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Abbreviations
TCDD  2,3,7,8-Tetrachlorodibenzo-p-dioxin
BoHV-1  Bovine herpesvirus 1
MDBK cells  Madin-Darby bovine kidney cells

Introduction

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), known as 
dioxin, is a toxic and persistent environmental contaminant. 
TCDD may provoke a broad range of toxic effect, both in 
humans and in animals, including chloracne, hepatotoxic-
ity, thymic atrophy, reproductive toxicity, teratogenesis, 
and the International Agency for Research on Cancer has 
been classified TCDD as carcinogen since 1997. In addition, 
dioxin has the potential to disrupt multiple endocrine path-
ways and to provoke immunosuppression and increased sus-
ceptibility to infectious agents (Mandal 2005; Fiorito et al. 
2017a). Indeed, it has been described that dioxin decreases 
host resistance to several viruses, both in vivo and in vitro. 
In particular, dioxin enhances mortality in mice infected 
respectively with herpes simplex II virus (Clark et al. 1983), 
human coxsackievirus B3 (Funseth and Ilbäck 1994; Funseth 
et al. 2000, 2002), and with different subtypes of influenza 
A viruses (House et al. 1990; Burleson et al. 1996; Warren 
et al. 2000; Vorderstrasse et al. 2003). Furthermore, TCDD 
increases virus replication in cells infected with human 
immunodeficiency virus-1 (HIV-1) (in MT-4 or U1cells) 
(Pokrovsky et al. 1991; Gollapudi et al. 1996) and cytomeg-
alovirus (CMV) (in MRC-5 cells) (Murayama et al. 2002).

Bovine Herpesvirus 1 (BoHV-1), a member of the 
alpha-herpesvirinae subfamily, is an important cattle 
pathogen which may provoke infectious bovine rhinotra-
cheitis (IBR), genital disorders, conjunctivitis and abor-
tions. Moreover, the virus induces immunosuppression 
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that could render the animals more susceptible to second-
ary bacterial infections, as pneumonia, and occasionally 
to death (Jones 2003).

In experimental conditions, such as in permissive Madin-
Darby bovine kidney (MDBK), BoHV-1 induces cell death 
apoptosis (Devireddy and Jones 1999; Fiorito et al. 2008b), 
which is significantly anticipated by TCDD (Fiorito et al. 
2008b), through a down-regulation of telomerase activity 
(Fiorito et al. 2014a). All changes above reported may con-
tribute to determine the increase in virus replication due to 
TCDD exposure (Fiorito et al. 2008b, 2014a, 2017a).

Recently, high levels of TCDD were detected in dairy 
products from farms in Campania region (Italy) (Diletti et al. 
2003; Santelli et al. 2006), where BoHV-1 is widespread 
(2004/558/CE; Ackermann and Engels 2006; Raaperi et al. 
2014). An extraordinary plan of official control was carried 
out to monitor dioxins levels in cow’s and buffalo’s milk 
from farms in Campania region, and the geo-referencing 
analysis allowed to individuate a restricted area of the region 
where was located the majority of the non-compliant farms 
(Esposito et al. 2009, 2010). To verify the possibilities of 
the use of data obtained in vitro to in vivo conditions, we 
performed an epidemiological analysis on the distribution 
of virus in the above monitored farms. We collected serum 
and plasma samples to detect antibodies for IBR from cat-
tle raised on those farms, by using IBR-gB and IBR-gE 
E.L.I.S.A. kit, which represents the test procedure of choice 
in many European IBR programs. And we found a signifi-
cant prevalence of IBR on samples collected from farms 
in contaminated areas, compared to samples collected in 
uncontaminated areas (Fiorito et al. 2015).

Sirtuin proteins (SIRTs) are nicotinamide adenine dinu-
cleotide (NAD)-dependent histone deacetylases identified 
as regulatory molecules which modulate the organism life 
span in many species. Particularly, in mammals, there are 
seven homologues of Situins, SIRT1-7, that are involved in 
the control of critical cellular processes such as differentia-
tion, proliferation, metabolism and apoptosis (Saunders and 
Verdin 2007). And, in a recent study, we showed that sirtuins 
like SIRT3 and SIRT4 are involved in canine coronavirus 
type II-induced apoptosis (Marfè et al. 2011).

Viruses have developed a multiplicity of interactions with 
host cell to facilitate phases as viral replication, persistence 
and spread. The actin cytoskeleton of the host cell can be 
involved in several of these interactions. Following uptake 
in host cells, herpesviruses interact with actin when they 
enter into the cytoplasm, during replication and assembly 
in the nucleus, maturation and egress (Favoreel et al. 2007). 
In addition, cytoskeletal rearrangements and cell extensions, 
induced by the US3 kinase, a conserved viral protein among 
the Alphaherpesvirinae, are associated with enhanced spread 
of the pseudorabies virus, an alphaherpesvirus (Favoreel 
et al. 2005).

Herein, to better characterize the influence of TCDD on 
BoHV-1 infection, we analyzed the regulation of SIRT3, 
as well as the cytoskeleton reorganization of bovine kid-
ney cells, when virus induced-apoptosis occurred in cells 
exposed to TCDD.

Materials and methods

Cell cultures, virus infection and TCDD exposure

MDBK cells (American Type Culture Collection, CCL22) 
were cultured in Dulbecco’s modified Eagle’s minimal 
essential medium (DMEM), supplemented with 2% foetal 
calf serum (FCS), 1% L-glutamine, 1% penicillin/streptomy-
cin, 0.2% sodium pyruvate and 0.1% tylosin, a macrolide-
class antibiotic. Cells were maintained in an incubator at 
37 °C (in 5%  CO2/95% air). This cell line was maintained 
free of mycoplasma and of bovine viral diarrhoea virus by 
real time PCR analysis (Cordero Camacho et al. 2011). The 
BoHV-1 Cooper strain was used throughout the study. Virus 
stocks were routinely grown on MDBK cells and were also 
used for determination of virus titers (Fiorito et al. 2008a, 
2013). We used 2,3,7,8-Tetrachlorodibenzo-p-dioxin 
(TCDD), 10 μg/mL in toluene (Supelco, 48,599). TCDD was 
initially diluted to give a 10,000 pg/mL stock solution by 
mixing with DMEM. This stock solution was then diluted to 
give working solutions of 0.01, 1 and 100 pg/mL in DMEM 
(from 3,1 × 10− 14 to 3,1 × 10− 10 M), which were added to 
cultures, according to Fiorito et al. (2008a,b,2010, 2011, 
2013, 2014a, 2014b, Santamaria et al. 2011). In preliminary 
studies, we treated control cells (MDBK) with a toluene/
DMEM mix at the same concentrations used to dilute the 
TCDD stock solution in toluene at working solutions of 0.01, 
1 and 100 pg/mL in DMEM. In our experimental model, no 
significant differences were detected in cell viability, as well 
as in cellular morphological features between MDBK treated 
with DMEM or toluene in DMEM at 0.01, 1 and 100 pg/mL 
(data not shown). All other chemicals were of the highest 
commercially available purity.

MDBK cells, at confluency, were washed with DMEM 
and then infected or not with BoHV-1, at multiplicity of 
infection (MOI) of 5, at the same time, in the presence or 
not of different concentrations of TCDD (0.01, 1 and 100 pg/
mL). After 1 h of adsorption at 37 °C, the cells were incu-
bated for 4, 8, 12, 24, 36 and 48 h post infection (p.i.) and 
then processed. The virus was present in the culture media 
throughout the course of the experiment.

Cell viability

Cell viability was evaluated by MTT test, as previously 
described by us (Fiorito et al. 2008b, 2011, 2013, 2014a). 
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Data are calculated as a percentage of the control, and results 
are the mean ± SEM of four independent experiments per-
formed in duplicate.

RNA isolation and northern blot analysis

Total RNAs from infected cells, exposed or not to TCDD, 
were obtained by using Tri Reagent (Sigma–Aldrich Che-
mie GmbH, Taufkirchen, Germany), as previously described 
(Marfè et al. 2011). Aliquots of RNA were electrophoresed 
on 1% agarose formaldehyde gels and subsequently blotted 
onto nylon membranes (Hybond N, Amersham, Braunsch-
weig, Germany). The membrane was then UV crosslinked, 
and hybridized to 32P-labeled probe. The relative amount of 
mRNA level was quantified throughout Gel-Doc Phospho-
rimanger and Quantity One software (Bio-Rad) and normal-
ized by the band intensity of β-actin.

Protein extraction and Western blot analysis

At 4, 8, 12, 24, 36 or 48 h post infection, cells, exposed or 
not to TCDD, were washed twice with PBS and removed 
from the flask by treatment with trypsin–EDTA solution. 
Then cells were mixed with cells previously collected 
by centrifugation in supernatant from the same flask and 
re-suspended at an adequate concentration in PBS. The 
pellets, obtained by centrifugation, were stored at -20 °C. 
Cells were homogenized directly into lysis buffer (50 mM 
HEPES, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 10% 
glycerol, 1% Triton X-100, 1 mM phenylmethylsulfonyl 
fluoride, 1 µg/mL aprotinin, 0.5 mM sodium orthovana-
date, and 20 mM sodium pyrophosphate). The lysates were 
clarified by centrifugation at 1,4000 rpm x 10 min. Protein 
concentrations were estimated by an assay (Bio-Rad) and 
boiled in Laemmli buffer [0.125 M Tris–HCl (pH 6.8), 4% 
SDS, 20% glycerol, 10% 2-mercaptoethanol, and 0.002% 
bromophenol blue] for 5 min before electrophoresis. Pro-
teins were subjected to SDS–PAGE (12.5% polyacryla-
mide). After electrophoresis, proteins were transferred to 
nitrocellulose membranes (Immobilon, Millipore Corp., 
Bedford, MA) (Fiorito et al. 2017b; Liguori et al. 2017); 
complete transfer was assessed using pre-stained protein 
standards (Bio-Rad, Hercules, CA). After blocking with 
Tris-buffered saline-BSA [25 mM Tris (pH 7.4), 200 mM 
NaCl, and 5% BSA], the membrane was incubated with the 
primary antibodies. The following antibodies, dissolved in 
5% bovine serum albumin-TBST, were used: anti-SIRT3 
(dilution 1:1,000) (Cell Signalling Technology, Inc) and 
anti-ß-actin (Sigma) (1:7,500); (β-tubulin was also used 
as loading control for western blot in experiments on the 
influence of TCDD on cellular and viral proteins during 
BoHV-1 infection. The levels of β-actin and/or β-tubulin 
were unchanged between control cells and TCDD treated 

cells over time). Membranes were then incubated with the 
horseradish peroxidase-conjugated secondary antibody 
(1:10,000) (at room temperature), and the reaction was 
detected with an enhanced chemiluminescence system 
(Amersham Life Science, Buckinghamshire, UK). The 
relative amount of protein expression was quantified using 
Gel-Doc phosphorimanger and Quantity One software 
(Bio-Rad) and normalized by the band intensity of β-actin.

Staining of cell cytoskeleton by fluorescent phalloidin 
solution

At 4, 8, 12, 24, 36 and 48 h p.i., actin filaments were 
stained by incubating the cells with Phalloidin, Fluores-
cein Isothiocyanate labeled (Sigma, Milan, Italy), as previ-
ously described by Wulf et al. (1979). Briefly: cells grown 
on glass coverslips were rinsed in phosphate-buffered 
saline (PBS) (pH 7.4), fixed for 5 min in 3.7% formalde-
hyde in PBS at room temperature and washed extensively 
in PBS. Cells were dehydrated with acetone, permeabi-
lized with 0.1% TRITON X-100 in PBS, and washed again 
in PBS. Then, cells were stained with a 50 mg/mL fluo-
rescent phalloidin conjugate solution in PBS for 40 min 
at room temperature and washed with PBS and observed 
under UV with a fluorescence microscope.

Virus production assay

MDBK cells, at confluence, were infected with BoHV-1 at 
MOI 5, in the presence or not of different concentrations 
of TCDD (0.01, 1 or 100 pg/mL). For the virus production 
assay, we analyzed both viral cytopathic effects (CPE) and 
virus titration. At 4, 8, 12, 24, 36 or 48 h p.i., all groups 
were observed under light microscope to evaluate CPE, 
represented by ample syncytia formation along with elimi-
nation of the cellular sheets.

For virus titration, at 4, 24 or 48 h p.i., cell extracts, 
obtained by three cycles of freezing and thawing, were 
collected and stored in aliquots at -80 °C. Virus titers were 
assayed by  TCID50 method according to Reed and Muench 
(1938).

Statistical analysis

Results Data are presented as mean ± S.E.M. One-way 
ANOVA with Tukey’s post-test was performed using 
GraphPad InStat Version 3.00 for Windows 95 (GraphPad 
Software, San Diego, CA). P value < 0.05 was considered 
statistically significant.
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Results

We confirmed that TCDD (0.01, 1 or 100 pg/mL) induces 
a significant time and dose dependent viability decrease of 
BoHV-1 infected cells (Fig. 1a). In particular, after 8 h p.i., 
we observed a significant (p < 0.05) reduction in cell viabil-
ity in the presence of the highest dose of dioxin (100 pg/
mL). From 12 h to the end of infection, TCDD drastically 
and significantly (p < 0.001) increased cell death of infected 
groups in a dose-dependent manner (Devireddy and Jones 
1999; Fiorito et al. 2008a, b, 2014a).

Following infection, SIRT3 transcript levels considerably 
augmented from 36 h p.i. onwards (Fig. 2a). In the pres-
ence of TCDD, a significant (p < 0.001 and p < 0.05) dose-
dependent increase in SIRT3 transcript levels from 8 h p.i. 
to the end of infection was detected (Fig. 2a).

When SIRT3 protein expression was evaluated, the lev-
els were found increased at the end of infection (Fig. 2b-c). 
Whereas, in TCDD exposed groups, SIRT3 significantly 
(p < 0.001, p < 0.01 and p < 0.05) enhanced, from 4 h p.i. 
onwards (Fig. 2b-c).

We evaluated the effects of TCDD on cytoskeletal organi-
zation of MDBK cells, during BoHV-1 infection, in the pres-
ence or not of TCDD. Herein, we only showed the results 
at 12 h p.i., in the presence of the medium dose of TCDD 
(1 pg/mL). The cytoskeletal actin in control cells, at all 
times, was arranged in many thin and short fibers surround-
ing the nucleus and, from circular filaments, fibers diverge 
radially as spokes toward the cell cortex, like a net of con-
centric fibers, as previously demonstrated (Wulf et al. 1979). 
Both actin fibers and cortical actin remained unaffected in, 
exposed or not, infected cells until 4 h p.i.; starting from 8 h 
to the end of infection, a complete reorganization of the actin 
based cytoskeleton it has been occurred (data not shown). In 

particular, at 12 h p.i. in TCDD uninfected group, in a shape 
similar to control, only an enhancement of radial fibers was 
detected (Fig. 3), according with previous data showing that 
dioxin did not alter actin filaments in human uterine RL95-2 
cells (McGarry et al. 2002). In infected group, more stress 
fibers were arranged in spherical structures and cortical 
actin increased (Fig. 3). Moreover, filopodia were intercel-
lular networks (Fig. 3). At the same time, in the presence of 
TCDD, a similar pattern of actin was detected in BoHV-1 
infected cells, which loosed spherical shape and appeared 
polyhedral (Fig. 3). Cortical actin accumulated, thin stress 
fibers were shorter, were arranged in a confused manner and 
did not reach the cell periphery, in contrast to those observed 
at 4 h p.i. (data not shown).

These results that BoHV-1 infection modifies the 
cytoskeletal actin in MDBK cells. TCDD further modifies 
these structures.

Then, we explored virus production, analyzing both viral 
cytopathic effects and virus titration in MDBK cell cultures 
infected with BoHV-1 and exposed or not to all doses of 
TCDD. The CPE, represented by ample syncytia formation 
along with elimination of the cellular sheet, was always more 
evident in TCDD exposed cells after 12 h p.i., when virus-
induced apoptosis occurred (Fig. 4a). Virus titers, assayed 
by  TCID50 method, confirmed the above data. In fact we 
evidenced a statistically significant (p < 0.01 and p < 0.001) 
increase of viral production in all TCDD treated groups after 
48 h p.i. (Fig. 4b).

Discussion

This study suggests that BoHV-1 modifies the cytoskele-
ton reorganization of MDBK cells, through the regulation 

Fig. 1  TCDD increases cytotoxicity of MDBK cells during BoHV-1 
infection. Dose response curve of MDBK cells treated with different 
concentrations of TCDD and observed at different times on cell via-
bility. Viable, adherent cells were stained with MTT at different times 
of incubation and the absorbance assayed as described in Materials 

and Methods section. Data are presented as mean ± S.E.M. of three 
independent experiments performed in duplicate. Significant dif-
ferences between unexposed groups and TCDD-exposed groups are 
indicated by probability p. *p < 0.05, **p < 0.01 and ***p < 0.001
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of a member of SIRT family, and these results are further 
modified by TCDD exposure. Our previous studies (Fiorito 
et al. 2008b, 2014a) indicate that TCDD in infected cells 
accelerates BoHV-1 induced apoptosis. The sirtuin protein 
family has also been proposed to be involved in cellular 
stress response pathways including DNA damage, cell cycle 
arrest and apoptosis (Saunders and Verdin 2007). SIRT3 is 

located in the mitochondria, dynamic organelles that play 
crucial roles in intracellular signaling and apoptosis (Verdin 
et al. 2010). Herein, following infection in MDBK cells, 
we detected an increase of SIRT3 both in transcript and in 
protein levels (Fig. 2). Moreover, SIRT3 had a similar trend 
previously observed in canine coronavirus type II-induced 
apoptosis (Marfè et al. 2011). In particular at 12 h p.i. when, 

Fig. 2  TCDD induces an increase of SIRT3 during BoHV-1 infec-
tion. A) To perform Northern blot assay, RNA was extracted from 
untreated cells, infected cells, or infected and exposed to different 
concentrations of TCDD (0.01  pg/ml), (TCDD 1  pg/ml) or (TCDD 
100 pg/ml) cells at the indicated times, electrophoresed and hybrid-
ized with a labelled probe as described under Material and Meth-
ods. β-actin was used as loading control. Densitometry analysis of 
the blot (B) Whole-cell lysate was prepared from untreated cells, 
infected cells, or infected and exposed to different concentrations of 

TCDD (0.01  pg/ml), (TCDD 1  pg/ml) or (TCDD 100  pg/ml) cells 
and, after 4, 8, 12, 24, 36, or 48  h p.i., Western blot analysis was 
performed with an antibody which specifically recognized SIRT3 or 
β-actin. β-actin was used as an internal loading control. (C) Densi-
tometry analysis of the relative blots shown in (A). Results are the 
mean ± S.E.M. of three separate experiments. Significant differences 
between unexposed groups and TCDD-exposed groups are indicated 
by probability p. *p < 0.05, **p < 0.01 and ***p < 0.001
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Fig. 3  TCDD modifies cytoskeletal organization of MDBK cells 
during BoHV-1 infection Photomicrographs showing cytoskeletal 
structure of MDBK cells infected or not with BoHV-1, at MOI of 5, 
in the presence or in the absence of different concentrations of TCDD 
(1 pg/mL). After 12 h p.i., fixed cells were stained with Phalloidin, 
Fluorescein Isothiocyanate labeled and then observed under fluores-
cent microscope (magnification, ×1000). In TCDD uninfected group, 
similarly to control, an enhancement of fibers which diverge radially 

was detected. In infected group, more stress fibers were arranged in 
spherical structures and cortical actin increased and filopodia were 
intercellular networks. In the presence of TCDD, a similar pattern of 
actin was detected in infected cells, which loosed spherical shape and 
appeared polyhedral. Cortical actin accumulated, thin stress fibers 
were shorter, were arranged in a confused manner and did not reach 
the cell periphery

Fig. 4  TCDD increases virus production. a Representative micro-
photographs by phase-contrast light microscopy of MDBK cells 
infected with BoHV-1, exposed or not to 1 pg/mL of TCDD at 12 h 
post infection, showing the cytopathic effects and the morphological 
changes on cellular monolayers. b Virus titers, assayed by  TCID50 

method and reported as Log  TCID50/mL, in MDBK cells infected 
with BoHV-1, exposed or not to 0.01, 1, 100  pg/mL of TCDD, as 
indicated in the legends. Significant differences between unexposed 
groups and TCDD-exposed groups are indicated by probability p. 
*p < 0.05, **p < 0.01 and ***p < 0.001
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in the same experimental conditions, in the presence of 
TCDD, BoHV-1 induced apoptosis occurred (Fiorito et al. 
2008b, 2014a), we detected a significantly increase in SIRT3 
at all doses studied (Fig. 3).

Herein, following infection in MDBK cells, in BoHV-1 
infected groups, we detected high differences in cytoskeletal 
organization, which from 12 h p.i. (Fig. 3) increased until 
the end of infection. While, in all infected groups, TCDD 
drastically and significantly modified cytoskeletal organi-
zation starting from 12 h p.i. (Fig. 3) when, in the same 
experimental conditions, accelerated virus-induced apopto-
sis occurred (Fiorito et al. 2008b, 2014a), to the end of infec-
tion. In addition, caspase-3 induces, by inactivating PARP, 
cytoskeletal reorganization (Elmore 2007; Green et al. 2014) 
and TCDD induced the cleavage of PARP earlier than con-
trol groups during the early stages of infection (Fiorito et al. 
2008b, 2014a). As reported above, viruses have developed 
several types of interactions with host cells to produce viral 
replication, persistence and spread. The actin cytoskeleton 
is involved in many crucial cellular processes, including 
providing cell integrity, mobility and shape, driving cell 
division and contraction, and the uptake of extracellular 
molecules. We already described morphological changes, 
such as rounding and loosening from basic structures, in 
MDBK during BoHV-1 infection, in the presence or not of 
TCDD, by Acridine Orange staining (Fiorito et al. 2008b), 
Giemsa staining (Fiorito et al. 2010), or by ample syncytia 
formation along with elimination of the cellular sheets, as 
in CPE (Fiorito et al. 2008a). In general, changes in cell 
shape are related to alterations in the architecture of the cel-
lular cytoskeleton. The actin cytoskeleton is also implicated 
in herpesvirus capsid assembly and nuclear egress. Later 
stages of the herpesvirus replication cycle have been associ-
ated with disassembly of actin stress fibers, retraction and 
rounding of the cells and the formation of actin-containing 
cell projections (Favoreel et al. 2007). Herein, we evidenced 
that BoHV-1 infection of MDBK cells provokes a disas-
sembly of cytoskeletal actin, modified by TCDD. Concomi-
tantly, we detected a significant increase in virus replica-
tion (Fig. 4). Indeed, following infection in MDBK cells, in 
BoHV-1 infected groups, at MOI of 5, exposed to different 
concentrations of TCDD, we detected an increase of virus 
titer which significantly increased at the end of infection 
(Fig. 4a), as we previously showed at MOI of 0.1 as well 
as at MOI of 1 (Fiorito et al. 2008a, 2013). On the basis of 
the overall results obtained by investigating the effects of 
BoHV-1 infection and TCDD exposure, alone or in combina-
tion, we can state that the main factor that influences virus 
replication is represented by dioxin.

Until now, there are no reports in the literature describ-
ing cytoskeletal reorganization induced by TCDD in virus-
infected cell cultures. This is the first evidence that an epi-
thelial line of mammalian cells infected with BoHV-1, an 

alphaherpesvirus, induces cytoskeletal rearrangements and 
cell extensions, that are further modified by the administra-
tion of TCDD, which enhanced SIRT3.

We hypothesize that these modifications might further 
explain the mechanisms as to how TCDD exerts its effects 
on the BoHV-1 replication, resulting in anticipated cell death 
apoptosis and increased virus replication.
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