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Abstract

The type VII protein secretion system (T7SS) is found in actinobacteria and firmicutes, and plays important roles in virulence

and interbacterial competition. A membrane-bound ATPase protein, EssC in Staphylococcus aureus, lies at the heart of the

secretion machinery. The EssC protein from S. aureus strains can be grouped into four variants (EssC1–EssC4) that display

sequence variability in the C-terminal region. Here we show that the EssC2, EssC3 and EssC4 variants can be produced in a

strain deleted for essC1, and that they are able to mediate secretion of EsxA, an essential component of the secretion

apparatus. They are, however, unable to support secretion of the substrate protein EsxC, which is only encoded in essC1-

specific strains. This finding indicates that EssC is a specificity determinant for T7 protein secretion. Our results support a

model in which the C-terminal domain of EssC interacts with substrate proteins, whereas EsxA interacts elsewhere.

The type VII secretion system (T7SS) is found primarily in
bacteria of the actinobacteria and firmicutes phyla and
secretes proteins that lack cleavable N-terminal signal pepti-
des. The system is best characterized in mycobacteria, where
it is designated ESX, and pathogenic members of the genus
can encode up to five copies of the secretion machinery [1,
2]. Substrates of the T7SS may vary in size, but are usually
a-helical in nature. Every T7SS analysed to date secretes at
least one protein of the WXG100 superfamily. Proteins of
this family are small helical hairpins that have a conserved
WXG amino acid motif in a short loop between the two
helices [3, 4]. A non-cleaved sequence located close to the
C-termini of some WXG100 proteins acts as a signal for T7
secretion [5–8]. Some studies have suggested that the WXG
motif may act alongside the C-terminal region as a bipartite
targeting signal [9, 10]. WXG100 proteins are secreted as
folded dimers; in actinobacteria these are heterodimers of
paired WXG100 proteins, whereas in firmicutes they may
also be homodimers [9]. The T7SS also secretes much larger
substrates that share a similar four-helical bundle arrange-
ment of the WXG100 protein dimers [10–12]. Some T7 sub-
strates interact with chaperones prior to secretion and there
is evidence that secretion of LXG domain substrates in
firmicutes is dependent on complex formation with a
WXG100 protein partner [13–15].

There are commonalities and differences between the T7SS of
actinobacteria and firmicutes [16]. A membrane-embedded

ATPase of the FtsK/SpoIIIE family termed EccC/EssC is
found in all T7SSs. In both systems the protein shares a similar
overall topology, with two transmembrane domains that are
usually followed by three P-loop ATPase domains at the
C-terminus. Although all three P-loop ATPase domains are
capable of binding ATP, mutagenesis studies have indicated
that only ATP hydrolysis by domain 1 is essential for T7 secre-
tion [8, 17]. In actinobacteria, a hexameric arrangement of the
EccC ATPase lies at the centre of a 1.8MDa complex that also
contains six copies of the EccB, EssD and EccE proteins [18].
In firmicutes, homologues of EccB, D and E are absent and a
distinct set of membrane proteins, EsaA, EssA and EssB, work
alongside the ATPase, EssC, to mediate T7 secretion [19–23].
In Staphylococcus aureus and Bacillus subtilis a secreted WXG
protein, EsxA, and a small cytoplasmic protein, EsaB, are also
required for T7SS activity [19, 20, 22–24] (Fig. 1a).

The EccC/EssC ATPase has previously been implicated in
substrate recognition. It was shown that the C-terminal
domain of EccCb1 interacted with the EsxB substrate [5,
25], while the EccC ATPase domains have been co-crystal-
lized with a peptide from the EsxB C-terminus [8]. Cross-
linking and co-purification experiments have identified
complexes of S. aureus EssC with substrates EsaD (also
called EssD) and EsxC [14, 26]. Further evidence in support
of a role for EssC in substrate recognition comes from geno-
mic analysis of S. aureus [27]. It was noted that there was
sequence variability at the ess locus across different S. aureus
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strains. Genes coding for the core components EsxA-EssB
are highly conserved (Fig. 1b), as is the 5¢ end of essC, but
the 3¢ portion of the gene falls into one of four sequence
groupings [27]. The essC sequence type strictly co-varies
with the sequence of adjacent 3¢ genes, some of which are
known or strongly predicted to encode secreted substrates.
This would be consistent with the C-terminal variable
region of EssC playing a role in substrate recognition. In this
study we have addressed this hypothesis directly by assess-
ing whether EssC proteins from the EssC2, EssC3 and
EssC4 classes can support the secretion of the EssC1 sub-
strate, EsxC [28], and of the core component, EsxA.

S. aureus EssC proteins are approximately 1480 amino acids
in length and have a common domain organization, with
two forkhead-associated (FHA) domains at their N-termini,

followed by two transmembrane domains, and three repeats
of a P-loop ATPase domain at their C-termini ([29, 30];
Fig. 1a). Sequence analysis indicates that S. aureus EssC pro-
teins are almost sequence invariant until part way through
the second ATPase domain, where the EssC1 variant, found
in strains such as RN6390, Newman and USA300, starts to
diverge (Fig. 1c, d). The EssC2, EssC3 and EssC4 variants
are more similar to one another, and share almost identical
sequences until ATPase domain 3, where they also start to
vary (Fig. 1c, d). Of the four ATPases, variants 2 (from
strain ST398) and 3 (from strain MRSA252) are the most
similar (Fig. 1d).

We have previously constructed an in-frame deletion of
essC in strain RN6390 and shown that this results in the
inability to export both the core machinery component,

Fig. 1. Sequence variability in S. aureus EssC. (a) The S. aureus T7 secretion machinery. Components that are essential for T7 secre-

tion are shown in light blue with their subcellular locations. The hatched domains of EssC indicate sequence-variable regions. The sub-

strate protein EsxC, found only in strains with the EssC1 variant, is shown in dark blue. (b) Genetic organization of the S. aureus ess

locus in the four different ess strain variants. Since the 3¢ boundaries of the ess loci are not known, the first eight genes downstream

of essC are shown in each case. The dotted line indicates the approximate position of essC sequence divergence and the shading at the

3¢ end of essC represents the region of sequence variability. (c) Structural model of the ATPase domains of S. aureus EssC (generated

using amino acids 601–1078 of EMRSA15 EssC) using Phyre2 (www.sbg.bio.ic.ac.uk/~phyre/) with the structure of EccC from Thermo-

monospora curvata [8] as a template. Dark blue shading, residues 601–1078, very highly conserved; light blue shading, residues 1079–

1289 (where the EssC1 sequence diverges from the remaining EssC); cyan shading, residues 1290–1479 (variable C-terminal region).

(d) Alignment of EssC sequences from the indicated S. aureus strains. The alignment was generated using CLUSTAL W (www.ch.embnet.

org/software/ClustalW.html) and shaded using Boxshade (https://embnet.vital-it.ch/software/BOX_form.html), and is shown from

amino acid 600 onwards. The blue, yellow and purple lines above the alignment delimit the extent of ATPase domains 1, 2 and 3,

respectively, based on the Phyre model generated in (c).
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EsxA, and the substrates EsxC and EsaD [14, 20]. This
secretion deficiency could be rectified by the reintroduction
of EssC1 encoded on plasmid pRMC2 [31]. Fig. 2(a) shows
that production of EssC1 could be also restored when it was
encoded on the expression vector pRAB11 [32], and that
the reintroduction of plasmid-encoded EssC1 resulted in
strong secretion of both EsxA and EsxC in the RN6390
DessC strain.

Next, we amplified the genes for essC2 (from strain
ST398), essC3 (from strain MRSA252) and essC4 (from
strain EMRSA15), and also cloned these into pRAB11 (see
Table S1 for the oligonucleotides used for these experi-
ments, available in the online version of this article). We
first confirmed that the three variant EssC proteins could
be stably produced in the RN6390 DessC strain back-
ground. To this end, anhydrotetracycline (ATC) was added
to induce plasmid-encoded production of EssC and whole-
cell samples were analysed by blotting with an EssC antise-
rum. It should be noted that the antiserum used was raised
against a truncated protein covering the last two ATPase
domains of the EssC1 variant [20]. As shown in Fig. 2(a),
each of the EssC2, EssC3 and EssC4 variants could be rec-
ognized by this antibody, but not so strongly as the cog-
nate EssC1, probably due to a lack of conservation of
epitopes in this region of the protein. We conclude that all
EssC variants can be produced in strain RN6390.

Next, we asked whether the variant EssC proteins in RN6390
could support T7 protein secretion. Fig. 2(b) (top panel)
shows that secretion of the EsxA core component was indeed
supported by each of these EssC proteins, indicating that each
EssC variant was functional in the heterologous strain back-
ground. However, none of the EssC variants were able to sup-
port secretion of the substrate protein, EsxC. Taken together,
these results confirm that EssC is a specificity determinant
for substrate secretion by the S. aureus T7SS. The findings
strongly suggest that the sequence-invariant regions of EssC
proteins are involved in mediating interactions with the con-
served T7 core components, including the secreted protein
EsxA (which has >99% sequence identity across all sequenced
S. aureus strains), and that the sequence-variable region is
involved in substrate recognition. This might imply that EsxA
and EsxC are secreted by different mechanisms.

Finally, it is interesting to note that the secretion of all
known substrates mediated by the EssC1 variant is depen-
dent on a chaperone protein, EsaE/EssE [14, 26]. Some sub-
strates of the actinobacterial T7SS also interact with specific
chaperones of the EspG family to ensure delivery to the cog-
nate secretion machinery [13, 33], although other substrates
appear to be exported independently of a specific chaperone
[2]. No protein with any detectable sequence homology to
either EsaE or EspG is encoded at the ess loci of the essC2,
essC3 or essC4 strain variants. In future it will be interesting

Fig. 1. (cont.)
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to determine whether the mechanism of substrate targeting
differs across the Ess subtypes in S. aureus.
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