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Abstract

This paper illustrates the use of a combined neural network model based on Stacked Generalization method for
classification of electrocardiogram (ECG) beats. In conventional Stacked Generalization method, the combiner learns to map
the base classifiers’ outputs to the target data. We claim adding the input pattern to the base classifiers’ outputs helps the
combiner to obtain knowledge about the input space and as the result, performs better on the same task. Experimental
results support our claim that the additional knowledge according to the input space, improves the performance of the
proposed method which is called Modified Stacked Generalization. In particular, for classification of 14966 ECG beats that
were not previously seen during training phase, the Modified Stacked Generalization method reduced the error rate for
12.41% in comparison with the best of ten popular classifier fusion methods including Max, Min, Average, Product, Majority
Voting, Borda Count, Decision Templates, Weighted Averaging based on Particle Swarm Optimization and Stacked
Generalization.
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Introduction

Accurate and computationally efficient means of classifying

electrocardiography (ECG) arrhythmias has been the subject of

considerable research effort in recent years. Electrocardiography

deals with the electrical activity of the heart [1]. Monitored by

placing sensors at the limb extremities of the subject, electrocar-

diogram (ECG) is a record of the origin and the propagation of the

electrical potential through cardiac muscles. It provides valuable

information about the functional aspects of the heart and

cardiovascular system. Early detection of heart diseases/abnor-

malities can prolong life and enhance the quality of living through

appropriate treatment. Therefore, numerous research works

analyzing the ECG signals have been reported [2–4]. For effective

diagnostics, the study of ECG pattern and heart rate variability

signal may have to be carried out over several hours. Thus, the

volume of the data becomes enormous which then results in a

tedious and time consuming study. Naturally, the possibility for the

analyst to miss (or misread) vital information is high. Therefore,

computer-based analysis and classification of diseases can be very

helpful in diagnostics [5–10].

Several algorithms have been developed for the detection and

classification of the ECG signals [11–14]. ECG features can be

extracted in time domain [15–18], in frequency domain [18–19], or

represented as statistical measures [12]. The results of the studies

have demonstrated that the Wavelet Transformation is the most

promising method to extract features from the ECG signals [2] [5–

6] [10]. Wavelet Transformation opens a category of methods that

represent the signal in different translations and scales. Moreover,

the Discrete Wavelet Transformation decomposes a signal into

different coarse signals. Wavelet coefficients obtained from the

decomposition process are considered as the filtered signal in the sub

bands. Features extracted from these coefficients can efficiently

represent the characteristics of the original signal in different details

[20–21]. Researchers have also demonstrated that the feature

extraction methods such as Fourier Transform [22], Principal

Component Analysis [23] and Independent Component Analysis

[24] can be successfully employed to extract appropriate features for

classification tasks.

As for classifiers, Artificial Neural Networks have been used in a

great number of medical diagnostic decision support system

functions obtained after dilatation and translation of an analyzing

wavelet [25–27]. Among them, the Multi Layer Perceptrons

(MLPs) [16–19] and Radial Basis Function [3] [28–29] neural

networks are probably the most popular. Combining classifiers to

achieve higher accuracy is an active field of research with

application in the area of ECG beat classification. Essentially, the

idea behind combining classifiers is based on the so-called divide-

and-conquer principle, according to which a complex computa-

tional task is solved by dividing it into a number of computation-

ally simple tasks and then combining the solutions of those tasks

[30–32]. For example Übeyli [33] has demonstrated that the

combined eigenvector methods (RNN approach) can be useful in

analyzing the ECG beats. Osowski et al. [34] have used an

ensemble of neural networks for recognition and classification of

arrhythmia. The implementation of Multiclass Support Vector

Machine with the Error Correcting Output Codes is presented for

classification of electrocardiogram (ECG) beats in ref [35]. There

are two main strategies in combining classifiers: fusion and

selection [36]. In classifier fusion, it is supposed that each ensemble
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member is trained on the whole problem space [37], whereas in

classifier selection, each member is assigned to learn a part of the

problem space [38–40]. This way, in the former strategy, the final

decision is made considering the decisions of all members, while in

the latter strategy, the final decision is made by aggregating the

decisions of one or a few of experts [41–42]. Combining classifiers

based on the fusion of outputs of a set of different classifiers has

been developed as a method for improving the recognition rate of

classification problems [43–45]. The general framework using an

ensemble of neural classifiers in two levels is often referred to as

Stacked Generalization [46]. In the first level, various neural

classifiers are used to learn different models from the original

dataset. The decisions of the first level classifiers and the

corresponding target class of the original input data are then used

as the input and target to learn the second level classifier,

respectively.

In this paper, we propose a new combination method for

classifying normal heartbeats, Premature Ventricular Contraction

(PVC) and other abnormalities. In the preprocessing module, an

Undecimated Wavelet Transform is used to provide an informa-

tive representation that is both robust to noise and tuned to the

morphological characteristics of the waveform features. For

feature extraction, we have used a suitable set of features that

consists of both morphological and temporal features. This way we

can keep both spatial and temporal information of signals. For

classification we have used a number of diverse MLPs neural

networks as the base classifiers that are trained by Back

Propagation algorithm. Then we employed and compared

different combination methods. In our proposed method, unlike

the Stacked Generalization, the second level classifier (combiner)

receives the input pattern directly adding on the base classifiers

outputs. In fact, in the learning phase, the combiner learns the

expertise areas for each base classifier. In the test phase, based on

spatial position of the input data, and by considering the expertise

areas of all base classifiers, the combiner specifies the weights for

optimal combination of the decisions from the base classifiers.

Therefore, we expect that the Modified Stacked Generalization

method to be able to use both fusion and selection mechanisms for

various test samples, proportional to the position of the sample in

the problem space. We used 10 different combination methods:

Max, Min, Average, Product, Majority Voting, Borda Count,

Decision Templates, Weighted Averaging based on Particle

Swarm Optimization, Stacked Generalization and Modified

Stacked Generalization. Experimental results indicate that our

proposed combining method performs better than other combin-

ing methods.

Materials and Methods

Data preparation
An ECG consists of three basic waves: the P, QRS, and T.

These waves correspond to the far field induced by specific

electrical phenomena on the cardiac surface, namely, a trial

depolarization (P wave), ventricular depolarization (QRS com-

plex), and ventricular repolarization (T wave). One of the most

important ECG components is the QRS complex [12]. Figure 1

shows a waveform of normal signal. Among the various

abnormalities related to functioning of the human heart,

premature ventricular contraction (PVC) is one the most

important arrhythmias. PVC is the contraction of the lower

chambers of the heart (the ventricles) that occur earlier than usual,

because of abnormal electrical activity of the ventricles. PVC is

related to premature heart beats that provide shorter RR intervals

than other types of ECG signals. Changes in the RR intervals play

an important role in characterizing these types of arrhythmias.

Hence, we exploit the instantaneous RR interval as another

feature component, which is defined as the time elapse between

the current and previous R peaks [15–17]. This paper investigates

the detection and classification of PVC arrhythmias. In Figure 2,

ECG signals of three classes are shown.

The MIT–BIH arrhythmia database [47] was used as the data

source in this study. The database contains 48 recordings each of

which has a duration of 30 minutes and includes two leads; the

modified limb lead II and one of the modified leads V1, V2, V4 or

V5. The sampling frequency is 360 Hz; the data are band-pass

filtered at 0.1–100 Hz and the resolution is 200 samples per mV.

Twenty-three of the recordings are intended to serve as a

representative sample of routine clinical recordings and 25

recordings contain complex ventricular, junctional and supra

ventricular arrhythmias.

There are over 109,000 labeled ventricular beats from 15

different heartbeat types. There is a large difference in the number

of examples in each heart beat type. The largest class is ‘‘Normal

beat’’ with about 75,000 examples and the smallest class is ‘‘Supra

ventricular premature beat’’ with just two examples. The database

is indexed both in timing information and beat classification. We

used a total of seven records marked as: 100, 101, 102, 104, 105,

106, and 107 in the database. We extracted a total of 15,566 beats:

8390 normal beats, 627 abnormal PVC arrhythmia beats, and

6549 other arrhythmia beats. We used the database index files

from database to locate beats in ECG signals. Of all these 15566

beats, we used 450 beats for training, 150 beats for validation and

the other 14966 for testing our networks. This way we assigned

equal number of samples to each class in our training and

validation phases (150 for training and 50 for validation for each

class).

The objectives of preprocessing stage are the omission of high-

frequency noise and the enhancement of signal quality to obtain

appropriate features. ECG signal is measured on static conditions

since various types of noise including muscle artifacts and

electrode moving artifacts are coupled in dynamic environment.

To remove such noises an advanced signal processing method,

such as discrete wavelet transform denoising technique [20] should

be used. This method has been emerged over recent years as a

powerful time–frequency analysis and signal coding tool favored

Figure 1. waveform of ECG signal: normal beat.
doi:10.1371/journal.pone.0024386.g001
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for the interrogation of complex signals. However, Discrete

Wavelet Transformation is not a time-invariant transform. To

solve this problem, we used the Stationary Wavelet Transform

which is also known as the Undecimated Wavelet Transform or

translation-invariant wavelet transform. Undecimated Wavelet

Transform uses the average of several denoised signals that are

obtained from the coefficients of e-decimated Discrete Wavelet

Transformation [20].

Figure 3 overleaf shows a color-coded visualization of the

Undecimated Wavelet Transform coefficients for an ECG beat.

We can see that the Undecimated Wavelet Transform coefficients

can capture the joint time-frequency characteristics of the ECG

waveform, particularly the QRS complex.

Suppose the signal S[L2(<). The Undecimated Wavelet

Transform is given by:

wv(t)~
1ffiffiffi
v
p

ð?

{?

s(t)Y�
t{t

v

� �
dt ð1Þ

where v~2k, k[Z, t[R and Y� is the complex conjugate of the

mother wavelet. Figure 4 shows the block diagram of Undeci-

mated Wavelet Transform.

This figure shows a decomposition of three levels: the blocks of

H(z) and Hr(z) are the decomposition and reconstruction high pass

filters and the blocks of G(z) and Gr(z) are low pass filters. d(:,:)
denotes the decomposition coefficients and a(:,:) denotes the

approximation coefficients. Selection of the most suitable mother

wavelet filter is of great importance in biomedical signal processing

in wavelet domain [48]. Although the computational load for

implementing the Daubechies algorithm is higher than the other

wavelet algorithms, it picks up detail that is missed by the other

wavelet algorithms [49]. Even if a signal is not well represented by

one member of the Daubechies family, it may still be efficiently

represented by another. Selecting a wavelet function which closely

matches the signal to be processed is of utmost importance in

wavelet applications [50]. For example Rafiee et.al have shown

that db44 is the most similar function for Electromyographic,

Electroencephalographic and Vaginal Pulse Amplitude biomedical

signals [48]. Daubechies wavelet family are similar in shape to

QRS complex and their energy spectra are concentrated around

low frequencies.

Classification
Base Classifiers: Multilayer Perceptrons Neural

Network. A MLPs is a supervised, fully-connected feedfor-

ward artificial neural network which learns a mapping between a

set of input samples and their corresponding target classes. The

MLPs is in fact an extension of the Perceptron neural network

which was originally proposed by Rosenblatt in 1957 [51]. The

main difference between MLPs and Perceptron is that MLPs can

learn nonlinear mappings which was the paramount drawback of

the Perceptron. Each node in a MLPs neural network represents a

neuron which is usually considered as a nonlinear processing

element. The two most popular functions to model this nonlinear

behavior are Q(yi)~ tanh (xi) and Q(yi)~(1ze{xi ){1 in which

the former function is a hyperbolic tangent which ranges from 21

to 1, and the latter is similar in shape but ranges from 0 to 1. Here

yi is the output of the i{th node (neuron) and xi is the weighted

sum of the input synapses.

A MLPs is consisted of one input layer, one or more hidden

layers and one output layer. For the n{th input sample, the net

output of the j{th neuron in the k{th hidden layer is computed

using a weighted summation over the neurons of its input:

Figure 2. ECG signals: (a) Normal Sinus rhythm beats; (b) Premature Venticular contraction beats; (c) other beats (non conducted P-
wave and right bundle branch block beats respectively).
doi:10.1371/journal.pone.0024386.g002
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netk
j (n)~

Xm

i~0

wk
jiy

k{1
i (n) ð2Þ

where wji is the weight between the i{th input neuron and the

j{th output neuron. For the first hidden layer where k~1, the

summation is performed over the elements of the network’s input

which means y1~x. The output of each neuron yk
j (n) in the

k{th hidden layer is specified using the activation function

Qk(:)which is usually sigmoid or hyperbolic tangent. It is to be

noted that the activation functions for different layers are not

necessarily the same.

yk
j (n)~Qk

j (netk
j ((n)) ð3Þ

The final outputs of the neural network are the values in the

output layer. We try to find the optimal weights of the network

during the learning process. There are various methods in the

literature to train a MLPs neural network among which Back

Propagation is the most popular. The general procedure to train

the network starts by feeding the training samples to the network.

As the initial weights of the network are determined randomly,

they cannot produce the desired outputs. The goal of the learning

process is to minimize the error which is defined as the difference

between the outputs of the network and the desired outputs (the

target classes of the input data). In order to minimize this error, we

first compute Ei which is the error at the i{th output node over

the set of training instances.

Ei~
1

2

XN

n~1

(din{yin)2 ð4Þ

where din and yin are the desired and real outputs of the i{th
output neuron for the n{th training sample and N is the total

number of training samples. We try to minimize the error using

Figure 3. A visualization of the Undecimated Wavelet Transform coefficients for a typical ECG beat.
doi:10.1371/journal.pone.0024386.g003

Figure 4. Block diagram of Undecimated Wavelet Transform. H(z) and Hr(z) are the decomposition and reconstruction high. pass filters. G(z)
and Gr(z) are low pass filters. Term d(.,.) denotes the decomposition coefficients and a(., .) denotes the approximation coefficients.
doi:10.1371/journal.pone.0024386.g004
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the Gradient Descent method in which the change for weights is:

Dwji~{g
LEi

Lwji

ð5Þ

where g is the learning rate and is carefully selected to ensure that

the weights converge to a response fast enough and without

producing oscillations. It can be shown that for the sigmoid

activation function the above equation results in:

Dwji~g
XN

n~1

(din{yin):yin
:(1{yin):xin ð6Þ

Combining Methodology. Combining is an approach to

improve the performance in classification particularly for difficult

problems such as those involving a considerable amount of noise,

limited number of patterns, high dimensional feature sets, and

highly overlapped classes. From a computational viewpoint,

according to the principle of divide-and-conquer, a complex

computational task is solved by dividing it into a number of

computationally simple tasks and then combining the solutions of

those tasks. In supervised learning, computational simplicity is

achieved by distributing the learning task among a number of

experts, which in turn divides the input space into a set of

subspaces [41]. There are generally two types of combining

strategies: selection and fusion [36]. The selection paradigm is

based on the assumption that each of the base experts is

specialized in a particular local area of the problem space.

There can be one specific expert nominated to make the decision

in each subspace, as was done by Rastrigin and Erenstein [39], or

in some cases one can devote more than one local expert to a local

area, as was done by Jacobs, Jordan, Nowlan, and Hinton [38] as

well as Alpaydin and Jordan [40]. Expert fusion assumes that all

experts are trained over the whole problem space, and are

therefore considered as competitive rather than complementary

[37] [52]. As the input signal is involved in the combining

procedure, combining neural networks as experts may be classified

into two major categories:

I. Static structures: In this class of combining methods of neural

networks, the responses of several predictors (neural net-

works) are combined by means of a mechanism which does

not involve the input signal; hence the designation ‘‘static’’.

II. Dynamic structures: In the second class of combining

methods, the input signal is directly involved in actuating

the mechanism that integrates the outputs of the individual

experts into an overall output; hence the designation

‘‘dynamic’’ [41].

The combination methodologies from the combiner viewpoint

are divided into two categories: non-trainable and trainable.

Simple algebraic combiners are, in general, non-trainable

combiners of continuous outputs. In non-trainable classifiers, the

total support for each class is obtained as a simple function of the

supports received from individual classifiers. Following the same

notation in [53], we represent the total support received by class

vj , the j{th column of the decision profile DP(x), as

mj(x)~V(d1,j(x),d2,j(x), . . . ,dT ,j(x)) ð7Þ

where T is the number of base classifiers and V(:) is the

combination function, such as one of those listed below.

N Mean Rule (Averaging). The support for vj , is obtained as

the average of all classifiers’ j{th outputs, that is, the function

V(:) is the averaging function. The mean rule is equivalent to

the sum rule (within a normalization factor of 1=T ), which also

appears often in the literature.

N In either case, the ensemble decision is taken as the class vj ,

for which the total support mj(x) is the largest.

mj(x)~
1

T

XT

t~1

dt,j(x) ð8Þ

N Minimum/Maximum/Median Rule. As the names

imply, these functions simply take the minimum, maximum

or the median among the classifiers’ individual outputs.

mj(x)~ min
t~1,...,T

fdt,j(x)g ð9Þ

mj(x)~ max
t~1,...,T

fdt,j(x)g ð10Þ

mj(x)~ median
t~1,...,T

fdt,j(x)g ð11Þ

In any of these cases, the ensemble decision is again chosen as

the class for which total support is largest. The minimum rule

is the most conservative combination rule, as it chooses the

class for which the minimum support among the classifiers is

largest.

N Product Rule. In product rule, supports provided by the

classifiers are multiplied. This rule is very sensitive to the most

pessimistic classifiers: a low support (close to 0) for a class from

any of the classifiers can totally remove the chance of that class

to be selected. However, if individual posterior probabilities

are estimated correctly at the classifier outputs, then this rule

provides the best estimate of the overall posterior probability of

the class selected by the ensemble.

mj(x)~
1

T
P
T

t~1
dt,j(x) ð12Þ

N Majority Voting. Majority voting follows a simple rule: it

will vote for the class which is chosen by maximum number of

individual classifiers. Let us define the decision of the t{th
classifier Dt as dt,j[f0,1g, t~1,2, . . . ,T and j~1,2, . . . ,c
where T is the number of classifiers and c is the number of

classes. If the t{th classifier chooses class j, then dt,j~1, and

zero, otherwise. The vote will then result in an ensemble

decision for class j if:

XT

t~1

dt,j~ max
XT

t~1

dt,j ð13Þ

N Borda Count. The Borda count is originally a voting method

in which each classifier gives a complete ranking of all possible

alternatives. This method, introduced in 1770 by Jean-Charles

ECG Classification by Neural Network Ensembles
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de Borda, is used if and when the classifiers can rank-order the

classes. This can be easily done if the classifiers provide

continuous outputs, as the classes can then be rank-ordered

with respect to the support they receive from the classifier.

However, Borda count does not need the values of these

continuous outputs, but just the rankings, hence it qualifies as a

combination rule that applies to labels. In standard Borda

count, each voter (classifier) rank-orders the candidates

(classes). If there are N candidates, the first-place candidate

receives N{1 votes; the second-place candidate re-

ceivesN{2, and so on. The candidate ranked last receives

zero votes. The votes are added up across all classifiers, and the

class with the most votes is chosen as the ensemble decision

[32].

Unlike non-trainable combiners, in trainable combiners, a

learning process makes the combiner learn to map the base

classifiers’ outputs to the target space.

N Decision Template Method. Decision templates, DTs,

were proposed by Kuncheva in [45], for combining continuous

valued outputs of an ensemble of classifiers. Decision templates

are defined as the average decision profile observed for each

class throughout training. Given a test instance x, its decision

profile is compared to the decision templates of each class, and

the class, whose decision template is closest, in some similarity

measure, is chosen as the ensemble decision. More specifically,

the decision template for vj , is calculated as

DTj~
1

Nj

X
DP(xj[vj )

DP(xj) ð14Þ

which is the average decision profile obtained from xj , the set

(with cardinality Nj ) of training instances that belong to true

class vj . Given an unlabeled test instance x, we first construct

its DP(x) from the ensemble outputs and calculate the

similarity S between DP(x) and the decision template DTj

for each class vj as the degree of support given to class vj .

mj(x)~S(DP(x),DTj), j~1,2, . . . ,c:

The similarity measure S is usually a squared Euclidean

distance, obtained as

mj(x)~1{
1

T|C

XT

t~1

Xc

k~1

½DTj(t,k){dt,k(x)�2 ð15Þ

where DTj(t,k) is the support given by the t{th classifier to

class vk by the decision template DTj . In other words,

DTj(t,k) is the support given by the t{th classifier to class vk,

averaged over instances of class vj . This support should ideally

be high when k~j, and low otherwise. The second term

dt,k(x) is the support given by the t{th classifier to class vk for

the given instance x. As usual, the class with the highest total

support is finally chosen as the ensemble decision.

N Weighted Averaging Based on Particle Swarm Opti-
mization. In combining classifiers, since the base classifiers

are diverse from each other, it seems that a weighted

combination of their outputs yields better results in comparison

with simple averaging method (explained in section 3.2.1).

mj(x)~
1

T

XT

t~1

wtdt,j(x) ð16Þ

Generally, one popular approach to find the optimal weights is

to use evolutionary algorithms like Particle Swarm Optimiza-

tion [54]. The Particle Swarm Optimization [55] is a

stochastic search through the n-dimensional space of the real

numbers. In Particle Swarm Optimization, each particle in the

swarm represents a point in the solution space. The position of

a particle is influenced by the best position visited by itself and

the position of the best particle in its neighborhood. When the

neighborhood of a particle is the entire swarm, the best

position in the neighborhood is referred as the global best

particle, and the resulting algorithm is referred to as a g-best

Particle Swarm Optimization. When smaller neighborhoods

are used, the algorithm is generally referred to as a l-best

Particle Swarm Optimization. The performance of each

particle is measured using a predefined fitness function, which

is related to the problem to be solved. Each particle in the

swarm has a current position, xi, a velocity (rate of position

change), vi, and a personal best position, yi . The personal best

position of particle i shows the best fitness reached by that

particle at a given time. Let f be the objective function to be

minimized. Then the personal best position of a particle at

time step t is updated as:

yi(t)~
yi(t{1) if f (xi(t))§f (yi(t{1))

xi(t) if f (xi(t))vf (yi(t{1))

�
ð17Þ

For the g-best model, the best particle is determined from the

entire swarm by selecting the best personal best position. This

position is denoted as ŷy. The velocity update equation is stated

as:

Figure 5. Block diagram of Combined Neural Networks;
Stacked Generalization method.
doi:10.1371/journal.pone.0024386.g005

Figure 6. Block diagram of Combined Neural Networks;
Modified Stacked Generalization method.
doi:10.1371/journal.pone.0024386.g006
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vij(tz1)~wvij(t)zc1r1j(t)(yij(t){xij(t))zc2r2j(t)(ŷyj(t){xij(t)) ð18Þ

where vij(tz1) is the velocity updated for the j{th dimension,

j~1,2,:::,d . c1 and c2 are the acceleration constants, where the

former moderates the maximum step size towards the personal

best position of the particle and the latter moderates the

maximum step size towards the global best position in just one

iteration. r1j(t) and r2j(t) are two random numbers within the

range [0,1] and give the Particle Swarm Optimization

algorithm a stochastic search property. Velocity updates on

each dimension can be clamped with a user defined maximum

velocity vmax, which would prevent them from exploding,

thereby causing premature convergence [55].

In Eq. (18), the inertia weight w affects the contribution of vij(t)
to the new velocity, vij(tz1). Briefly, this means that if w is large,

it makes a large step in one iteration (exploring the search space),

while if w is small, it makes a small step in one iteration, therefore

tending to stay in a local region (exploiting the search space).

Typically, the inertia weight is set to 0:4ƒwƒ1:2. Each particle

updates its position using the following equation:

xi(tz1)~xi(t)zvi(tz1) ð19Þ

In swarm terminology, particle i is flying to its new position

xi(tz1). After the new position is calculated for each particle, the

iteration counter increases and the new particle positions are

evaluated. This process is repeated until some convergence criteria

are satisfied.

N Stacked Generalization Method. Stacked generalization

is a technique proposed by Wolpert [46] that extends voting in

the sense that the learners (called level-0 generalizers) are not

necessarily combined linearly. The combination is made by a

combiner system (called level-1 generalizer) that is also

trainable. The general framework of this method (see

Figure 5) consists of two levels. The first level, level-0, is

formed by base classifiers which are trained using the input

data and the target output. The output of level-0 is then used

as the input of level-1. As is shown in Figure 5, a set of K
‘‘level-0’’ networks from N0

1 to N0
k are arranged as the first

layer, and their outputs are combined using a ‘‘level-1’’

network N1.

Proposed Method: Modified Stacked Generalization

Method. In this section, we introduce our proposed method,

the Modified Stacked Generalization, and after justifying its use,

we will demonstrate how this method improves the performance of

a classification problem.

In combination methods discussed in sections 3.1 and 3.2, the

outputs of the diverse base classifiers are combined together in

different ways. In section 3.1 a fix rule combines the classifiers’

results, independent from knowing how the problem space is

broken. In section 3.2 we described the Stacked Generalization

method in which, during the training phase, the combiner learns

proper weights for combining the outputs of the base classifiers for

an input sample. These weights are then used in the test phase to

optimally combine the outputs of the base classifiers for each test

sample. In this method, as the weights for combining the outputs

of the base classifiers are obtained during a learning process which

endows the power of generalization to the model, we expect the

Figure 7. Results of wavelet denoising. a) original signal, b) noisy signal, c–h) results of denoising procedure obtained by using wavelets: db1
with decomposition levels (2–7), i) Comparative plot of correlation coefficients with selected decomposition levels of wavelet filter for signal under
denoising.
doi:10.1371/journal.pone.0024386.g007

Figure 8. Recognition rate of an MLPs neural network with different number of neurons in the hidden layer.
doi:10.1371/journal.pone.0024386.g008
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model to have a better performance in comparison with the fix

combination rules. However, since the learning process of the

combiner is only depended on the outputs of the base classifiers, it

does have no information about the relation between the input

problem space and the votes of the base classifiers. As the result, the

combiner just learns the mapping between the outputs of the base

classifiers and the target classes of the input samples, rather than

learning the mapping between the input samples and their

corresponding target classes. In other words, the combiner never

sees the distribution of the input problem space, and therefore it

cannot assign the optimal weights for combining the outputs of the

base classifiers regarding the input sample [48] [56]. Unlike the

Stacked Generalization method, in this paper we propose to feed

the combiner with both the input sample and outputs of the base

classifiers simultaneously (figure 6). One important advantage of this

change is that the combiner obtains an understanding of the relation

between the input problem space and the votes of the base

classifiers. In other words, for each input sample, the combiner gives

the optimal weights for aggregating the outputs of the base classifiers

regarding the position of the input sample in the problem space and

also its knowledge about the area of expertise of the base classifiers.

In the training phase, by looking at the input sample and the

base classifiers’ outputs, the combiner learns how to divide the

problem space between the base classifiers. In the testing phase

and for each input sample, the combiner uses the representation of

the input sample and the previous knowledge about the expertise

of the base classifiers to optimally determine the weights to

aggregate the votes of base classifier(s).

Results

In this section, after a description of preprocessing module and

feature extraction, as we are proposing a new combining strategy,

we continue with important issues for choosing the base classifiers’

parameters. We then show the improvement of the proposed

method over some combining methods followed by error analysis

using some evaluation metrics to properly assess the effectiveness

of our proposed algorithm. We finally bring the comparison with

other related methods in the literature.

Preprocessing and Feature Extraction
For denoising we have used the Daubechies wavelet functions

(db1) with decomposition level of five. This selection is based on

our extensive experiments among which one sample is shown in

(Figure 7). In this figure, a sample noisy signal (the noise is

normally distributed with zero mean and variance) is shown along

with the results of denoising procedure obtained by using wavelet

db1 with decomposition levels 2–7 (Figure 7b–7h). This procedure

is based on decreasing the noise content in high frequency

components (decomposition coefficient) of signal which is

performed using the soft-thresholding method described in [20].

We have compared correlation coefficients of six decomposition

levels of denoised signal in Figure 7i.

In this study, we have used the Savitsky–Golay filtering method

for smoothing of the ECG signals [20]. The filter coefficients are

achieved by the un-weighted linear least-squares fitting method

using a polynomial function. Because of this, the Savitsky–Golay

filter is also called a digital smoothing polynomial filter or a least-

squares smoothing filter. A higher degree of polynomial makes it

possible to achieve high level smoothing without attenuation of the

data features. The Savitsky–Golay filtering method is often used

for frequency information or spectroscopic (peak) information. For

the first type, it conserves the high-frequency components of the

signal and for the second type it conserves higher moments of the

peak. In the feature extraction stage a combination of morpho-

Table 1. Recognition rates and other parameters of the base classifiers for combining methods using three base classifiers.

Base Classifier
Number of Neurons in the
Hidden Layer Number of Epochs Initial Weights Range Recognition Rates (%)

Classifier 1 17 1700 [22 2] 93.71

Classifier 2 22 2700 [23 3] 93.77

Classifier 3 25 2000 [24 4] 93.78

doi:10.1371/journal.pone.0024386.t001

Table 2. Recognition rates for different combining methods as well as the proposed method with different number of experts.

Number of Experts 2 3 4 5

Method

Maximum Rule 94.04 93.30 91.03 90.32

Minimum Rule 94 94.09 93.71 93.31

Average Rule 94.01 94.05 94.19 94.20

Product Rule 93.80 93.63 92.12 93.40

Majority Voting 93.82 93.93 93.94 93.12

Borda Count 93.80 94.09 93.94 93.70

Decision Templates 93.21 93.43 93.38 93.47

Weighted Averaging Based on Particle Swarm Optimization 94.26 94.26 94.33 94.41

Stacked Generalization 94.52 94.7 94.49 94.51

Modified Stacked Generalization 94.8 95.2 94.53 94.62

doi:10.1371/journal.pone.0024386.t002
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logical and timing features are used. These features describe the

basic shape of the signals and position of waves within a given

window of beats. The extracted parameters that describe the basic

shape of the beats are: amplitude of P-peak (ampP), amplitude of

Q-valley (ampQ), amplitude of R-peak (ampR), amplitude of S-

valley (ampS) and amplitude of T-peak (ampT). Features that

describe wave position within a beat window are: position of P-

peak (posP), position of Q-valley (posQ), position of R-peak (posR),

position of S-valley (posS) and position of T-peak (posT). The time

duration between PVC beats contains useful information about

their types. So we use a feature called rat RR, which is defined as

the time ratio between the last beat to the next one.

Thus, ten ECG morphological features are extracted, as well as

one timing interval feature. To extract this feature we propose a

two-steps method. The first step involves the cutting of the normal

and PVC and other beats by making use of the annotation files

which exist in MIT–BIH arrhythmia database. The second step

involves identification of peaks and valleys in every normal or

abnormal beat and obtaining their respective amplitudes and

positions. In order to break to normal and abnormal beats, we

process annotated file records from MIT–BIH database. For

example to extract normal beats, the algorithm examines the

annotation file which contains the sample number of the normal

beat. Then it creates a matrix with rows equal to the number of

normal beats. An R-wave detector is required to initialize our

computer-aided ECG classification process. Next, the algorithm

saves 40 samples surrounding the target normal beat from all the

recorded samples. The sample beat itself is also saved in the final

matrix. We extracted the abnormal beats in the same manner too.

After classification of normal and abnormal beats, peaks and

valleys are detected. For this purpose, we implemented the Al-

Alaoui algorithm [57]. The peak and valley detector correctly

detects the P, Q, R, S, and T waves. Sometimes, especially in the

case of arrhythmia, it is possible for the algorithm to recognize

extra peaks or valleys. Since the P and the T waves exist at the

beginning and the end of each window, respectively, in such a case

the first peak is set as the P and the last peak as the T wave; other

peaks are hence rejected. Similarly, the algorithm marks the

nearest valley at the left of center of the beat as the Q, and the

nearest valley to the right of center of the beat as the S wave. We

extracted ten ECG morphological features, as well as one timing

interval feature.

Base classifiers structure selection
An important issue in combining classifiers is the diversity of the

classifiers in learning the input data. When the base classifiers of a

combining structure are diverse (i.e., they learn different areas of

the input space), they become specialized in specific areas of the

input space, and consequently have fewer errors in those areas.

Thus, combining the outputs of classifiers that are perfectly

diverse, improves the overall performance. For diversifying the

base classifiers, different training parameters and classifiers with

different structures have used.

Table 3. Standard deviation and number of neurons in the
hidden layer of the best topologies for Stacked Generalization
method and Modified Stacked Generalization method.

Number of Experts 2 3 4 5

Standard Deviation

Stacked Generalization method 0.50 0.40 0.54 0.70

Modified Stacked Generalization method 0.40 0.35 0.50 0.56

Number of Hidden Neurons of the Best
Topology

Stacked Generalization method 30 30 15 10

Modified Stacked Generalization method 40 45 35 30

doi:10.1371/journal.pone.0024386.t003

Figure 9. Recognition rate of the combiner in the Modified Stacked Generalization method with different number of neurons in the
hidden layer.
doi:10.1371/journal.pone.0024386.g009
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In our combining methods we have used MLPs classifiers with

Back Propagation training algorithm as our base classifiers. For

each classifier, some parameters are pre-specified according to the

characteristics of our classification task, e.g. the number of input

nodes is equal to the number of extracted features of each input

sample, while the number of output nodes is specified on the basis

of the number of classes. Some parameters including the initial

weights and the learning rate are specified by trial and errors. The

number of neurons in the hidden layer of the MLPs is also

determined via trial and error method. In this manner, as

graphically depicted by figure 8, we have increased the number of

hidden neurons from 5 to 80 in order to find the optimal domain

of the number of hidden neurons. Eventually, the number of

epochs is determined with cross validation method. Table 1

illustrates the described parameters for three diverse base

classifiers.

Application of Different Combining Methodologies and
Proposed Method to ECG Signals

For evaluation, we used the same diverse classifiers as the base

classifiers and then their outputs are aggregated via different

combining strategies. Table 2 shows the results of this evaluation

and Table 3 indicates the standard deviations as well as the

number of neurons in the hidden layer of the best topologies for

Stacked Generalization and Modified Stacked Generalization.

In all experiments, a number of base classifiers are first created.

In test phase, for Max, Min, Average and Product methods, their

outputs are combined with corresponding rules. In Stacked

Generalization scheme, the outputs are used as inputs to second

level classifier to learn the mapping between the base classifiers’

outputs and the target of test sample. In MSG method, the

outputs and a direct input pattern are used as inputs to a second

level meta-classifier to learn the mapping between the base

classifiers’ outputs and the actual correct labels. The input of the

combiner (second-level classifier) in conventional Stack General-

ization has nine elements. In our proposed method, in addition to

these nine inputs, the combiner also receives the original input

pattern (which has eleven elements). Altogether, the input of the

combiner would be a 20-element vector. In Table 2, the

recognition rates of different combining methods are listed. As

shown in figure 9 to find the best topology of the combiner, we

employed the same strategy as for the base classifiers by

increasing the number of hidden neurons from 5 to 80 and

investigating the best recognition rate on our validation set. The

optimal number of hidden neurons was found to be 45 for the

Modified Stack Generalization method.

Here, two relatively important points can be derived from

Table 2. The first one is that both of the trainable combining

methods (Stacked Generalization and Modified Stacked General-

ization) are of higher performance in comparison with the non-

trainable combining methods. Secondly, regardless of the number

of experts used in the combining structure, the proposed

combining method has the best performance and the least

variance.

Error Analysis
We analyzed the performance of our proposed method based

on some evaluation metrics described in [56] to properly assess

the effectiveness of the method. Classification results of the

classifiers were displayed by a confusion matrix. A confusion

matrix is square matrix that contains information about actual

and predicted classifications done by a classification system. The

confusion matrices showing the classification results of the base

classifiers as well as the confusion matrix of the Modified Stacked

Generalization method are given in Table 4. From these matrices

one can tell the frequency with which an ECG beat is

misclassified as another.

The test performance of the classifiers can be determined by the

computation of the following four statistical parameters:

1. Specificity: number of correctly classified normal beats over

total number of normal beats.

2. Sensitivity (PVC): number of correctly classified premature

ventricular contraction beats over total number of premature

ventricular contraction beats.

3. Sensitivity (other): number of correctly classified other beats

over total number of other beats.

4. Overall classification accuracy: number of correctly classified

beats over number of total beats.

These parameters are computed as shown in Table 5.

The last part of this section is the comparison of the recognition

rates for the proposed method with some popular classifiers in the

literature (see table 6).

In summary, this paper presented a new combining method for

classification of the ECG beats based on Stacked Generalization.

By aggregating the original input patterns to the outputs of the

base classifiers, and as the result, by increasing the knowledge of

the combiner, we helped it make a better decision according to the

base classifiers’ decisions. Experimental results and higher

Table 4. Confusion matrix of the base classifier 2, for the 3
class ECG signal classification.

Classifier Output Result Desired Result

Normal Beat PVC Beat Other Beats

Base Classifier 1 Normal Beat 7888 15 537

PVC Beat 163 390 158

Other Beats 139 22 5654

Base Classifier 2 Normal Beat 7944 4 516

PVC Beat 106 413 178

Other Beats 140 10 5655

Base Classifier 3 Normal Beat 7966 5 554

PVC Beat 135 408 169

Other Beats 89 14 5626

Combiner Normal Beat 7969 3 336

PVC Beat 111 413 137

Other Beats 110 11 5876

The produced ECG signal classes are in table rows while the table columns are
the classes of the reference ECG signal.
doi:10.1371/journal.pone.0024386.t004

Table 5. The values of statistical parameters.

Statistical Parameter Percentage

Specificity 97.3

Sensitivity (PVC) 96.72

Sensitivity (Others) 92.55

Overall Classification Accuracy 95.26

doi:10.1371/journal.pone.0024386.t005
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recognition rates of the proposed method support our claim that

such additional knowledge lets the combiner to find a better

solution.
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Çanakkale, Turkey, Vol. 1. pp 105–108.

54. Nabavi-Kerizi SH, Abadi M, Kabir E (2010) A PSO-based weighting method

for linear combination of neural networks. Comput Electr Eng 36: 886–894.

55. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proc.

International Conference on Neural Networks (ICNN’95). Perth, WA, Australia:

IEEE, Vol. 4. pp 1942–1948.

56. He H, Garcia EA (2009) Learning from Imbalanced Data. IEEE Trans Knowl

Data Eng 21: 1263–1284.

57. Al-Alaoui MA (1986) A unified analog and digital design to peak and valley

detector window peak and valley detectors and zero crossing detectors. IEEE

Trans Instrum Meas 35: 304–307.

ECG Classification by Neural Network Ensembles

PLoS ONE | www.plosone.org 13 October 2011 | Volume 6 | Issue 10 | e24386


