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Abstract

Huangjiu is a national alcoholic beverage in China. Millet has congenital advantages in

development and utilization of nutrient. Brewing Huangjiu with millet can increase the value

of millet. Microbial community plays crucial roles in millet Huangjiu fermentation. Flavor

compounds reflect the quality and health function of Huangjiu. The flavor compounds of

Huangjiu are complex and their formation is closely associated with microorganisms, but the

relationship between them during fermentation has been unknown. In this research, this

relationship during millet Huangjiu fermentation were deeply investigated. Totally 86 volatile

compounds were detected. Bacillus, Weissella, Paenibacillus, Klebsiella, Prevotella was

investigated as the dominant microbes through high-throughput sequencing. 537 correla-

tions between major flavor compounds and microbes were established to reflect the

dynamic change during millet Huangjiu fermentation. The top five dominant genus of flavor

producing microbes were Chryseobacterium, Sporolactobacillus, Psychrobacter, Sphingo-

bium and Anoxybacillus. The content of malic acid and citric acid was gradually improved all

through the millet Huangjiu fermentation. Malic acid and citric acid generated from millet

Huangjiu fermentation shows healthy properties as liver protection and eliminating fatigue.

Our research provides essential information on microbial community succession and the fla-

vor formation during millet Huangjiu fermentation, and beneficial for development of Huang-

jiu products.

Introduction

Huangjiu is one of the oldest wine types and most famous liquors in China. Over the past sev-

eral years, the joint efforts of the entire industry promoted the rapid development of rice wine,

which also attract notable attention [1]. Glutinous rice was usually used as the brewing raw

materials, such as Guyue Longshan rice wine in southern China. Non-glutinous rice, indica
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rice and glutinous rice mentioned earlier are three typical raw materials for traditional Huang-

jiu brewing, barleys and millet with prominent regional characteristics also beginning to

emerge [2, 3]. The key raw material in Northern Huangjiu is millet, the content of crude pro-

tein and starch in which is much higher than that of rice and wheat [4, 5]. As excellent natural

functional food with high nutritious value, millet shows unique advantages in food develop-

ment and application, which has been validated in yogurt, bread and baby supplementary

foods [6, 7]. All these superior qualities make it very suitable for Northern Huangjiu fermenta-

tion. Furthermore, dietary fiber, flavonoids, polyphenols, inositol, sterols and other nutrients

are also found rich in millet meanwhile [8, 9]. On the one hand, current studies predominantly

focus on the improvement of millet brewing technology, the flavor formation in which was

comparatively less well understood [10–12]. On the other hand, the exploitation and utiliza-

tion of millet resources has been limited due to its indigestion [13]. Huangjiu brewed by millet

could increase the value of millet, which also have some implications for the development of

Huangjiu products.

The aroma is the best characterized feature of Huangjiu, determined by diverse volatile fla-

vor compounds, and over 900 different kinds of various volatile flavor compounds have been

confirmed according Chen et al’s study, comprising primarily esters, alcohols, phenols, alde-

hydes, ketones and acids [14, 15].Though the classification of Huangjiu varies according to

region or aroma types, the production process could be generally divided into six major stages

[3, 15–17]: the pretreatment of raw materials (especially soaking in millet Northern Huangjiu,

while glutinous rice steaming in Southern Huangjiu), sacccharification (primary fermenta-

tion), alcoholization (secondary fermentation), filtering, sterilizing and aging. In other words,

almost all the aroma compounds have been achieved through the above complicated fermenta-

tion process with the help of raw materials and Qu (fermentation starter) [18], during which

the microbial diversity plays the most critical and indispensable role [19, 20]. Microbiota and

flavor dynamics during Huangjiu brewing mainly refers to simultaneous saccharification fer-

mentation [3, 21]. Several studies have demonstrated that Bacillus, Leuconostoc, Lactococcus,
Weissella, Thermoactinomyces, Pseudomonas, Saccharopolyspora, Staphylococcus, Enterobacter
and Lactobacillus were the dominant genera during the fermentation of Shaoxing rice wine

[21]. Analogously, five Bacillus species and three lactic acid bacteria were identified as the

dominant bacteria in Hong Qu rice wine, which is another eminent Chinese Huangjiu as well

[22]. These microorganisms have been proved essential during fermentation and the genera-

tion of special flavors. Chen found that the main fungi species during wheat Qu storage were

Aspergillus oryzae, Absidia corymbifera, Rhizomucor pusillus, Clavispora lusitaniae and Sac-
charomycopsis fibuligera [23]. Another study combined traditional microorganism isolation

methods and PCR- Denaturing Gradient Gel Electrophoresis (DGGE) technology obtained

Thermomyces lanuginosus and Fusarium sp., which had not been reported in Shaoxing Huang-

jiu wheat Qu [24]. According to Huang et al, Lactobacillus, Leuconostoc, and Bacillus from bac-

teria, and Weissella, Saccharomyces, Rhizopus, Aspergillus and Candida of fungi are the core

functional microorganisms during Wuyi Hongqu Huangjiu fermentation [16].It has been

reported that six microbial genera (Saccharomyces, Aspergillus, Saccharopolyspora, Staphylo-
coccus, Lactobacillus, and Lactococcus) were most intimately linked to the major flavor compo-

nents-amino acids, alcohols, acids, phenols and esters [25].

This study aims at monitoring the bacterial succession via high throughput sequencing

(HTS) and the detection of the volatile compound dynamics with the help of headspace solid

phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME/

GC-MS) during brewing. We also considered to find the relationship between volatile com-

pounds and the bacterial flora, expecting to provide promising perspectives on flavor and

functional microbes in millet Huangjiu fermentation for the first time. Usage of millet brewed
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Huangjiu can realize the development and utilization of millet resources, and is beneficial for

the development of novel Huangjiu products.

Materials and methods

Sample collection

The fermentation assay was displayed at a constant temperate of 28˚C and the fermentation

stage lasted for twelve days. The fermented mash of each sample was collected at 0, 2, 4, 6, 8,

10, 12 fermentation stages. Each sample has six replications. Each sample was conducted for

flavor test and high-throughput sequencing.

Determination of reducing sugar, alcohol, acidity, volatile compounds and

organic acids

The dinitrosalicylic acid method (DNS) was used to detect the content of reducing-sugar with

glucose as standard substance [26]. The alcohol degree and the acidity assay could evaluate the

quality of Huangjiu, which was measured based on the standard of GB/T13662-2008.

The HS-SPME-GC-MS was used to analyze the characters of volatile compounds. The vola-

tile compounds were collected by a 50/30μm DVB/CAR/PDMS (Superco, Bellefonte, PA,

USA). Each Huangjiu sample (8 mL) was set in a 15 mL SPME glass vial in addition with 2.5 g

NaCl and 5 mL internal standards (65.76 mg/L 2-octanol). Then the water bath and ultrasonic

wave were applied for the treatment of the mixture for 45 min at 50˚C. The volatile com-

pounds were identified via a Shimadzua-QP2010 Plus-GCMS. The carrier gas helium was cir-

culated at the speed of 1 mL/min with the split-flow mode, the split ratio of which was set as

50/1. The settings of the oven temperature program were as follows: 35˚C 4 min; five centi-

grade per minute ramp to 150˚C and time-keeping for 2 min; 3˚C/min ramp to 210˚C. The

temperatures of detector and injector were both 230˚C and that of ion source was 200˚C. The

ion energy for electron impact (EI) was adjusted to 70 eV. The detection and monitor of the

total ion currents were performed to record the chromatograms in 30–350 mass range. 2-octa-

nol was used as the internal standard to determine semi-quantitatively the content of the vola-

tile compounds [27].

The HPLC analysis was used to analyze organic acids. Each wine sample of 5 mL was put in

tube and centrifuged at 10,000 r/min for 20 min, then filtrated through a microporous mem-

brane, which was 0.45 mm. Chromatographic conditions were referred to the method pro-

posed by Ye et al with some modifications [28]. The separations were conducted on Agilent

1260 Infinity II equipped with a 250 mm x 4.6 mm and 5 μm welch ultimate XB-C18 column.

The temperature of the column was set at 30˚C. A mixture of phosphate buffer (0.01 mol/L

(NH4)2HPO4), adjusted with the solution of phosphoric acid to pH 3.0 was employed as the

mobile phase with a flow rate of 0.7 mL/min. The detection wavelength was 215 nm.

DNA extraction, and high-throughput sequencing

Total genomic DNA of fermented mash samples was extracted via CTAB method, which was

further adjusted to a uniform final concentration of 1 ng/μL by sterile water.

Hypervariable regions of V3-V4 on 16S rRNA gene of bacteria were amplified through PCR

with specific primers of 338 F (50-ACTCCTACGGGAGGCAGCAG-30) and 806 R (50-GGACT
ACHVGGGTWTCTAAT-30). Primers of ITS1 (50-AxxxCTTGGTCATTTAGAGGAAGTAA-30)
and ITS2 (50-BGCTGCGTTCTTCATCGATGC-30) were used to amplified ITS1 and ITS2

region of fungus. All PCR reactions were performed in Phusion High-Fidelity PCR Master Mix

(NEB). The mixture of PCR products was then purified using Qiagen Gel Extraction Kit
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(Qiagen, Germany). Sequencing libraries were generated using TruSeq1DNA PCR-Free Sam-

ple Preparation Kit (Illumina, USA) following the manufacturer’s recommendations. The

library quality was assessed on the Agilent Bioanalyzer 2100 system. Finally, the library men-

tioned above was sequenced with the help of an Illumina HiSeq2500 platform.

Paired-end reads were assigned to samples on account of their unique barcode and trun-

cated through cutting off the primer sequences and barcode. Paired-end reads were merged

via FLASH (V1.2.7) [29]. According to the QIIME (V1.7.0), the high-quality clean reads were

obtained after the raw reads filtered under specific filtering conditions [30, 31]. Chimera

sequences were detected through the reference database (Gold database) using UCHIME algo-

rithm, and then removed out [32, 33].

OTU cluster, species annotation and phylogenetic analysis

Sequences were performed with Uparse software (Uparse v7.0.1001) [34]. Sequences with

�97% similarities were assigned to be the same OTUs. GreenGene Database based on RDP 3

classifier (Version 2.2) was applied to annotate the taxonomic information for each representa-

tive OTU [35, 36]. Alpha and beta diversity analysis was performed on account of the normal-

ized data. The phylogenetic relationship of different OTUs was investigated by multiple

sequence alignment by the MUSCLE software (Version 3.8.31) [37]. Alpha diversity was ana-

lyzed via the usage of six indices, including Observed-species, Chao1, Shannon, Simpson, ACE

and coverage. All the indices were calculated with QIIME (Version 1.7.0) and displayed with R

software (Version 2.15.3). Beta diversity was calculated by both weighted and unweighted uni-

frac via QIIME software (Version 1.7.0).

Correlations between microorganisms and flavor compounds

Correlations between the microorganisms and flavor compounds during the fermentation of

millet Huangjiu were established by Pearson correlation coefficient (r). R programming lan-

guage was used to construct the correlation network. The P value was adjusted by FDR using

the Benjamini-Hochberg method. P value and the adjusted P value lower than 0.05 was

regarded as significant difference.

Results and discussion

The acid, reducing sugar and alcohol were altered during millet Huangjiu

fermentation

The contents of acids, reducing sugar and alcohol were detected based on National Standard

of the People’s Republic of China [38]. The results showed acid concentration continued to

climb with a rapid growth since 8th day then began to flatten at day 10. The content of reduc-

ing sugar reached peak value on the 2nd day, and decreased progressively with the process of

fermentation. The alcohol also tended to increase gradually and exhibited a fast increase from

day 0 to day 2, with a steady growth rate from 4th day to 12th day (Fig 1).

Studies on Huangjiu using traditional rice as raw material have shown that the liquor output

rate was negatively correlated to the fat content in rice. In the meantime, the reduction of pro-

tein in raw materials could effectively control the peculiar smell raised by excessive higher alco-

hols, and the contents of harmful substances such as ethyl urethane and biogenic amine in wine.

Furthermore, the starch granules expanded after water absorption, facilitating the accumulation

of reducing sugar, helpful for further saccharification and fermentation in millet Huangjiu.

Therefore, the application of millet with low concentration of protein and fat, as well as high

content of starch as raw material for Huangjiu brewing would be a better choice [39–42].
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Organic acid in millet Huangjiu fermentation

Acid is an important flavoring substance of wine. Its main component organic acid, an essential

precursor of flavors, could interact with other aroma & flavor-producing substances then collec-

tively form the unique flavor and fragrance in Huangjiu [43, 44]. An appropriate amount of

organic acid helps harmonize and stabilize the taste and aroma of wine, making it refreshing

and palatable. Moreover, organic acids also hold considerable implications for improving intes-

tinal function, resisting fatigue and other health benefits [45]. The alcoholic and malolactic fer-

mentation and oxidation of the ethanol contributed a lot to the formation of organic acids.

The main organic acids identified in millet Huangjiu fermentation were oxalic acid, tartaric

acid, pyruvic acid, malic acid, α-ketoglutaric acid, lactic acid, citric acid and succinic (S1

Table). The concentration of oxalic acid, tartaric acid, malic acid, lactic acid, citric acid and

succinic acid were showed to be upward in general as the fermentation time extended com-

pared to day 0. Most of them have increased sharply from 8th day to 10th day. As a whole, the

total content of organic acids reached the peak at the end of the fermentation day 12, while the

valley was detected at the initial day 0. The concentration of succinic acid and lactic acid were

significantly higher than others, especially the former. Pyruvic acid reached the highest con-

centration at 6th day, subsequently underwent a decline then increased a bit on day 10 and 12

but still lower than the value of day 6. α-ketoglutaric acid reached its peak on 2nd day, and

then kept decreasing over the remnant days, becoming the least abundant substance al last.

Fig 1. Dynamic change of the content of acid, reducing sugar and alcohol in millet Huangjiu fermentation during different

stages. X-axis means fermentation stages, Y-axis represents substance contents.

https://doi.org/10.1371/journal.pone.0262353.g001
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Lactic acid, malic acid, citric acid, tartaric acid and succinic acid are typical non-volatile

acid [46]. Lactic acid bacteria presented in Huangjiu fermentation could produce massive lac-

tic acid, which contribute a lot to the excellent flavor of Huangjiu. Malic acid is widely known

for anti-fatigue, liver protection and cardiovascular fitness enhancement, while citric acid

mainly serves as delaying senility, lowering blood pressure and eliminating fatigue. They have

shown important effects on the quality of Huangjiu.

Volatile compounds in in millet Huangjiu fermentation

In this study, 95 volatile flavor compounds were finally detected during the whole fermentation

process, including 31 esters, 23 alcohols, 13 alkanes, 7 ketones, 6 acids, 3 phenols, 2 aldehydes

and 10 other kinds of volatile compounds (S2 Table). Hexadecanoic acid ethyl ester, 9,12-octa-

decadienoic acid ethyl ester, decanoic acid ethyl ester and hexanoic acid ethyl ester were the

dominant ester with high concentration in the last day of fermentation. Among all detectable

alcohols, 3-methyl-1-butanol, 2,3-butanediol, phenylethyl alcohol and glycerin were major alco-

hols during the fermentation process. In addition, 2-methoxy-4-vinylphenol, pentacosane and

2-octanone were the dominant phenol, alkane and ketones, respectively. At the last day of fer-

mentation, 48 compounds were detected, including twenty-four esters, thirteen alcohols, three

ketones, three acids, one alkane, one aldehyde, one phenol, and three other volatile compounds.

The contents and varieties of those flavor compounds reached their peak at 10th day.

The types and quantities of flavor compounds were fluctuated during the different brewing

stages. The content of alcohol was relatively steady in different brewing periods; the changes of

esters and alcohol were stable except for a mild decrease at the end of brewing. While the con-

tent of acids and alkanes were gradually declined with the development of brewing.

The characteristic flavor compounds in fermented millet Huangjiu are 2-methyl-1-propa-

nol, 3-methyl-1-butanol, phenethyl alcohol, hexanoic acid ethyl ester, octanoic acid ethyl ester,

decanoic acid ethyl ester, 2-hydroxy-propanoic acid ethyl ester, hexadecanoic acid ethyl ester,

(E)-9-octadecenoic acid ethyl ester, 9,12-octadecadienoic acid ethyl ester.

Bacterial community dynamics during millet Huangjiu fermentation

The initial fermentation had significant difference in bacterial richness and community diver-

sity compared with later fermentation. Bacterial richness was not altered during the middle

and final stages of fermentation, but the community diversity in the two stages were dramati-

cally different (Table 1 and S1 Fig).

An average of 2,455,812 high-quality reads were obtained through high-throughput

sequencing. Totally, 26 phyla, 45 classes, 90 orders, 142 families and 284 genera of bacteria par-

ticipated in millet Huangjiu fermentation. The dominant phyla in millet Huangjiu fermenta-

tion is Firmicutes, which predominated over 90% in the whole samples (Fig 2A). Followed by

Proteobacteria and Bacteroidetes. Firmicutes was gradually declined in the first six days. Proteo-
bacteria appeared its maximum quantity on the second day, and then slightly decreased. The

peak of Bacteroidetes was appeared at the fourth day.

From the genus level (Fig 2B), Bacillus was predominant, represented by 57.60–98.69%

among the bacteria. The second abundant genus was Paenibacillus, with a decline on the sixth

day. Weissella was the third abundant genus, which reached the highest quantity on the 2nd

day, then decreased and gradually leveled off on the 8th day.

Fungal community dynamics during millet Huangjiu fermentation

Four phyla, 9 classes, 9 orders, 13 families and 15 genera of fungus were identified and charac-

terized. The results showed that approximately 99% fungus belong to the phylum of
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Ascomycota (Fig 3A). Saccharomyces, Issatchenkia and Lichtheimia occupied the top three at

genus level (Fig 3B). Saccharomyces and Lichtheimia reached the highest level on the second

day. The quantity of Saccharomyces was declined on the fourth day, and then gradually

increased at remaining fermentation stage. The quantity of Issatchenkia was varied slowly in

the fermentation process.

Relationship between microorganisms and flavor compounds during millet

Huangjiu fermentation

Totally 537 correlations were established between flavor compounds and microorganisms dur-

ing millet Huangjiu fermentation. 153 microorganisms were relevant to the formation of main

flavor compounds (P<0.05) (Fig 4A). Rheinheimera, Psychrobacter, Sporolactobacillus, and

Chryseomicrobium participated in the formation of more than 10 flavor compounds. Acetobac-
ter, Asticcacaulis, Bradyrhizobium, Brevibacillus, Enterococcus, Aquabacterium, Methylobacter-
ium, Myxococcus, Novosphingobium, and Sphingomonas were only associated with the

formation of 4-ethyl-2-methoxy-phenol. Clostridium_sensu_stricto_7, Exiguobacterium, Fine-
goldia, Lysobacter, was related to the generation of octadecanoic acid ethyl ester, hexanoic acid

ethyl ester, octadecanoic acid ethyl ester and 3-methyl-1-butanol, respectively. There are more

than 15 genera were associated with the formation of acetic acid phenylethyl ester, decanoic

Table 1. Comparison of α diversity and β diversity during millet Huangjiu fermentation.

Between-group P-values (α Diversity Index) P-values (β Diversity Index)

Observed_ species Chao1 ACE Shannon Simpson Weighted Unifrac distance

Day0 vs Day2 �� � � ��� NS NS

Day0 vs Day4 � NS NS �� ��� ��

Day0 vs Day6 � � NS �� NS NS

Day0 vs Day8 NS NS NS NS NS NS

Day0 vs Day10 �� �� � � � ��

Day0 vs Day12 � � � ��� ��� �

Day2 vs Day4 NS NS NS � �� NS

Day2 vs Day6 NS NS NS NS � NS

Day2 vs Day8 NS NS NS �� NS NS

Day2 vs Day10 NS NS NS � ��� NS

Day2 vs Day12 NS NS NS NS � NS

Day4 vs Day6 NS NS NS NS NS NS

Day4 vs Day8 NS NS NS NS �� NS

Day4 vs Day10 NS NS NS NS NS NS

Day4 vs Day12 NS NS NS NS NS NS

Day6 vs Day8 NS NS NS � ��� NS

Day6 vs Day10 NS NS NS NS �� NS

Day6 vs Day12 NS NS NS NS NS NS

Day8 vs Day10 � � NS NS NS NS

Day8 vs Day12 NS NS NS NS �� NS

Day10 vs Day12 NS NS NS NS � NS

Significance: NS > 0.05,

��0.05,

���0.01,

���≦0.001

https://doi.org/10.1371/journal.pone.0262353.t001
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acid ethyl ester, 4-ethyl-2-methoxy-phenol, hexanoic acid ethyl ester, octanoic acid ethyl ester,

oxalic acid, tartaric acid, glycerin and 3-hydroxy-2-butanone.

P value related to microorganisms and the major flavor compounds was adjusted to obtain

closer correlation. 56 correlations were established by filtering P adjust less than 0.05 (Fig 4B).

More than 20 microorganisms exhibited correlations to the formation of 4-ethyl-2-methoxy-

phenol and hexanoic acid ethyl ester. Sphingobium showed a closer correlation with the gener-

ation of dodecanoic acid ethyl ester, tetradecanoic acid ethyl ester and decanoic acid ethyl

ester. 2-methyl-1-propanol was showed a closer correlation with Virgibacillus. Dodecanic acid

ethyl ester is colorless oil liquid with a waxy, rum aroma and cream flavors, commonly found

in cognac, rum, Irish whiskey and Chinese traditional beverages [47–49], also detected in our

millet Huangjiu. It could be used in daily fragrance and flavoring essence for the manufacture

of soft drinks, ice creams, candies and baking food, also applied to produce lubricants, plasti-

cizers and softeners. The traditional catalyst for synthesizing dodecanic acid ethyl ester is con-

centrated sulfuric acid, although cheap and easy to obtain, there have still been many side

reactions [50]. The accumulation of carboid is inevitable and the color of the esterified prod-

ucts is too much darker. Moreover, the product quality is seriously affected and the post-reac-

tion treatment is also complicated. Therefore, the use of biotechnology methods, such as direct

microbial fermentation and enzymatic catalysis exhibit lower energy consumption and higher

product quality [51]. Above all, it is more environmentally friendly than traditional chemical

synthesis methods. In this study, after P value adjust (Fig 4B), we found that Sphingobium still

has a strong correlation with the formation of dodecanic acid ethyl ester, which suggests that

Fig 2. Relative abundance levels of bacterial taxon during millet Huangjiu fermentation at different stages. (a):

Phyla taxon; (b): genus taxon.

https://doi.org/10.1371/journal.pone.0262353.g002
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we could subsequently isolate and cultivate this strain and optimize the fermentation condi-

tions to achieve the large-scale synthesis of dodecanic acid ethyl ester in vivo, overcoming the

defects of the original production process.

Open fermentation of Huangjiu could result in the diverse microorganisms in the brewing

process [52]. Microorganisms in the wheat Qu and external environment together provide

essential enzymes and metabolites for the fermentation process, which has also formed the

unique flavor of Huangjiu. In the present study, the main bacteria in the fermentation of millet

Huangjiu were Bacillus, Brevibacillus and Weissella. Bacillus could secret carbohydrate degra-

dation enzymes, such as glucanase, pectinase and cellulase, which could destroy the cell walls

of plant cells and release the nutrients. Bacillus could also synthesize many different kinds of

organic acids, physiological active substances and nutrients, most of which are flavor precur-

sors and flavor compounds, which explains the dominant reason for Bacillus [53]. Brevibacillus
could degrade starch, xylan, cellulose, non-starch polysaccharides and improve the utilization

rate of raw materials. The function of Weissella in fermentation was decompose glucose to car-

bon dioxide and ethanol [54].

Higher alcohols and aromatic esters are the dominant and important volatile flavor compo-

nents in Huangjiu. They reflect the quality and the flavor of Huangjiu. In this study, the main

alcohols were 2-methyl-1-propanol, 3-methyl-1-butanol, 2-3-butanediol and β-phenethyl alco-

hol, most of which were the degradation products of amino acids [55]. 2-methyl-1-propanol

could be obtained from natural fermentation of carbohydrates, or biosynthesized by genetic

engineering techniques [56–58]. Shota Atsumi reported intermediates Escherichia coli amino

acid synthesis pathway could generate 2-methyl-1-propanol through expressed kivd and

Fig 3. Relative abundance levels of fungal taxon during millet Huangjiu fermentation at different stages. (a):

Phyla taxon; (b): genus taxon.

https://doi.org/10.1371/journal.pone.0262353.g003
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Fig 4. The correlation analysis between microorganisms and flavor compounds during the fermentation of millet

Huangjiu. The blue pie represents microbial composition; the red pie indicates flavor compounds composition; the

green line means correlation between microorganisms and flavor compounds. a: P<0.05; b: P adjust<0.05.

https://doi.org/10.1371/journal.pone.0262353.g004
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ADH2 (14). In this study, we found the formation of 2-methyl-1-propanol was closely related

to Candidatus_Nitrosopumilus, Modestobacter, Oceanobacillus and Virgibacillus. 3-methyl-

1-butanol could affect the quality of the Huangjiu, and is also harmful to human toxicity [59].

Our study suggested that Gulosibacter, Lysobacter, Virgibacillus were related to the production

of 3-methyl-1-butanol. It is quite necessary to decrease the content of 3-methyl-1-butanol by

regulating the three strains during Huangjiu fermentation. 2,3-butanediol has sweet taste and

has been widely used to improve liquor flavor. K. oxytoca and B. polymyxa displayed a relative

higher production ability of 2-3-butanediol [60, 61]. In the process of millet Huangjiu brewing,

Anoxybacillus, Peptoniphilus, Sphingobium, Sporolactobacillus and Stenotrophomonas were

closely related to the synthesis of 2,3-butanediol. Phenethyl alcohol is an aromatic higher alco-

hol, which is extensively used in various alcoholic beverages [27]. Previous studies showed that

phenethyl alcohol was mainly produced by yeast metabolism and growth [62, 63]. In addition,

Helicobacter, Peptoniphilus, Sphingobium, Sporolactobacillus and Stenotrophomonas were also

involved in the synthesis of beta phenethyl alcohol [64].

Higher alcohols are very important precursors for ester formation. Esters can impact the

quality and flowery flavors of alcohol beverages. The main esters during fermentation are iden-

tified as hexanoic acid ethyl ester (strong aroma for liquor blending), octanoic acid ethyl ester

(colorless transparent liquid with an odor similar to brandy), decanoic acid ethyl ester (color-

less transparent liquid with fruity and bouquet aroma) [65], hexadecanoic acid ethyl ester

(light yellow oily liquid with the aroma of oil, sweet and mellow, increase the mellow feeling of

the wine) [66], 9,12-octadecadienoic acid ethyl ester (responsible for reducing blood fat, pre-

venting and curing atherosclerosis). The formation of these esters is closely related to alcohols,

fatty acids, coenzyme A, etc. [67]. Their synthesis pathways are concerned with yeast species.

In the present research, we found Acidaminococcus, Anoxybacillus, Bordetella, Deinococcus,
Fusobacterium, Gluconobacter, Peptoniphilus, Serratia and Sphingobium were involved in the

synthesis of various esters during millet Hunagjiu fermentation, which also indicated that the

biosynthesis of esters was associated with microorganisms.

As one of the extremely important flavoring substances in Huangjiu [68] and Baijiu [69,

70], hexanoic acid ethyl ester (ethyl hexanoate) is also the representative of the characteristic

flavor component in Baijiu, the content of which directly determines the quality of strong-fla-

vor Baijiu. Esters produced during the fermentation process are mainly synthesized by the fol-

lowing two pathways based on present research: one is that microorganisms synthesize esters

under the action of their own intracellular enzymes [71–73]; while the more frequent method

is the catalysis by the extracellular enzymes (microbial lipases) secreted by microorganisms

when organic acids react with alcohols in outside surrounding environment for synthesis [74,

75]. In addition, the acidic substances and alcohols in the wine body can also undergo esterifi-

cation under natural conditions, but the rate and yield are far lower than the above two meth-

ods [76]. Bacillus spp., Alcaligenes spp., and Pseudomonos spp., of bacteria and Penicillium
spp., Fusarium spp., Aspergillus spp., of fungi are screened as candidates for large scale of the

production of lipases mentioned above [77]. However, the selection and modification of high-

yield ethyl caproate strains mainly focus on Saccharomyces cerevisiae [78–80]and Monascus
purpureus [81–83]. In our study, we established the closer relationship between 21 novel genus

of bacterium (such as Aeriscardovia, Atopobium and Paracocccus) and the formation of ethyl

hexanoate after P value adjust (Fig 4B). The isolation and cultivation of them would provide a

solid theoretical basis for the identification of bacteria producing ethyl hexanoate esterase and

the optimization of fermentation conditions for further higher yield.

With herbal aroma and warm spicy taste, 4-ethyl-2-methoxyphenol has been widely used in

food additive and fragrance, especially in wine and soy sauce [84]. As Fig 4B showed, the for-

mation of 4-ethyl-2-methoxyphenol could be related to 26 different genera of bacterium with
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less abundance during millet Huangjiu fermentation, suggesting that the generation of flavor

compounds is sophisticated and fantastic, and it is worth noting that the interaction between

different, especially those less abundant microbes.

Acid is an important flavor compounds of Huangjiu, and organic acid of which is mainly

responsible for the sour taste in Huangjiu. Moreover, organic acids are critical to improve and

enhance intestinal function, anti-fatigue and other health functions. Malic acid plays impor-

tant roles in anti-fatigue, liver protection and cardiovascular fitness enhancement. The main

function of citric acid is delaying senility, lowering blood pressure and eliminating fatigue.

Most Lactobacillus species have been proved indispensable for producing lactic acid, ethanol

and acetic acid. The genus Saccharomyces, Pichia, and Zygosaccharomyces could convert lactic

acid to pyruvate. Moreover, there have been evidences that they could convert pyruvate to ace-

tyl-CoA, acetaldehyde in liquor production [85]. Microorganisms include several yeast, Asper-
gillus, Penicillium and Candida could accumulate citric acid [86]. The microorganisms that

could produce malic acid were Saccharomyces and Aspergillus [87, 88]. The genera Bacteroides,
Porphyromonas and Sedimentibacter have been reported to produce succinic acid, propionic

acid and alcohols [89–91]. Besides the microorganisms reported above, many other microor-

ganisms are also involved in the formation of organic acids according to our study. Aeromo-
nas, Brachybacterium, Haemophilus, Weissella can utilize glucose to produce acid during

fermentation. Fusobacterium can hydrolyze sugars and proteins, and usually produce mixed

organic acids and alcohols with sugar or peptone participation. Furthermore, there are num-

bers of microbial species such as Buchnera, Cetobacterium, Chryseobacterium, Macrococcus,
GaiellaJeotgalibacillus, Marinimicrobium, Oxalophagus, Wolinella, Pelotomaculum, Psychro-
bacter all related to organic acid production, but have not yet been fully investigated in detail.

The relationship between these microorganisms and their corresponding acids needs to be ver-

ified in future. The existence of carbonyl and carboxyl groups in pyruvate acid makes its par-

ticipation in various biochemical reactions, especially in Tricarboxylic acid cycle and

microbial metabolism, further promoting more microbial involvement during fermentation,

also the direct or indirect precursor of many high value-added products in millet Huangjiu

aroma. The principally well-known pyruvate bioproduction microorganisms are fungus like

Torulopsis glabrata [92, 93] and Saccharomyces cerevisiae [94], with less research on bacterium.

For example, Corynebacterium pyruviciproducens was isolated as candidate strains to produce

pyruvate [95, 96] and Escherichia coli aceF mutant strains were genetically engineered to fer-

ment pyruvate [97, 98]. In our study, Corynebacterium was the only genus predicted associa-

tion with the formation of pyruvic acid. This strong relevance indicated it could be a high-

productive pyruvate strain during millet Huangjiu fermentation, also inspired us for its further

isolation and extensive application.

Millet, a kind of high-quality healthy grain, has not been paid enough attention to its utiliza-

tion. Although as the main raw material for Huangjiu fermentation, it has seldom been

reported. Northern Huangjiu using millet can realize the development and utilization of millet

resources, and also beneficial for the development of novel Huangjiu products. On the other

hand, the way to promote the quality and flavor of Huangjiu is a consistent problem. Our

work could provide more suggestive information on flavor and functional microbes during

millet Huangjiu fermentation. Future investigation would focus on the improvement millet

Huangjiu quality by synthetic microbial communities closely relevant to aroma compounds.

Conclusions

Millet Huangjiu is a national alcoholic beverage in China. In this study, basic physicochemical

parameters, 95 flavor compounds (31 esters, 23 alcohols, 13 alkanes, 7 ketones, 6 acids, 3

PLOS ONE The changes of microbial diversity and flavor compounds during millet Huangjiu fermentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0262353 January 5, 2022 12 / 18

https://doi.org/10.1371/journal.pone.0262353


phenols, 2 aldehydes and 10 other kinds of volatile compounds) and microorganism profiles

(284 and 15 genera of bacteria and fungus were detected, respectively) have been investigated

during millet Huangjiu fermentation, their correlations were also established and analyzed.

Bacillus was principal followed by Paenibacillus and Weissella form the genus level. Overall,

537 correlations were established between flavor compounds and microbes during millet

Huangjiu fermentation. 153 microorganisms were relevant to the formation of main flavor

compounds (P<0.05). The top five dominant genus of flavor producing microbes were Chry-
seobacterium, Sporolactobacillus, Psychrobacter, Sphingobium and Anoxybacillus. Our research

provides essential information on the relationship between microbial community and the fla-

vor formation during millet Huangjiu fermentation, and is beneficial for the development of

Huangjiu products.
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