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ABSTRACT: Within the biopharmaceutical sector, there exists the need for a
contactless multiplex sensor, which can accurately detect metabolite levels in
real time for precise feedback control of a bioreactor environment. Reported
spectral sensors in the literature only work when fully submerged in the
bioreactor and are subject to probe fouling due to a cell debris buildup. The use
of a short-wave infrared (SWIR) hyperspectral (HS) cam era allows for efficient,
fully contactless collection of large spectral datasets for metabolite
quantification. Here, we report the development of an interpretable deep
learning system, a convolution metabolite regression (CMR) approach that
detects glucose and lactate concentrations using label-free contactless HS
images of cell-free spent media samples from Chinese hamster ovary (CHO)
cell growth flasks. Using a dataset of <500 HS images, these CMR algorithms
achieved a competitive test root-mean-square error (RMSE) performance of
glucose quantification within 27 mg/dL and lactate quantification within 20 mg/dL. Conventional Raman spectroscopy probes
report a validation performance of 26 and 18 mg/dL for glucose and lactate, respectively. The CMR system trains within 10 epochs
and uses a convolution encoder with a sparse bottleneck regression layer to pick the best-performing filters learned by CMR. Each of
these filters is combined with existing interpretable models to produce a metabolite sensing system that automatically removes
spurious predictions. Collectively, this work will advance the safe and efficient adoption of contactless deep learning sensing systems
for fine control of a variety of bioreactor environments.

■ INTRODUCTION
A contactless sensor for measuring nutrients and metabolites is
a valuable addition to the arsenal of process analytical tools
available for producing high-quality cell-based therapeutic
products. For example, the quality of post-translational
modifications on monoclonal antibodies produced by Chinese
hamster ovary (CHO) cells is affected by small changes in pH2

or cell stress induced by sudden changes in glucose and lactate
levels.3 As such, pharmaceutical companies and researchers
have dedicated significant resources toward the development
of robust contactless sensors for fine bioprocess control.4

Several iterations of spectroscopic sensors have been reported
in the literature, with most recent papers focusing on the use of
Raman fiber-optic probes.5−10 These studies favor in situ
Raman spectroscopy because of minimal interference from
water in aqueous solutions while producing high-specificity
“fingerprints” for different Raman-active molecules.7 However,
this fingerprint signal is weak and must compete with
significant background autofluorescence from other biomole-
cules present in solution.5 Because penetration depth of Raman
probes is less than 12 μm,11 probes must be fully submerged in

cell growth media. These probes are subject to increasing
autofluorescence noise as cell density increases, explaining the
sensor drift error seen in the literature.12 In comparison, short-
wave infrared (SWIR) spectroscopy achieves 0.5−5 mm13

penetration depth while tolerating the presence of water with
the analyte.14 In fact, shifts in the water absorption band can be
used as a molecular mirror that reflects the concentration of
other solutes dissolved in the water hydrogen bond
matrix.15−18 This alleviates the need for both a submerged
probe and sample processing prior to analysis. Both Raman
and SWIR spectroscopy display highly nonlinear chemical
vibrations that are difficult to simulate.18 These weak,
nonlinear signals are challenging to analyze and quantify
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without the use of chemometric machine learning mod-
els.7,15,16,18 The use of fiber-optic probes limits dataset size to a
few thousand samples, so only a handful of nonlinear
chemometric analysis techniques have been applied to unravel
these complex signals for metabolite regression. The most
reported black-box chemometric technique has been partial
least squares (PLS).5−10,19 Such black-box models result in
incomplete sensors that cannot self-diagnose spurious
metabolite readings, making sensor troubleshooting and
adaptation to low-cost settings difficult. SWIR hyperspectral
imaging (HSI) is fully contactless and can record thousands of
SWIR spectra in a single image.20 This enables the efficient
collection of large denoised spectral datasets by applying
robust denoising techniques to each HS image.21,22 Further, a
single hyperspectral camera enables multiplex metabolite
monitoring of multiple bioreactors in parallel, whereas multiple
fiber-optic probes must be simultaneously calibrated for
multivessel monitoring. Using this large dataset, deep
interpretable models can be designed to highlight what parts
of the input are omitted or how different features are combined
by the model to generate final predictions.23 These properties
enable instantaneous troubleshooting of model predictions, or
automatic filtering of drifting readouts. To enable efficient and
high-quality biological production in bioreactors, there is a
need to develop an accurate and interpretable contactless
sensor that does not suffer from sensor drift.
The development of such a sensor must address three

challenges. (1) Enable the efficient, cost effective collection of
calibration data using a shaker flask cell growth system.24 This
labeled spectral dataset size must contain >10,000 samples,
which enables the use of deep learning methods.25,26 This
interpretable deep learning model should (2) allow for

accurate metabolite quantification and (3) enable automatic
detection and removal of unwanted metabolite measurements
in real time. These three challenges form the objectives of this
study. Each objective is met through the design of a SWIR HSI
sensor with an interpretable convolutional metabolite
regression (CMR) framework for rapid, contactless, and
accurate quantification of glucose and lactate levels in Chinese
hamster ovary (CHO) cell spent media (Figure 1).
The CMR algorithm uses a shallow deep convolutional

encoder for feature extraction and sparse regression for
metabolite quantification (Figure 1). It also features fast
training, with competitive test performance generated within
10 epochs of training. Successful sensor implementation
reduces both the need for highly trained specialists to obtain
manual readings and the risk of breaking the sterility barrier.
By enabling process automation, the contactless HSI sensor
may also drive down labor costs while enabling the
development of unique control strategies for continuous cell
production.

■ EXPERIMENTAL SECTION
A large dataset of spent cell-free media hyperspectral images
labeled with lactate and glucose concentrations is collected
from eight CHO cell culture flasks. An automated preprocess-
ing pipeline was designed to minimize noise caused by lighting
variation, dust particles, and other artifacts in the hyperspectral
image. The proposed system for glucose and lactate prediction
from hyperspectral signals uses a deep convolution net
encoder, followed by matrix inversion of the encoder latent
space components for glucose, lactate, and cell viability
prediction.25 As shown in Figure 1, the latent space
(bottleneck layer of a convolution net encoder) is first used

Figure 1. Overview of CMR network experimental design and architecture. (A) CHO cell dataset and ground truth metabolite readings are
collected and used to train/evaluate (B) the interpretable CMR network.
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to predict metabolite concentrations via sparse regression, and
then these learned weights are used to pick the best learned
convolution filters for use with parallel interpretable machine
learning models like Gaussian process regression (GPR).
Finally, the standard deviation of these predictions for each
image was used to automatically filter out spurious metabolite
predictions. CMR model performance was compared to partial
least squares27,28 models trained on polynomial features
derived from the mean spectral signal of each HS image
(Poly-PLS). Poly-PLS served as the baseline model for
comparison with proposed CMR model variants.
CHO Cell Culture. Adalimumab-producing CHO cells

(Creative Biolabs, Shirley, New York) were a generous gift
from Artemis Biosystems, LLC (Quincy, Massachusetts). Cells
were maintained in CD CHO Medium (Thermo Fisher
Scientific) at 37 °C and 5% humidity and subcultured at a
density of 3.0 × 105 cells/mL. To collect a varied range of
samples, four cultures using 125 mL Erlenmeyer flasks
(Corning Life Sciences) on a CO2 resistant shaker (Thermo
Fisher Scientific) set to 125 RPM were started at 8 a.m., and
another four cultures after 12 h. The shaker was set to 135

RPM after 48 h. Cultures proceeded without passaging and
were ended once all flasks reached a cell viability of 0%.
Experimental Data Collection. 630 μL media samples

were collected from each cell culture flask at the times shown
in Table 1. All samples were cultured for 12 days. Sample
collection times were chosen to maximize data collection
during the exponential growth phase of the cells (days 3−8).
For each cell permeate sample, cuvettes were rinsed with 500
μL of 70% ethanol, dried with pressurized air, rinsed thrice
with CD CHO Medium (Thermo Fisher Scientific), and dried
with pressurized air. 500 μL of each centrifuged sample was
loaded in a 1 mm quartz cuvette (Hellma USA Inc 110-1-40,
Plainview, New York), taking care to avoid air bubbles and
imaged three times using a 900−2500 nm SWIR hyperspectral
sensor (Headwall Photonics, Bolton, Massachusetts).
Ground Truth Measurements. To quantify cell viability,

20 μL of each cell culture sample was combined with 20 μL of
0.4% trypan blue (Thermo Fisher Scientific) and counted with
three technical replicates on a Countess II (Thermo Fisher
Scientific). Total cell count, viable cell count, and percent
viability were recorded. The remaining 610 μL of each cell
sample was centrifuged at 8000g and 4 °C for 5 min to remove

Table 1. Experimental Data Collection Time Points for Cell Culture Days 1−12

time 1 2 3 4 5 6 7 8 9 10 11 12

8:30 a.m. x x x x x x x x x x x x
11:00 a.m. x x x x x x
2:30 p.m. x x x x x x
4:30 p.m. x x x x x x x x x x x
8:30 p.m. x

Figure 2. Architectural overview of CMR. (A, B) Each spectrum is first used to train the CMR network encoding layer; then (C) the bottleneck
layer is used to select the best-performing encoder filters via sparse regression. (D, E) The trained filters and sparse weights are then used to train a
suite of user-specified interpretable models for metabolite prediction.
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cells. The supernatant was then removed and stored at 4 °C
until use. Glucose and lactate concentrations were assessed
using a YSI 2950 (Yellow Springs Instruments, 527690). All
YSI metabolite measurements were normalized by division of
700 and 500 for glucose and lactate concentrations,
respectively, prior to machine learning model training.
Building a Clean Dataset for Deep Metabolite

Regression. To develop the deep learning prediction system,
600 hyperspectral images were acquired over 2 weeks of
culturing CHO cells in cell culture flasks. First, the location of
spent cell media in each hyperspectral image was masked out
using the corresponding false RGB image. Next, all extracted
pixels were randomly shuffled before a mean convolution was
applied across all image pixels to reduce noise caused by
lighting variations for each wavelength, producing the final
dataset of clean spectral signals. Noise in the ground truth
measurements of cell count, viability, glucose, and lactate was
smoothed out using five sample Savitzky−Golay filtering.21 In
the literature, it is well known that deep neural networks can
interpolate between training data points well but perform
poorly when extrapolating beyond training data.24 Therefore,
the training dataset must contain a diverse array of samples
that covers the usable data space. The data collected was
naturally imbalanced, with a higher number of high-cell-
viability images compared to low-cell-viability images. Data
points with cell viability greater than 50% were used for model
training. To minimize network extrapolation, data points with
cell viability less than 80% were discarded during evaluation.
Two flasks were reserved randomly from the remaining dataset
for test data, and the rest of the data was used for training.
Data from flasks 1 and 8 were used for validation of all models.
Data Analysis and Statistics. In this paper, three models

were explored for contactless quantification of glucose and
lactate using hyperspectral images of spent cell media. CMR is
a fast-training deep learning model, the architecture of which is
shown in Figure 2.
First, each spectrum is passed through the convolutional

encoder into a compressed latent space (Figure 2A). Next, a
mixture density model (MDN) of Gaussians is generated for
each spectrum using mean, standard deviation, and α learned
via each filter in the last convolution encoder layer (Figure
2B). During training, these mixture models were used to
generate metabolite predictions. Equations 1−3 were used for
training CMR net. During evaluation, sparse linear regression
on these components was used to generate pixel-wise
predictions of metabolite concentrations (Figure 2C). The
highest weighted convolution encoder filters are then used to
preprocess HSI pixel spectra for training several versions of any
interpretable model of choice (Figure 2D), such as (Figure 2E)
GPR in this case. Each prediction was weighed using the sparse
weights from latent space sparse regression, and standard
deviation of predicted metabolite concentrations from each
GPR model was used for confidence interval calculations.
CMR-I is an interpretable model which uses convolutional
filters learned during CMR training for preprocessing spectra
prior to training a series of interpretable ML models. In this
case, Gaussian process regression models with Matern kernels
were trained using the highest weighed convolution filters from
the CMR convolution encoder. As a baseline approach, an
average hyperspectral signal of each image was preprocessed
using second-degree polynomial feature extraction prior to
train PLS models with nine components (Poly-PLS).

CMR Architecture and Training. The CMR architecture
(Figure 2A,B) was based on the mixture density model
(MDN).29 The CMR encoder consists of a series of one-
dimensional (1D) convolutional filters with batch normal-
ization and rectified linear unit activation. Each filter in the
final layer of the CMR encoder is then used to estimate a single
Gaussian with mean, variance, and weight α. All Gaussians in
the latent space are then combined according to eq 1, where α
is the learned weight of each Gaussian and μ is the mean, to
generate the final training metabolite prediction. The number
of filters in the final CMR encoder layer reflects the number of
components in the CMR latent space (nlatent space), which was
30 in this case. Each filter was initialized using orthogonal
weights to ensure that the learned filters form a sparse latent
space for subsequent metabolite regression.30 The CMR model
was designed to transform highly redundant SWIR spectra to a
compact latent space, which clearly separates varying
metabolite concentrations while automatically identifying
spurious spectra, which are difficult to quantify and lead to
sudden sensor errors. In particular, a β-variational autoencoder
architecture was modified to transform these spectral signals
into a compressed latent space that smoothly distinguishes
different metabolite concentrations.25,31 The losses used to
train CMR reflect these criteria (eq 2). The CMR loss consists
of L1 loss between ground truth metabolite concentration
(CTrue) and concentration predicted by eq 1 (CPred) and
evidence lower bound (ELBO) loss. The ELBO loss is
composed of the KL-divergence (DKL) between a Gaussian
multivariate distribution 1 1( , ) specified by the CMR latent
space and a Gaussian distribution (0, 1) with mean 0 and
unit variance and the likelihood (LL) of CTrue in Gaussian
multivariate distribution 1 1( , ) specified by the CMR latent
space (eq 3). L1 loss and LL loss ensured that the learned
latent space could distinguish different metabolite concen-
trations with high accuracy, while DKL loss ensured that the
learned latent space varies smoothly with spectral differences,
allowing for smooth interpolation of unknown metabolite
concentrations. CMR training was conducted using randomly
sampled batches of hyperspectral pixel spectra sampled across
all training images (batch size 5000 spectra). All models were
only trained for 10 epochs. Because the training process is so
fast, 16 different cross-validation folds for each metabolite were
trained within a few hours, for a total of 32 trained CMR
models.
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CMR Evaluation. During CMR model evaluation, the
latent spaces μ⇀,σ⇀, and α⇀ were combined and used as
features in a sparse linear regression model for metabolite
regression (Figure 2C). Latent space regression models are
formed using μ⇀ and

1

1 , which are considered output
estimates of a traditional MDN model.29 Weights θ and ρ were
learned, respectively, for μ⇀ and

1

1 via matrix inversion.25

Weights were then clipped by 2× minimum regression weight,
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and remaining features are used to create a sparse linear
regression via matrix inversion. The mean metabolite
prediction for each image was reported as the final predicted
metabolite concentration (eq 4). Cpθ is the concentration
predicted using sparse regression of μ⇀, and Cpρ is the
concentration predicted using sparse regression of

1

1 . The
standard deviation between the predicted metabolite concen-
tration from μ⇀ and

1

1 models was used for automated
filtering of noisy metabolite predictions (eq 5). It was assumed
that the deviation between these predictions reflects the
uncertainty of the model in each metabolite prediction.

=C C C,pred p p (4)

= C CSTDEV( , )pred p p (5)

CMR-I Evaluation and Filtering. After training, CMR
learned several useful filters. The information compression
efficiency of each filter is reflected by the strength of sparse
weights θ and ρ assigned to each latent space component. First,
the mean spectra from each HSI image were convolved with
each learned filter prior to fitting an interpretable model to
each respective convolution filter processed spectra, as shown

in Figure 2D,E. Cpred represents the vector of metabolite
predictions generated by this set of models. In this paper, a
Gaussian process regression model was used with Matern
kernel (length scale = 10, nu = 2.5) with a fixed length scale.27

The average normalized regression weight (φnorm, eq 6) was
used to weight the metabolite predictions of each interpretable
model and generate the final metabolite prediction (eq 7). It
was assumed that the deviation between these predictions (eq
8) reflects the uncertainty of the model in each metabolite
prediction. All predictions with normalized predicted standard
deviation greater than 0.03 were then discarded to produce
filtered metabolite predictions.

=
| |

,
,norm

2 (6)

= ×C Cpred pred norm (7)

= CSTDEV( )pred pred (8)

■ RESULTS
Training an accurate AI model requires a large, comprehensive
dataset with accurate labels. Traditional spectroscopy instru-
ments are unable to provide sufficiently large datasets in an
efficient manner, but the HSI camera can collect thousands of
sample signals within a single image. Consequently, a high-
quality dataset was collected in-house using labeled HSI
images of spent cell media sampled from eight CHO cell
culture flasks. This dataset was then divided into 16 cross-
validation folds for robust analysis of model performance. For
each fold, data from six flasks was used for training, and two
flasks were randomly sampled for use as test data. This split
was considered the most robust train−test split for assessing
model performance generalizability.
Performance of Deep Metabolite Regression Com-

pared to Gold Standard Measurement. To evaluate model
performance, cross-validation fold methods were applied to the
initial training/validation dataset collected using shaker flask
experiments. Table 2 summarizes average glucose quantifica-
tion performance across 16 cross-validation folds for CMR,
CMR-I, and Poly-PLS. Poly-PLS was presented as a baseline
black-box model to compare against all variants of CMR. Each
cross-validation fold consisted of six training cell culture flasks
and two test flasks. Cell culture flasks 1 and 8 were reserved as
validation flasks. Across all folds, CMR-I achieves the lowest
mean absolute error (MAE), mean absolute percentage error
(MAPE), root-mean-square error (RMSE). The r2 values are
quite similar across all models. Table 3 summarizes average
lactate quantification performance for CMR, CMR-I, and Poly-
PLS. All three models demonstrate very similar performance
across all datasets, but CMR displays the best MAE, RMSE,
and r2 for lactate prediction among the test folds.
CMR-I Interpretability and Performance Evaluation.

Although model interpretability has not been standardized in
the literature to date, it is possible to define a qualitative set of
criteria within a specific domain that classify a machine
learning model as “interpretable”.32 In the biopharmaceutical
domain, an interpretable model should (1) map highly
redundant spectra to a compressed space that easily separates
spectra based on metabolite concentration, (2) generate
confidence intervals for each metabolite prediction, and (3)
adapt easily to varying bioreactor environments and new
metabolites. Generated confidence intervals can then be used
to automatically detect and remove spurious metabolite

Table 2. Statistical Comparison of Contactless Glucose Quantification with Cell Culture Flask Datasets

train valid test

MAE MAPE RMSE r2 MAE MAPE RMSE r2 MAE MAPE RMSE r2

CMRa 19.40 0.16 26.07 0.97 30.98 0.23 44.16 0.91 21.45 0.17 27.63 0.97
CMR-Ia 17.80 0.15 22.07 0.97 29.14 0.20 41.41 0.92 22.11 0.16 27.04 0.95
poly-PLS 22.06 0.20 30.41 0.96 28.41 0.25 43.71 0.92 23.69 0.19 30.05 0.96

aIndicates deep learning models.

Table 3. Statistical Comparison of Contactless Lactate Quantification with Cell Culture Flask Datasets

train valid test

MAE MAPE RMSE r2 MAE MAPE RMSE r2 MAE MAPE RMSE r2

CMRa 14.06 0.08 22.25 0.92 15.25 0.11 19.75 0.95 14.88 0.10 19.19 0.94
CMR-Ia 11.97 0.07 16.45 0.92 13.39 0.07 18.61 0.95 15.51 0.10 19.39 0.91
poly-PLS 15.41 0.09 22.86 0.91 13.12 0.08 18.17 0.95 15.36 0.09 19.22 0.93

aIndicates deep learning models.
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predictions. CMR-I was developed as a fully interpretable
model with automated filtering of spurious metabolite
predictions. Visualization of metabolite trajectories generated
by CMR-I after filtering for two sample test folds are shown for
glucose (Figure 3A,C) and lactate (Figure 4A,C), respectively,
with 95% confidence intervals indicated by error bars and light
shading. Visualization of model correlation to ground truth
metabolite measurement is shown for glucose (Figure 3B,D)

and lactate (Figure 4B,D) using two sample test folds. r2 and
MAPE after filtering are listed for each fold in the top left
corner of each graph. Red points are automatically removed via
CMR-I filtering, while green points are kept.
Because CMR net trains within 10 epochs (Figure 5), 16

different cross-validation folds for each metabolite were trained
within a few hours.

Figure 3. Glucose test trajectories generated by CMR-I after filtering for (A) flask 7 (cross-validation fold (6,7)) and (C) flask 2 (cross-validation
fold (2,4)). Correlation visualization between ground truth (Ctrue) glucose concentration and concentration predicted by CMR-I (Cpred) are shown
with r2 and MAPE % values for each cross-validation fold listed in the top left corner for (B) flask 7 and (D) flask 2. Green points are kept after
filtration, and red points are discarded after automatic filtration.

Figure 4. Lactate test trajectories generated by CMR-I after filtering for (A) flask 7 (cross-validation fold (6,7)) and (C) flask 2 (cross-validation
fold (2,4)). Correlation visualization between ground truth (Ctrue) lactate concentration and concentration predicted by CMR-I (Cpred) are shown
with r2 and MAPE % values for each cross-validation fold listed in the top left corner for (B) flask 7 and (D) flask 2. Green points are kept after
filtration, and red points are discarded after automatic filtration.
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Model performance across these folds was then used to
assess if prediction improvements caused by automated CMR
filtering are statistically significant. Prior to calculation of
evaluation metrics, all normalized metabolite concentrations
less than 0.01 were removed to avoid unstable MAPE
calculations. Comparison of metabolite prediction perform-
ance across all test data folds by the interpretable CMR-I
model before and after filtering are shown in Figure 6. CMR
filtering significantly improved average MAPE by 21 and 29%
for lactate and glucose, respectively, but significantly reduces
average r2 by 3% for lactate.

■ DISCUSSION
This study combined several methods across diverging
disciplines to achieve a truly contactless sensor for bioreactor
cell cultivation. The method achieved average r2 values of more
than 0.9 on test datasets. The study design included samples
taken from a variety of cell culture flasks that were cultured and
sampled at different time points, which highlights the
robustness of the proposed method. The use of a hyperspectral
camera for contactless deep learning detection of key
metabolites in cell culture perfusate has not been attempted
by previous work to our knowledge. Instead, prior works have
attempted to monitor glucose, lactate, and other key

metabolites using invasive NIR fiber-optic probes9,19 and
Raman spectroscopy probes,5−9 among others.10 However,
these probes were highly sensitive to noise caused by lighting
variations and exhibited measurement drift. Because it is
difficult to efficiently collect large datasets using probes, these
studies are limited to small dataset chemometric techniques
like PLS. While Raman spectroscopy has demonstrated
accurate glucose prediction to within 26 mg/dL, it has limited
resolution for other metabolites, as evidenced by the variable
reported accuracy for other metabolites. For example,
Matthews et al. only report lactate prediction accuracies up
to 116 mg/dL.5 Other sources report Raman spectroscopy
probe validation performance of 26 and 18 mg/dL for glucose
and lactate, respectively, in the literature.1 The literature review
revealed several sources that use deep learning analysis of
hyperspectral reflectance images in the food industry for
automated produce processing,33 but no sources have
attempted to bring these techniques to the biopharmaceutical
arena. This study boasts test RMSE prediction accuracy within
27 mg/dL for glucose using the CMR-I model and 19.2 mg/dL
for lactate. To the best of our knowledge, no previous studies
have reported the automatic filtering of spurious metabolite
predictions. The CMR-I model can significantly improve
metabolite prediction performance (Figure 6) using a relatively

Figure 5. Training history curves for (A) ELBO loss and (B) mean L1 loss across all metabolites and folds for CMR deep learning network. All
results presented in this paper use CMR models that were trained for only 10 epochs.

Figure 6. Test dataset statistical performance comparison of CMR-I for contactless measurement of glucose and lactate before (unfiltered) and
after (filtered) automated filtering. Average (A) MAPE % and (B) r2 are shown across all cross-validation test datasets; p values are listed above
each significant difference as determined by two-sided Wilcoxon rank-sum test. The error bars represent the standard error across all cross-
validation folds.
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simple filtering technique afforded by the interpretable
architecture of CMR-I algorithm. Through comparison of
average lactate prediction performance before and after CMR-I
filtering (Figure 6), the r2 value is reduced by 3% but the
MAPE is improved by 21%. This suggests that the CMR-I filter
effectively removed spurious predictions but artificially lowered
r2 through removal of extreme lactate concentrations.
This study takes advantage of the large spectral dataset

acquired using hyperspectral images to train shallow,
interpretable deep learning models that exhibit fast training
times and high prediction accuracies within an interpretable
framework that allows for model robustness analysis and
troubleshooting. This large dataset is also used to train a
modified polynomial PLS model using the median spectral
signal of each image. Most works in the literature attempt to
explain deep network predictions using different versions of
attention maps.23,26 These methods are sufficient for
identification of regions of interest used for network
predictions. However, they do not illuminate what parts of
the input are omitted or how different pieces of information
are combined.23 First, the sparse regression of the CMR
bottleneck layer was easy to interpret based on the sparse
weights learned for each metabolite. These weights clearly
showed which corresponding hidden node filters are most
influential for resulting metabolite prediction. These learned
filters were then used to preprocess the hyperspectral signals
prior to training an interpretable model like GPR in this case.
The hyperspectral camera acts as a multiplex metabolite

sensor that is only limited in metabolite sensitivity by the
training dataset. After all, SWIR spectroscopy can be used to
monitor any metabolite that disturbs the hydrogen bonding
network of water molecules in aqueous solution.15−18 These
signals are both noisy and redundant; very different metabolite
concentrations can produce nearly identical spectral signals.
Therefore, a simple thresholding filter based on the standard
deviation of CMR-I model predictions from each learned filter
was used to remove spurious metabolite predictions. As shown

in Figure 6, this filter significantly improved metabolite
prediction performance, and effectively removed noisy outlier
predictions in real time to produce a smooth noncontactless
metabolite trajectory that can be easily incorporated into
traditional feedback control algorithms for precise control of
bioreactor environments (Figure 7). Only a robust cell
filtration device is required to collect permeate from the
bioreactor vessel (Figure 7A) for HS imaging and analysis. In
this paper, all training, validation, and test datasets were
collected within the same timeframe.
Our study balanced prediction accuracy with model depth

and dataset size to create a SWIR hyperspectral contactless
sensor framework for various cell metabolites. Rather than
increasing the CMR encoder complexity for better perform-
ance, efforts were directed at automatically cleaning hyper-
spectral images to remove any errant signals caused by image
lighting variations, dust, etc. Further, the network architecture
was optimized to perform well with spectral signals that look
nearly identical and are only separable by subtle correlated
shifts. The ability of an autoencoder to generate many types of
useful coordinate transforms is directed toward metabolite
separability though the use of sparse singular-value decom-
position (SVD) regression during evaluation rather than
training.25 Within this space, sparse polynomial regression
was applied to generate parsimonious and interpretable models
for any metabolite of choice.
Limitations of our study include that all images are taken of

cell-free perfusate, rather than bioreactor cell culture, to
minimize light scattering caused by the presence of cells. In
other words, cell growth media must be filtered of cells prior to
imaging. Future studies should explore the use of CMR for
analysis of unfiltered cell culture media. Further, all cell
permeate samples were extracted from 125 mL cell culture
flasks for training, validation, and test datasets. Metabolite
mixing in larger vessels may not be as uniform as in smaller
vessels, so the permeate may not reflect the bioreactor
environment.10 In industry, bioreactor vessels are as large as

Figure 7. Future Application of the HSI + CMR sensor for real-time monitoring and control of bioreactor environment. (A) Permeate from the
bioreactor system flows through (B) a quartz flow cell and then is imaged and analyzed by (C) the HSI + CMR analysis system to produce (D)
contactless metabolite trajectories in real time with automatic filtering of spurious metabolite predictions. These predictions can then be used to
finely control the addition of cell media to the bioreactor.
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10,000 L, so the CMR framework should be tested using these
larger vessels. Finally, metabolite regression accuracy can be
improved though the use of high-performance liquid
chromatography (HPLC) to collect ground truth metabolite
readings rather than the YSI machine. This also expands the
range of metabolites that can be trained for accurate
quantification using the CMR-HSI contactless sensor frame-
work.

■ CONCLUSIONS
This study reports the development of a SWIR HS sensor with
interpretable deep learning metabolite regression, which
addresses the three challenges preventing widespread adoption
of real-time bioprocess monitoring. The reported SWIR HS
sensor framework (1) enables efficient contactless collection of
calibration data using a shaker flask cell growth system within 2
weeks.24 This labeled spectral dataset contains millions of
spectral samples, which enables the use of deep learning
methods.25,26 The interpretable CMR-I model (2) boasts
competitive metabolite quantification performance with quick
training time of 10 epochs and (3) enables automatic detection
and removal of unwanted metabolite measurements in real
time. Currently, HPLC and YSI machines remain the gold
standard for bioprocess monitoring. These sensors cannot
monitor metabolites in real time since they require invasive
sample collection for subsequent sample preparation and
analysis at a remote lab. Experimental real-time sensors consist
of in situ probes that are subject to probe fouling over time by
cells in the bioreactor. Our system demonstrates a robust
contactless multiplex sensor for metabolite monitoring during
bioreactor cell cultivation. The interpretable nature of this
system may stimulate faster adoption of this sensor within a
high-stakes bioprocess environment.
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