,
the double phosphodiesterase mutant, pde1� pde2�,
shows no response to glucose stimulus, and main-
tains cAMP concentrations at essentially a pre-stimulus
steady state [35]. The question we posed was whether
it was possible to mathematically reconcile all of these
observed dynamics with currently known genetic and
biochemical interactions. Our model focuses on PKA-
mediated negative feedback interactions, and suggests
that feedback on both phosphodiesterases and on the
Ras branch of the pathway are important for reproduc-
ing the dynamics observed in wild-type cells and PDE
mutants.

While a number of studies have proposed mathematical
models for the cAMP-PKA network in yeast [39-41], none
of these previous models is capable of recapitulating the
observed dynamics of both wild-type cells and the double
phosphodiesterase mutant (pde1� pde2�). Our proposed
model is thus unique in this aspect. Another notable fea-
ture of our model is that, for a wide range of parameters,
it predicts the presence of decaying cAMP oscillations fol-
lowing glucose stimulus. Oscillatory behaviors were not
an explicit goal of our initial modeling effort, and thus we
treated this as a novel model prediction. We tested this
prediction by measuring the cAMP response to glucose
stimulus in two genetically diverse yeast strains (S288c
and �1278b). Our experiments reveal variation in oscil-
latory behaviors between these genetic backgrounds, and
we demonstrate that our model, in turn, is capable of
reproducing the diversity of observed oscillatory patterns.
Finally, our core model can also be easily extended to gen-
erate sustained cAMP oscillations that occur on longer
time scales (tens of minutes; [42]). The results presented
here thus demonstrate both the descriptive and predictive
power of the model we have developed, and suggest that
this model can serve as a basis for future experimental
and modeling studies of this important eukaryotic signal
transduction pathway.

Summary of motivating experiments
There is a large body of experimental work that provides
information on genetic and biochemical interactions rele-
vant to the cAMP-PKA pathway. The strategy we adopted
in this study was to use this body of work as a basis
for constraining interactions in our model. In particu-
lar our model was developed to understand two specific
experimental results: the short-term dynamics of cAMP
following glucose stimulation reported by Ma et al. [35];
and the long-term dynamics of cAMP under various stress
levels reported by Garmendia-Torres et al. [42].

Short-term cAMP dynamics
Ma et al. [35] investigated the short-term behavior of
cAMP signaling following glucose stimulation in cells
that had previously been grown under carbon-source
limitation. These data therefore represents the dynam-
ics of cAMP signaling as cells transition from starved
to fed states, on a time scale of seconds to minutes.
Ma et al.’s analysis focused particularly on PKA-mediated
negative feedback involving the phosphodiesterases Pde1
and Pde2. Figure 2 summarizes the five dynamic pat-
terns we consider here, based on Ma et al.’s experiments
involving wild-type cells and various phosphodiesterase
mutants (compare to Ma et al. Figures 2a and 3a). These
cases are:

Case 1: Wild-type (wt; blue line) – the concentration of
cAMP in wt cells rapidly increases following
glucose stimulation. After reaching a peak level,
the concentration of cAMP declines to a new
steady state that is higher than its initial
concentration. We refer to this as the wild-type
transient response.

Case 2: Pde1 knockout (pde1�; red line) – the
concentration of cAMP exhibits a much larger
and longer transient response, about four times
as large as the transient response exhibited by
wild-type.

Case 3: Pde2 knockout (pde2�; green line) – the
concentration of cAMP exhibits similar
dynamics to wild-type.

Case 4: Pde1 phosphorylation mutant (pde1 ala152; pink
line) – the cAMP transient response is about
twice as large as that exhibited by wild-type.

Case 5: Double PDE knockout (pde1� pde2�; black
line) – glucose stimulation has no effect on the
concentration of cAMP present in the cytosol.
The initial value in this case is much larger then
the wild-type initial value.

These results are surprising in two ways: 1) the dynam-
ics observed in the pde2� mutant are almost the same as
those observed in wild-type cells, while the response in
the pde1� mutant is drastically different, despite the fact
that Pde2 is thought to be the higher affinity phospho-
diesterase; and 2) in the double mutant (pde1� pde2�)
glucose stimulation has no effect on the concentration
of cAMP, indicating a synergistic interaction between the
PDE null-alleles.

Long-term cAMP dynamics
Garmendia-Torres et al. [42] focused on the long-term
behavior of cAMP signaling in yeast exposed to stress
conditions. They predicted sustained oscillations, with a
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Figure 2 cAMP dynamics following glucose stimulus as described by Ma et al. wild type (blue); pde1� (red), pde2� (green),
pde1ala152(pink), pde1� pde2� (black) .

period of 5-10 minutes, in the concentration of cAMP
at intermediate stress levels. This prediction was moti-
vated by oscillations observed in the nucleocytoplasmic
shuttling of the transcriptional activator Msn2. Msn2 is
negatively regulated by the cAMP-PKA pathway through
phosphorylation of Msn2 by PKA; this phosphoryla-
tion promotes export of Msn2 from the nucleus [43].
Garmendia-Torres et al. predicted that the nucleocyto-
plasmic shuttling of Msn2 that they observed was driven
by oscillations in the concentration of cAMP, and they
constructed a mathematical model to explore the pro-
posed dynamics. In their model, high levels of stress
drive the concentration of cAMP to a low steady state,
and at low stress levels the cAMP levels go to a high
steady state. Only under intermediate levels of stress did
cAMP oscillations occur. This oscillatory behavior in their
model was driven by PKA-mediated negative feedback on
Ras·GTP.

Mechanisms of PKA-mediated negative feedback on cAMP
signaling
Both sets of observations described above suggest that
PKA plays an important role in attenuating cAMP sig-
naling via negative feedback interactions. PKA-mediated
negative feedback on cAMP signaling has been proposed
to occur at two levels – via enhancement of phosphodi-
esterase activity and via attenuation of Ras signaling.

PKA interactions with Pde1 are supported by experi-
ments by Ma et al. that showed that mutagenesis of a
putative PKA phosphorylation site in Pde1 (pde1ala152)

causes a dramatic increase in cAMP accumulation
(Case 4, Figure 2). There is less direct evidence for PKA
interactions with Pde2 but other class II phosphodi-
esterases are known to be targets of PKA [36]. Hu et al.
[44] showed that hyperactive PKA activity leads to ele-
vated Pde2 levels, and that this resulted from increased
protein stability of Pde2.

The observation that cAMP signaling did not signifi-
cantly change in the pde2� mutant might seem to suggest
that Pde2 plays no role in regulating cAMP immediately
following glucose stimulus. However, the cAMP transient
in the pde1� mutant, and the synergistic effect observed
in the pde1� pde2� double mutant, argue for a role for
Pde2, though with a slower activation rate as compared
to Pde1. However, while we favor the hypothesis of PKA
feedback on both PDEs, we can not rule out the possibility
that the transient cAMP dynamics observed in the pde1�

mutant might involve other feedback mechanisms.
With respect to Ras signaling, one or more elements

of this pathway may be targets of PKA-mediated feed-
back. For example, Ira1 and Ira2 both have predicted
PKA phosphorylation sites [12,45]. Similarly, PKA hyper-
phosphorylates Cdc25, causing its dissociation from
the adenylate cyclase/Ras2 complex. Cdc25 may also
directly bind to the adenylate cyclase to facilitate mem-
brane anchoring [46-48]. Re-localization of Cdc25 to the
cytoplasm attenuates the glucose response of adenylate
cyclase, inhibiting synthesis of cAMP [49,50]. More-
over, membrane dissociated Cdc25 can no longer acti-
vate Ras2, triggering an increase in Ras·GDP levels [4].



Gonzales et al. BMC Systems Biology 2013, 7:40 Page 5 of 16
http://www.biomedcentral.com/1752-0509/7/40

Ma et al. suggested that the likely explanation for the pat-
tern they observed in the pde1� pde2� double mutant
(no change in cAMP levels after glucose stimulation)
resulted from constitutively high PKA feedback inhibition
in the absence of the phosphodiesterases.

In summary, both studies described above suggest that
PKA down regulates cAMP signaling by increasing the
rate of PDE mediated decay and/or by decreasing the
rate of cAMP production via interactions with the Ras
effectors. Thus a key goal of our modeling effort was
to explore PKA feedback on phosphodiesterase activity
and the Ras pathway. In our model PKA interacts with
both PDEs to increase their activity, though we assume
PKA has a higher affinity for Pde1 than for Pde2. Sim-
ilarly, we model negative feedback on Ras·GTP through
PKA phosphorylation of the Ras-GTPases Ira1 and Ira2.
These interactions are highlighted by the red arrows in
Figure 1.

Model
To fully describe the key reactions of the cAMP-PKA
pathway as depicted in Figure 1 requires a system of
nine time-dependent differential equations to model the
concentrations of: 1) Gpa2·GTP (active Gpa2); 2) Cdc25;
3) Ras·GTP-ases Ira1 and Ira2; 4) Ras·GTP (active Ras2);
5) adenylate cyclase activity; 6) activated Pde1; 7) acti-
vated Pde2; 8) cAMP; and 9) active PKA (free catalytic
subunits). The full nine-dimensional system is described
in detail in Additional file 1: Supplementary model
(Equations (S1)-(S9)).

For the purposes of exposition, we first describe the
motivation behind the equations that represent PKA
mediated feeedback. We then describe a simplification of
the model to a four-dimensional system that replicates the
key dynamical behaviors of cAMP signaling as described
above.

Key reactions for PKA-mediated feedback
PKA feedback (red arrows in Figure 1) in our model
occurs in three ways: (i) PKA phosphorylates Pde1,
enhancing Pde1 breakdown of cAMP; (ii) PKA phospho-
rylates Pde2, enhancing Pde2 breakdown of cAMP; and
(iii) PKA phosphorylates the Ras·GTP-ases Ira1 and Ira2.
In Cases (i) and (ii), PKA inhibits the concentration of
cAMP by enhancing the breakdown of cAMP. In Case
(iii) PKA inhibits the production of cAMP by inactivating
Ras·GTP.

We assume that there are much greater concentra-
tions of Pde1, Pde2, Ira1 and Ira2 in the cytoplasm than
of PKA. We also assume that Pde1, Pde2 and Ira1/2
compete with each other for activation by PKA. We fur-
ther assume that Ira1 and Ira2 can be simultaneously acti-
vated by PKA, thus we treat them as a single variable, Ira.

These assumptions are taken in order to understand the
Ma et al. cases. The three competitive reactions are spec-
ified as follows:

[ Pde1]+[ PKA]
k1�

k−1
[ Pde1 :: PKA]

Rp1→[ Pde1∗] +[ PKA]

[ Pde2]+[ PKA]
k2�

k−2
[ Pde2 :: PKA]

Rp2→[ Pde2∗] +[ PKA]

[ Ira]+[ PKA]
kz�

k−z
[ Ira :: PKA] Rz→[ Ira∗] +[ PKA]

Here the asterisk (∗) indicates the activated or phos-
phorylated form of the enzyme. Here and below, PKA
refers the catalytic subunits (Tpk1, Tpk2, or Tpk3).
Equations (1)–(3), below, model the velocities of these
reactions using an extension of Michaelis-Menten kinetics
[51] that allows for competition between Pde1, Pde2 and
Ira for PKA.

d
dt

[ Pde1∗] :
Rp1 [ Pde1] [ PKA]

�p1+[ Pde1] +�p1
�p2

[ Pde2] +�p1
�z

[ Ira]
(1)

d
dt

[ Pde2∗] :
Rp2 [ Pde2] [ PKA]

�p2+[ Pde2] +�p2
�p1

[ Pde1] +�p2
�z

[ Ira]
(2)

d
dt

[ Ira∗] :
Rz[ Ira] [ PKA]

�z+[ Ira] + �z
�p1

[ Pde1] + �z
�p2

[ Pde2]
(3)

In order for the model to replicate the dynamics
observed by Ma et al. [35] (Figure 2) we impose the follo-
wing conditions:

Condition (a) The following inequalities must hold:

�p1[ Pde2]
�p2[ Pde1]

� 1

�p2[ Ira]
�z[ Pde2]

� 1

Condition (b) In comparing analogous reactions of
Pde1 and Pde2, the reactions of Pde2 are
uniformly slower.

Condition (c) PKA rapidly phosphorylates Ira.

By invoking Condition (a), the effect of Pde2 is negli-
gible when Pde1 is active. This assumption is justified by
the observation that the dynamics of cAMP signaling fol-
lowing glucose stimulus are essentially unchanged in the
pde2� mutant. By invoking Condition (b) we can model
both Pde1 and Pde2 with a single equation (for details
and derivation see the Additional file 1: Supplementary
Model). Condition (b) is justified by the large transient
cAMP signal observed in the pde1� mutant. Neither
Condition (a) nor (b) are required to reproduce the
behavior of the wild-type or mutant strains, but are
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mathematically convenient for exploring the model ana-
lytically as described below.

Condition (c) reflects negative feedback on the Ras
branch of the pathway. We impose Condition (c) so that
even when PKA’s phosphorylation of Ira is slowed by the
presence of either Pde1 or Pde2, by Condition (a), the
effect of PKA on Ira can not be ignored. In the double
mutant case (pde1� pde2�) the loss of competitive inhi-
bition of PKA greatly enhances PKA’s effect on Ira. Thus
in the double mutant case PKA has a strong negative effect
on Ras·GTP. Several studies have provided experimental
support for a role of the Ira proteins in negative feedback
on cAMP signaling [21,22] as well as evidence that this
feedback is regulated by PKA [52].

Steady state assumptions
The model may be further simplified by assuming that
the following four reactions are fast and hence proceed to
steady state.

1. Gpa2·GDP � Gpa2·GTP (reaction 1 in Figure 1).
2. Activation/inactivation of Cdc25 (reaction 2 in

Figure 1).
3. Activation/inactivation of adenylate cyclase (reaction

5 in Figure 1).
4. cAMP+[Bcy1::PKA] � [cAMP::Bcy1] +PKA

(reaction 9 in Figure 1).

Again, these steady state assumptions are made for
mathematical simplicity, and are not a requirement to
mathematically reproduce wild-type or mutant signaling
dynamics. We will only focus on the last of these steady
state assumptions, for the rest we refer the reader to the
Additional file 1: Supplementary Model. We assume that
PKA activates rapidly, that is we assume that the concen-
tration of active PKA can be treated as being at steady
state. This assumption was taken for mathematical sim-
plicity of the model, it is not a necessary condition to
numerically replicate the dynamics observed by either Ma
et al. or Garmendia-Torres et al. In our model PKA feed-
back plays a central role, thus we will examine this steady
state condition in detail. In the cAMP-PKA pathway PKA
is activated by cAMP in the following manner: four cAMP
molecules bind to two regulatory subunits (Bcy1) and
release two catalytic subunits, creating the active form
of PKA.

4[ cAMP]+[ 2Bcy1 ::PKA]
kb�
kf

[ 4cAMP:: 2Bcy1]+[ 2PKA∗]

When modeling this reaction we can simplify this in
two ways: 1) by assuming that the concentration of active
PKA does not approach its maximum; and 2) by approx-
imating the 4 to 2 ratio by a 2 to 1 ratio. Applying this
simplification we can model the change in PKA activity

as proportional to cAMP squared (x2); thus in Equations
(4a)–(4d) (below) x2 represents PKA feedback (for full
details see the Additional file 1: Supplementary Model).

Simplified model
Combining feedback Conditions (a), (b), and (c) with
the four steady state assumptions, and by modeling both
forms of PDE with a single case dependent variable, p, we
reduce the nine-dimensional model shown in Figure 1 to
the simpler four-dimensional model depicted in Figure 3.
The model in Figure 3 is described by the following system
of equations:

Ras :
dr
dt

= A(1 − r)
�1 + 1 − r

− Bzr
�1 + r

(4a)

Ira :
dz
dt

= N(x2 − z) (4b)

Pde :
dp
dt

= M(x2 − p) (4c)

cAMP :
dx
dt

= C + Gr − D0x − Dpx
� + x

(4d)

In Equations (4a)–(4d) and in Figure 3 the concentration
of Ras·GTP is represented by variable r; the concentration
of Ras·GDP is represented by (1 − r); the concentrations
of Ira1 and Ira2 are represented by z; the variable p rep-
resents the concentration of Pde1 in Cases 1, 3, and 4 (wt,
pde2�, and pde1ala152) and the concentration of Pde2 in
Case 2 (pde1�); the concentration of cAMP is represented
by x; as stated above x2 represents the concentration of
active PKA; and time is given by variable t. All vari-
ables have been nondimensionalized. The constants in
Equations (4a)–(4d) are nondimensional composites of
dimensional parameters of the full system, derived in the
Additional file 1: Supplementary Model. Intuitively, A is
the activation rate of Ras·GTP catalyzed by Cdc25; B is the
inactivation rate of Ras·GTP catalyzed by Ira1 and Ira2;
�1 is the affinity of both Cdc25 and Ira1/2 for Ras·GTP;
N is the reaction rate of Ira1 and Ira2; M is the quantita-
tive expression of Condition (b); C is the production rate
of cAMP due to the basal activity of adenylate cyclase; G
accounts for the glucose, normalized so that G = 1 after a
glucose stimulus is applied; D0 represents a “basal” decay
rate of cAMP in the absence of activated Pde; D represents
enhanced decay due to PKA feedback on Pde modified by
�, the affinity of activated Pde for cAMP.

Results
In this section we examine analytical, numerical, and
experimental results motivated by our model of the
cAMP-PKA pathway. We show that the simplified version
of the model, given by Equations (4a)–(4d), can adequately
replicate the short-term dynamics of cAMP, reported by
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Figure 3 Key interactions of the cAMP-PKA pathway in yeast modeled by Equations (4a)–(4d).

Ma et al. [35] for wild-type cells and all three phospho-
diesterase mutants (pde1�, pde2�, pde1� pde2�). For
the wild-type case we analyze the behavior of the sys-
tem as it approaches steady state and find that for a
wide range of parameters the model predicts that cAMP
levels should exhibit decaying oscillations. Since oscilla-
tory behavior was not an explict input into our mod-
eling effort, we considered this a novel prediction, and
undertook an experimental validation of the model using
time series measurements of cAMP signaling for two
diploid yeast strains. As predicted by the mathematical
model we observed decaying cAMP oscillations follow-
ing glucose stimulation. We then extended the model to
consider longer-time scale, sustained cAMP oscillations
(5-10 minute periods) in response to nutrient stress, as
predicted by Garmendia-Torres et al. [42]. We show that
the core model can also reproduce sustained oscillations
on this longer time scale, and we discuss the model param-
eters and the corresponding biochemical interactions,
that are required to generate such sustained oscillations.

Short-term dynamics
Our first task is to demonstrate that Equations (4a)–
(4d) can adequately replicate the dynamics of cAMP
signaling immediately following glucose stimulation, for
both wild-type cells and mutants lacking either one or
both phosphodiesterases. Figure 4 shows the modeled
concentration of cAMP as a function of time, follow-
ing glucose stimulation of wild-type and PDE mutants.

This outcome was generated using the parameter choices
given in Tables 1 and 2. The dynamical patterns gen-
erated by the model are a good match to those illus-
trated in Figure 2. The dimensional concentrations in
the figure were obtained by multiplying x in Equations
(4a)–(4d), the dimensionless variable representing cAMP
concentrations, by 24.95 fmol · 10−6 cells; and multiplying
time, given by dimensionless variable t, by .038 minutes.
These scale factors emerge from the discussion in the
Additional file 1: Supplementary Model. Initial conditions
were the steady-state concentrations that occur under
glucose starved conditions.

Note that the numbers in columns of Table 1 that repre-
sent the wild-type and pde2� backgrounds are identical.
Because of Condition (a) above, when Pde1 is present,
the effect of Pde2 is negligible. Thus, the values in these
columns of the table characterize properties of Pde1. Sim-
ilarly, the values in the pde1� column characterize prop-
erties of Pde2. In the case of pde1ala152 both the activation
and inactivation rate of Pde1 decrease, but the affinity of
Pde1 for cAMP (�) does not change. The value of B is
increased in the double PDE knockout because, by Con-
dition (a), when both forms of PDE are eliminated the
effect of PKA on Ira1/2 is greatly enhanced. As men-
tioned above, the dimensionless parameters in Equations
(4a)–(4d) are composites of dimensional parameters. In
choosing dimensional parameters we used values given by
Garmendia-Torres et al. [42] when available. Moreover,
the parameters determined by fitting the model also lie in
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Figure 4 Numerical simulations under the simplified model Equations (4a)–(4d), fit to the data of Ma et al (Parameters as given in
Tables 1 and 2). The corresponding genotypes are as in Figure 2. The wt and pde2� cases overlap each other in this figure.

biologically appropriate ranges. We refer to the Additional
file 1: Supplementary Model for the details of the fitting
process.

An intuitive explanation for the behavior of wild-type
cells is that the transient cAMP peak is due to the
delay between the increase of adenylate cyclase activity
and PKA mediated enhancement of phosphodiesterase
activity. Activation of adenylate cyclase activity increases
cAMP concentrations, leading to the release of PKA cat-
alytic subunits. PKA in turn activates the phosphodi-
esterases, which enhances the decay of cAMP and brings
the concentration of cAMP down to its steady state level.
In wild type cells, we propose that Pde1 is the primary
effector of PKA feedback. In the pde1� and pde1ala152

cases the slower activation of Pde2 accounts for the
greater transient observed in these cases.

Table 1 Parameter values that vary when fitting
Equations (4a)–(4d) to the Ma et al. data

Parameter wt pde1� pde2� pde1ala152 pde1�

pde2�

M 0.01 0.0005 0.01 0.0025 –

D 1 0.26 1 0.54 –

� 33.6 16.8 33.6 33.6 –

B .0051 .0051 .0051 .0051 .51

Here M is the quantitative expression of Condition (b) [see text]; D represents
enhanced decay due to PKA feedback on Pde modified by �, the affinity of
activated Pde for cAMP; B is the inactivation rate of Ras·GTP due to Ira1/2. Also
see the text for a discussion of the great overlap between columns 2 and 4.

Oscillatory approaches to steady state
For a wide range of parameters the model described by
Equations (4a)–(4d) suggests that cAMP concentration
should exhibit decaying oscillations as it approaches its
steady state value following glucose stimulus. Here we
describe the conditions required to generate this behavior.

Decaying cAMP oscillations via feedback on PDEs
PKA feedback through the PDEs alone is sufficient to
generate decaying cAMP oscillations following glucose
stimulus. To see this we examine the case when Ras is
either completely in the Ras·GTP or Ras·GDP state. When
A is sufficiently large, or sufficiently small, we can reduce
the model by making the approximation that the concen-
tration of Ras stays completely either in the GTP-bound
(rss ≈ 1), or GDP-bound form (rss ≈ 0). This reduces

Table 2 Parameter values that are consistent when fitting
Equations (4a)–(4d) to the Ma et al. data

Parameter Value

A 1.45

�1 0.0004

N 0.032

C 0.044

D0 0.013

Here A is the activation rate of Ras·GTP catalyzed by Cdc25; �1 is the affinity of
both Cdc25 and Ira1/2 for Ras·GTP; N is the reaction rate of Ira1/2; C is the
production rate of cAMP due to the basal activity of adenylate cyclase; D0
represents the decay rate of cAMP in the absence of activated PDEs.
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our model, Equations (4a)–(4d), to a two-by-two sys-
tem, representing change in concentration of Pde (p) and
cAMP (x):

dp
dt

= M(x2 − p) (5a)

dx
dt

= C0 − D0x − Dpx
� + x

, (5b)

where C0 = 1 + C when Ras·GTP is the dominant Ras
form (rss ≈ 1) or C0 = C when Ras·GDP dominates
(rss ≈ 0). In these cases we can find an explicit expression
for when the concentration of cAMP exhibits decaying
oscillation as it approaches steady state.

Claim 1. Solutions of (5a) and (5b) exhibit an oscillatory
approach to steady-state if and only if

(
M − D0 − �Dx2

ss
(� + xss)2

)2
< 8M

Dx2
ss

� + xss
. (6)

where xss is the equilibrium solution of (5a, 5b); i.e.,

C0 − D0xss − Dx3
ss

� + xss
= 0. (7)

Condition (6) is derived by computing the Jacobian
matrix of Equations (5a) and (5b) at the equilibrium point
and determining when the eigenvalues have a nonzero
imaginary part. Because of the implicit definition of xss,
it is rather difficult to apply directly. Therefore we refer
to Figures 5a and 5b, in which the overlapping shaded
regions show the ranges of D0 and D for which the
inequality (6) is satisfied, for several values of � and for
M assumed equal to .01. Figure 5a shows the parameter
range for C0 = 1 + C = 1.044, the case when rss ≈ 1, and
Figure 5b shows the parameter range for C0 = C = .044,
the case when rss ≈ 0. Observe that the value of � has
a large effect on when oscillation occurs: when � is small
(i.e. the PDEs have high affinity for cAMP), oscillations
occur over a large parameter range, but as � increases, the
parameter range decreases significantly. Finally, because
of the factor of M on the right-hand side of (6), it is dif-
ficult to satisfy the inequality if M is very small; thus
decaying oscillations are less likely for the pde1� and
pde1ala152 mutants.

General conditions for decaying oscillations
We now seek to understand the parameters that cause
decaying cAMP oscillations when Ras activation is free
to vary. To do so we numerically examine when the Jaco-
bian matrix determined by the four–by–four system has a
complex conjugate pair of eigenvalues with negative real
parts. We summarize the results here. We find that as
parameters �1, N and the ratio A

B increase we are more
likely to observe decaying oscillations. We also find that
as the parameters that enhance the decay of cAMP are

increased, that is as parameters D0 and D are increased
or as M decreases decaying oscillations are less likely.
For a more detailed analysis we refer the reader to the
Additional file 1: Supplementary Model.

Experimental validation of predicted cAMP oscillations
Our model makes the novel prediction that for many
choices of parameter values, cAMP levels should exhibit
decaying oscillations towards a steady-state following glu-
cose stimulus. In order to test this hypothesis we mea-
sured the dynamics of the cAMP response in diploid cells
of two strains of S. cerevisiae – S288c and �1278b. S288c
is considered the standard “reference” genome for yeast
studies while �1278b is commonly used for studies of
developmental pathways in yeast [53,54].

For each strain we monitored cAMP levels for eight to
twelve minutes following a glucose stimulus. Two typi-
cal experimental time series are illustrated in Figure 6.
There are cAMP oscillations in both genetic backgrounds
but the quantitative features of the oscillations appear to
be strain dependent. �1278b exhibits a classical form of
decaying oscillations characterized by a large cAMP peak
immediately after the stimulus, and dampening oscilla-
tions towards a new steady state. In the S288c background,
by contrast, the oscillations appear to be delayed, occur
with a lower amplitude and do not decay as rapidly. The
�1278b strain has a cAMP peak approximately twice as
large as that of S288c.

There are various ways in which we could fit the dynam-
ics reported here. We could assume that Ras·GTP is
saturated, as in Ma et al. Cases 1–4 and seek to fit only
the two–by–two system, given by Equations (5a) and (5b),
to this data. Alternatively we could fit all four equations,
(4a)–(4d), to this data. Since this experiment was done in
a similar way to the Ma et al. [35] experiment, we seek to
fit the data to parameters relating to only Pde feedback,
that is parameters D, �, and M. The data is taken in incre-
ments of fifteen seconds for the first two minutes, thirty
seconds for the next five minutes and every minute for the
last five minutes. We used a least squares approach to fit
the parameters of the mathematical model to the observed
data. Because the density of samples is higher in the initial
two minutes, the fitting more closely resembles the data
over this interval.

We can approximate the dynamics observed for both
�1278b and S288c using the model described by
Equations (4a)–(4d) (Figure 6A). Table 3 shows the param-
eter values used to fit the oscillations in �1278b and S288c
compared to the parameter values used to fit Ma et al.
wild type. For both cases the model requires Pde’s affin-
ity for cAMP, 1

�
, to be much greater than Pde ’s affinity for

cAMP in the Ma et al. case. In our fitting we note that the
most significant difference between the two strains is in
the decay of cAMP with respect to Pde (parameter D).
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Figure 5 Solutions to the inequality given in Equation (6) for two different values of the model parameter C. A) C0 = 1.044; B) C0 = .044. The
overlapping shaded regions of these figures illustrate the parameter ranges for D and D0 where the model predicts the possibility of cAMP oscillation.
The black region is � = 33.6, the � value for Ma et al. wt; the blue region is � = 3.36; and the red region is � = .336. In both cases, M = .01.

PDE mutants in the �1278b background
The �1278b wild-type strain exhibited a considerably
larger cAMP peak and more pronounced oscillations than
S288c (Figure 6), or the the W303 backround used by Ma
et al. We therefore undertook additional experiments to
examine the behavior of the pde1� and pde2� knockout
mutants in �1278b. Typical experimental time series for
the PDE mutants in the �1278b background are shown in
Figure 7. These experiments qualitatively agree with the
dynamics reported by Ma et al. for the W303 background:

1) the pde2� mutant has very similar cAMP dynamics
to the wild-type background; and 2) the pde1� mutant
reaches a much higher cAMP maximum. One notable dif-
ference between the W303 and �1278b pde1� mutants
is that cAMP levels in the �1278b background reach a
steady-state at or near their maximum, while the W303
pde1� mutant shows a more transient response with
cAMP levels decaying towards a steady state significantly
lower than the maximum. Because of this observed differ-
ence in the cAMP signaling behavior, when fitting model

A B

Figure 6 Variation in cAMP signaling between strain backgrounds. A) Experimental time series of cAMP concentration following glucose
stimulus for S288c (red) and �1278b (blue). x’s indicate measured cAMP values, the solid lines indicate smoothed values fit by convolving the data
with a Blackman window kernel filter. B) Numerical simulations under the non-dimensional model to fit �1278b (blue) and S288c (red).
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Table 3 Parameter values used to replicate cAMP
dynamics for strains �1278b and S288c (both wild types)
compared to parameter values used to fit the wild type
data reported in Ma et al. [35]

Parameter Interpretation Ma �1278b S288c

M Rate at which Pde activity
goes to steady state

.01 .085 .19

D Decay rate of cAMP due to
active Pde1

1 0.247 1.07

� Pde1 affinity for cAMP 33.6 0.32 0.15

T Time scale .0377 .17 .35

parameters for the pde1� and pde2� mutants we relaxed
Condition (b), meaning that we no longer assumed a
uniformly slower rate of activation/inactivation for Pde2.
Model parameter estimates for the �1278b PDE mutants
are given in Table 4. Comparing the parameters of the
pde1� mutants in W303 (Table 1) and �1278b (Table 4),
we see that the non-dimensional parameter M, represent-
ing the rate at which phosphodiesterase activity reaches
its steady state, increases relative to the wild-type in the
�1278b background, reflecting the lack of a transient
cAMP response in this strain. The difference between the
backgrounds in terms of steady state cAMP levels follow-
ing stimulus is primarily reflected in the relative change in
the parameter D.

Long-term dynamics
If we consider our model over time scales longer than
five minutes, our model the cAMP-PKA pathway predicts

that cAMP levels may either go to a unique steady state
or experience sustained oscillations. Garmendia-Torres et
al. [42] predicted sustained oscillations in the concentra-
tion of cAMP at intermediate stress levels. Since stress
affects our model through parameter A (the activation rate
of Ras·GTP), we choose A as our bifurcation parameter.
At intermediate stress levels, for example A = .014, the
long-term concentration of cAMP experiences sustained
oscillations, as seen by the red curve in Figure 8. When
stress levels are low, for example A = 1.4, the long-term
concentration of cAMP remains at a high steady-state
value, as seen by the blue line in Figure 8. When stress
levels are high, for example A = .005, the long-term con-
centration of cAMP remains at a low steady-state value, as
seen by the black line in Figure 8.

An intuitive biological explanation of this behavior
is that at intermediate stress levels Ras (r) alternates
between active (GTP-bound, rss ≈ 1) and inactive (GDP-
bound, rss ≈ 0) states. This oscillation in Ras states causes
oscillations in the concentration of cAMP. When stress
levels are low, for example in the glucose fed state, Ras is
almost completely in the Ras·GTP state, as in Ma et al. [35]
Cases 1–4, forcing the long-term concentration of cAMP
to steady state. Similarly, when stress levels are high, Ras
is primarily in the Ras·GDP state, as in Ma et al. [35] Case
5, forcing the long-term concentration of cAMP to a low
steady state.

Analysis of sustained oscillations
Analysis of our model suggests that sustained oscillations
are the result of PKA feedback through the Ras pathway

A B

Figure 7 The signaling behavior of PDE mutants in the �1278b strain background. A) Experimental time series of cAMP concentration
following glucose stimulus for �1278b wild-type (blue), pde1� (red) and pde2� (green) strains. x’s indicate measured cAMP values, the solid lines
indicate smoothed values, as in Figure 7. B) Numerical simulations under the non-dimensional model to fit to the observed data.
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Table 4 Parameter values used to replicate cAMP
dynamics for the phosphodiesterase mutants, pde1� and
pde2� in the �1278b background

Parameter wt pde1� pde2�

M 0.085 0.262 0.121

D 0.247 0.0112 0.107

� 0.32 0.04 0.061

For all three cases, the time scale parameter T = 0.17.

(variables r and z). In contrast, negative feedback through
the PDEs (variable p) stabilizes the system. This analysis
was done by examining the stability of the system by eval-
uating the Jacobian matrix at the equilibrium. We find that
our system loses stability through a Hopf bifurcation; thus,
indicating that the system experiences sustained oscil-
lations (for details see Additional file 1: Supplementary
Model). This instability, leading to sustained oscillations,
is a result of Ras varying between its active (GTP) and
inactive (GDP) states. Activation/inactivation of Ras is
controlled by parameters A, B, and �1 in our model. We
find that as the value of �1 increases our system is less
likely to experience sustained oscillations. Oscillations are
also more likely as the ratio A

B increases. In regards to
the period and amplitude of oscillations, we observe that
as both forms of PKA feedback (through Ras and PDE)
slow down, that is as the values of parameters N and M
decrease, the length of the period of oscillation increases.
Finally, we conclude that as the parameters that enhance
the decay of cAMP are decreased, that is as parameters D0

and D are decreased and parameter � is increased, oscil-
lations are more likely to have longer periods and larger
amplitudes.

Discussion
The model presented here is, to the best of our knowledge,
the first analytical model of the yeast cAMP-PKA path-
way that is capable of recapitulating both the short-term
and long-term dynamics of cAMP signaling in wilde-type
cells. The model we propose is also capable of replicat-
ing cAMP dynamics that have been observed single and
double phosphodiesterase mutants. In addition to cap-
turing behaviors previously described our model makes
new predictions about cAMP oscillations. Our work also
highlights variation in cAMP signaling between genetic
backgrounds.

cAMP oscillations
Analysis of a non-dimensional system derived from our
model suggests that a substantial fraction of the model
parameter space for the wild-type signaling network
should result in decaying cAMP oscillations following
glucose stimulus. While long time-scale oscillations have
previously been predicted [39,42], short-term oscilla-
tions, on the scale of minutes, have not been noted in
the yeast literature. To test our predictions we experi-
mentally measured the cAMP response in two different
diploid strains of S. cerevisiae and observed oscillations
as predicted by the model. While ours is the first study
to document short time-scale cAMP oscillations in yeast,
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Figure 8 Long-term dynamics for the concentration of cAMP. The blue line shows the cAMP concentration at high nutrient levels and/or low
stress levels (parameter A = 1.4). The black line shows the concentration of cAMP at low nutrient levels and/or high stress levels (parameter
A = .005). The red curve shows the concentration of cAMP at intermediate nutrient levels and/or intermediate stress levels (parameter A = .014).
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such oscillations have been noted in other systems includ-
ing mammals, amphibians, and slime molds [55-57]. For
example, Dyachock et al. [55] reported short time-scale
glucose induced oscillations in mouse pancreatic β-cells.
They showed that these oscillations correlated with pul-
satile insulin release. Similar oscillations are observed
in response to stimulation of such cells by the peptide
hormone GLP-1 [58]. The slime mold Dictyostelium also
exhibits short time-scale cAMP oscillations [57]. Similar
to the model we present here, Maeda et al. [57] suggested
that positive feedback by PKA on phosphodiesterase
activity and PKA negative feedback on adenylate cyclase
activity are critical features of the molecular circuit that
generates these oscillations in Dictyostelium. Whether
cAMP oscillations in these diverse eukaryotic groups are
due to conserved interactions in the cAMP pathway or
whether such dynamics represent a convergent feature of
cAMP signaling is a key question for future comparative
studies.

Our model is also able to generate longer-time scale
cAMP oscillations. Such oscillatory dynamics should be
reflected in PKA activity. Recent studies [59,60] have
demonstrated that PKA activation plays an important role
in regulating oscillatory patterns of nuclear localization
of stress-responsive transcription factors such as Msn2.
Different dynamical patterns of Msn2 regulation in turn
can lead to qualitatively different expression outputs of
downstream targets [59].

Comparison to other models
There have been a number of recent studies that have
proposed mathematical models for the cAMP-PKA net-
work in yeast, including Gonze et al. [39], Cazzaniga et
al. [40], and Williamson et al. [41]. A limitation shared by
all three of these models is that they can not recapitulate
the dynamical behaviors of the double phosphodiesterase
mutant (pde1� pde2�). This can be seen by setting the
variables representing the phosphodiesterases to zero in
any of these models (i.e. representing the double knock-
out); the result is a rapid accumulation of cAMP. This
contrary to the observed data reported by Ma et al. [35].
Our model uses competitive inhibition between Pde1,
Pde2 and the GTPase activating proteins Ira1 and/or Ira2
to explain the double PDE knockout case; thus, competi-
tive inhibition between Pde1, Pde2, and Ira1/2 is what sets
our model apart from these previous models.

Gonze et al. [39] propose a stochastic model, that is
a direct extension of the Garmendia-Torres et al. model
[42], to explore the effects of the cAMP-PKA path-
way on the transcription factor Msn2. This model only
focuses on the long term dynamics and can not be used
to understand any of the PDE mutant cases proposed by
Ma et al. Cazzaniga and colleagues [40] employed
a stochastic modeling approach to study the yeast

cAMP-PKA network. Though they do explore the effects
of different PDE activities, their model does not explicitly
account for the mutant cases described by Ma et al. and
again they can not replicate the double phosphodiesterase
knockout. Also they do not consider the long term
dynamics proposed by Garmendia-Torres et al. [42]. The
deterministic model presented by Williamson et al. [41]
is the closest in approach to ours. Their model is able to
recapitulate the relevant dynamics of the Pde1 and Pde2
single mutants but does not account for the behavior of
the PDE double mutant. As we mentioned above this is
significant since the double knockout case is the most
surprising case and the hardest case to explain. They also
only examined the short term dynamics of cAMP, where
as our model accounts for both the long and short term
dynamics of cAMP.

Conclusions
The mathematical model we present here replicates
the dynamical behavior of wild-type and mutant cells
and leads us to novel predictions of oscillatory cAMP
dynamics in S. cerevisiae. Experiments motivated by this
modeling effort confirmed these predictions and also
highlighted variation in oscillatory phenomena among
yeast isolates. The mathematical model, in turn, is capa-
ble of reproducing the different signaling phenotypes we
observed and allows us to predict which parts of the
network are most likely to contribute to signaling vari-
ation. Because it has both predictive and explanatory
power this model can serve as a foundation for future
mathematical and experimental explorations of cAMP
signaling. A future challenge for both experimental and
modeling studies of cAMP signaling will be to deter-
mine whether the grossly similar oscillatory dynamics
observed across eukaryotes is due to a common mech-
anistic basis or whether this represents an example of
convergent evolution.

Methods
Strains and cAMP assay
Diploid strains of the laboratory backgrounds �1278b
(G85 [‘wild-type’, ura3δ0, his3δ0::hisG], G30025 [‘pde1�’,
pde1::bcKanMX4, ura3�0, his3�0::hisG], G30025 [‘pde2�’,
pde2::bcKanMX4, ura3�0, his3�0::hisG], gifts of T.
Galitski [61]) and S288c (BY4743, gift of D. Lew) were
used to study cAMP dynamics. Cells were prepared
following a protocol adapted from Paiardi et al. [17].
Approximately 2 × 109 cells/ml were grown in rich media
(1% yeast extract, 2% peptone and 2% glucose) at 30°C
and transferred to SC media with 0.1% glucose and 3%
gycerol for overnight incubation at 30°C. Cells were col-
lected, washed and incubated in 25 mM MES buffer, pH
6 (Boston Bio Products, Worcester, MA) for 30 minutes
at 30°C before glucose induction. Glucose was added to
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2 ml of cell culture(approx. 2 ×108 cells/ml) to a final
concentration of 100 mM and 25 mM. After glucose
induction cells were collected over a 12-minute time
course in 15 second increments for the first minute and
at 30 second increments for the rest of the time course.
3 ×106 cells were collected at each time point, fixed in 300
μl n-butanol-saturated 1M formic acid (Jiang et.al., 1998)
and frozen at -80°C. Cells were lysed using four freeze-
thaw cycles and freeze-dried in a Speed Vac concentrator
(Savant Instruments, Farmingdale, NY). Cell extracts
were used to determine cAMP concentration using a
cAMP Biotrak Enzyme immunoassay kit (Amersham,
GE Healthcare) and a SpectraMax spectrophotometer
(Molecular Devices, Sunnyvale, CA).

Model fitting
For the purposes of model fitting, where available we used
estimates of key biochemical parameters as reported in
[42]. In cases where such parameters were not avaiable,
we used a method of least squares, implemented in the
subroutine lmdif.f in the Fortran MINPACK library [62].
This subroutine minimizes the sum of the squares of m
nonlinear functions in n variables by a modification of
the Levenberg-Marquardt algorithm. We wrote a C com-
puter program that calculates the appropriate functions
that are used by this algorithm for the model described
above. Additional details of the model fitting proce-
dure are provided in the Additional file 1: Supplemental
materials.

Additional file

Additional file 1: Supplementary model [35,42,62,63].
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