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Background: Tendon and bone comprise a critical interrelating unit. Bone loss, including that seen with 
osteopenia (OPe) or osteoporosis (OPo), may be associated with a reduction in tendon quality, though 
this remains incompletely investigated. Clinical magnetic resonance imaging (MRI) sequences cannot 
directly detect signals from tendons because of the very short T2. Clinical MRI may detect high-graded 
abnormalities by changes in the adjacent structures like bone. However, ultrashort echo time MRI (UTE-
MRI) can capture high signals from all tendons. To determine if the long T2 fraction, as measured by a dual-
echo UTE-MRI sequence, is a sensitive quantitative technique to the age- and bone-loss-related changes of 
the lower leg tendons.
Methods: This is a cross-sectional study conducted between January 2018 to February 2020 in the lower 
legs of 14 female patients with OPe [72±6 years old, body mass index (BMI) =25.8±6.2 kg/m2] and 31 female 
patients with OPo (73±6 years old, BMI=22.0±3.8 kg/m2), as well as 30 female subjects with normal bone 
(Normal, 35±18 years old, BMI =23.2±4.3 kg/m2), were imaged on a 3T clinical scanner using a dual-echo 
3D Cones UTE sequence. We defined the apparent long T2 signal fraction (aFrac-LongT2) of tendons 
as the ratio between the signal at the second echo time (TE =2.2 ms) to the UTE signal. The average 
aFrac-LongT2 and the cross-sectional area were calculated for the anterior tibialis tendons (ATTs) and the 
posterior tibialis tendons (PTTs). The Kruskal-Wallis rank test was used to compare the differences in aFrac-
LongT2 and the cross-sectional area of the tendons between the groups. 
Results: The aFrac-LongT2 of the ATTs and PTTs were significantly higher in the OPo group compared 
with the Normal group (22.2% and 34.8% in the ATT and PTT, respectively, P<0.01). The cross-sectional 
area in the ATTs was significantly higher for the OPo group than in the Normal group (Normal/OPo 
difference was 28.7, P<0.01). Such a difference for PTTs did not reach the significance level. Mean aFrac-
LongT2 and cross-sectional area in the OPe group were higher than the Normal group and lower than the 
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Introduction

Tendon and bone are complementary tissues that comprise 
a critical interrelating unit for body movement and 
autonomy (1). In such a mechanical unit, bone performs as 
a lever for skeletal muscle force transferred by the tendon. 
The generated force by muscle contractions is applied to 
bone (1,2) and tendon (3) and influences their strength and 
microarchitecture. For example, Chen et al., have shown 
that bone mineral density significantly correlates with the 
tendon’s mechanical strength in rabbit model (4). Besides 
the mechanical connections, biochemical and metabolic 
interactions between bone and tendon significantly 
impact their quality and function (5). Systemic anabolic 
and catabolic hormone levels and molecules as well as the 
inflammatory cytokine activity can affect cell activity in 
both tendon and bone (6-9). 

Bone loss in osteoporosis (OPo) which define as Dual-
Energy X-ray Absorptiometry (DXA) T-scores below −2.5 
and in its earlier stage disease, osteopenia (OPe) which 
define as DXA T-scores between −2.5 and −1 in the clinical 
approaches, may be linked with the tendon quality decline 
(7,10-12). Evaluation of the quality of tendons during 
the disease progression using quantitative noninvasive 
methods is of critical interest to the research community. 
Such evaluations of tendons can help to enhance our 
understanding of OPo and may eventually improve the 
management and treatment of the disease.

The gold standard for confirming tendinopathy in the 
anterior tibialis tendon (ATT) would be ultrasonography, 
because of its accessibility and affordability (13,14). 
However, for the posterior tibialis tendon (PTT), 
ultrasonography may encounter challenges due to the tissue 
depth and bone proximity. 

Magnetic resonance imaging (MRI) is regularly used for 
the diagnosis of frank tendon tearing (10,11,15), but clinical 

MRI techniques encounter challenges in the detection of 
more subtle abnormalities (16-18). Intact tendons possess 
very short spin-spin (T2) relaxation times due to highly 
organized collagenous matrix (16). When imaged using 
conventional MRI sequences, the resultant low signal-to-
noise ratio precludes the accurate differentiation between 
healthy tendons and grossly intact but abnormal tissue (19).

Contrary to conventional MRI sequences, ultrashort 
echo time (UTE) MRI techniques can detect a considerable 
signal from both the short T2 (e.g., bound water to 
tendon fibers) and long T2 (e.g., free water and potential 
endotenon fat) components in tendons (16). Consequently, 
UTE-MR imaging is capable of providing robust image-
based biomarkers for quantitative of tendon assessment 
(16,20-22). The quantitative ultrashort echo time MRI 
(UTE-MRI)-based evaluation of tendons in clinical studies 
has been challenging partly caused by the high cost and 
time demands of MRI in general. Therefore, developing 
more rapid quantitative UTE-MRI techniques is expected 
to facilitate the inclusion of UTE sequences in clinical 
studies for tendon evaluation.

The fraction of the long T2 component (Frac-LongT2) 
in tendons can be calculated by the signal ratio in dual-
echo UTE imaging (23) which is a remarkable example of 
rapid UTE-based techniques which can be performed in 
less than 5 minutes. As mentioned, the UTE sequence [TE~ 
several to tens of microseconds in Cones three-dimensional 
(3D) UTE] can detect signals from the short T2 and long 
T2 components in tendons. However, similar acquisition 
at 2.2 ms mostly detects the long T2 components of the 
tendons. Specifically, the short component T2* from 
previous bicomponent fitting analyses ranges between 
0.6 to 1.8 ms. Considering an average short component 
T2* of 1.2 ms (mean of 0.6 and 1.8) (21,24-28). However, 
similar acquisition at 2.2 ms mostly detects the long 

OPo group. However, the differences did not show statistical significance, likely due to the higher BMI in 
the OPe group.
Conclusions: Dual-echo UTE-MRI is a rapid quantification technique, and aFrac-LongT2 values showed 
significant differences in tendons between Normal and OPo patients.
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T2 components of the tendons. Specifically, the short 
component T2* from previous bicomponent fitting analyses 
ranges between 0.6 to 1.8 ms. Considering an average short 
component T2* of 1.2 ms (mean of 0.6 and 1.8). These 
phenomena are anticipated to occur with aging and with 
potential tendon degeneration which may be associated 
with the progression of bone disease (4). 

The objective of this study is to investigate the 
differences in apparent long T2 signal fraction (aFrac-
LongT2) of the ATTs and PTTs, between female OPe 
patients, OPo patients, and subjects with normal bone 
(Normal). We present this article in accordance with the 
STROBE reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-1341/rc). 

Methods

Participants’ recruitment

Female patients were exclusively enrolled in this study 
as it is well known that there are sex-based differences 
in tendon and bone biology (29-31). Fourteen female 
patients with OPe (72±6 years), thirty-one female patients 
with OPo (73±6 years), and thirty female subjects with 
normal bone (Normal, 35±18 years), were recruited. The 
participants were recruited using flyers distributed in flyers 
in Radiology, Orthopedics, and Endocrinology clinics at 
the University of California, San Diego. All individuals 
must be willing and able to complete 1 hour MRI in the 
supine position. Individuals with trauma and significant leg 
and hip injuries within the past 12 months were excluded. 
The inclusion criteria for each group were as follows: (I) 
Normal group: pre-menopausal female subjects under  
40 years of age or post-menopausal female subjects with a 
recent T-score above −1; (II) OPe group: post-menopausal 
female patients with T-scores between −2.5 and −1; and (III) 
OPo group: post-menopausal female patients with T-scores 
below −2.5. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The study 
was approved by the institutional review board (IRB) of 
the University of California, San Diego (No. 151622), and 
written informed consent was taken from all individual 
participants.

UTE-MRI scanning

The lower leg of each participant was scanned on a 3T MRI 
(MR750, GE Healthcare Technologies, WI, USA) machine 

using a standard 8-channel (transmit/receive) knee coil. 
All healthy volunteers ambulatory leg laterality was self-
selected. For post-menopausal patients, the leg selection 
had to match the available side in the hip DXA scan reports, 
however for patients with both sides DXA reports, the most 
affected side was selected. The subjects were examined in 
a feet-first supine position with fully extended knee joint. 
A cushion was placed outside the coil under the calcaneus 
after the most comfortable flexion and rotation angle of the 
ankle joint were decided by the subjects. The imaging slab 
was centered in the midshaft of the tibia. A non-fat sat dual-
echo 3D UTE Cones sequence employs a short rectangular 
excitation pulse (duration =150 μs) followed by 3D spiral 
trajectories (conical shape) for k-space acquisition (repetition 
time =100 ms, TE =0.032 and 2.2 ms, flip angle =45°, 
bandwidth =125 kHz) was performed for aFrac-LongT2 
measurement, which is equal to the 2nd TE signal divided 
by the UTE signal. The field-of-view (FOV), number of 
slices, in-plane matrix dimension and slice thickness were 
14 cm, 24, 160×160, and 5 mm, respectively. The scan time 
was approximately 5 minutes.

Mean aFrac-LongT2 was calculated within regions 
of interest (ROIs) covering the ATTs and PTTs selected 
by three experienced MRI data analysts using the Image 
Processing Toolbox in MATLAB software (version 2021, 
Mathworks, Natick, MA, USA). The selected ROIs were 
used to calculate the cross-sectional area of the tendons by 
counting the covered pixels. For quality control purposes, 
the ATT and PTT boundaries selected for the first five 
datasets by the readers were confirmed by a board-certified 
musculoskeletal (MSK) radiologist. Intraclass correlation 
coefficients (ICCs) were calculated for aFrac-LongT2 and 
CSA across all data analyzed by the three independent 
readers. The readers had one to three years of experience in 
MRI image reading.

Statistical analysis

The one-sample Kolmogorov-Smirnov test results 
suggested that the aFrac-LongT2 was not normally 
distributed, therefore the one-way Kruskal-Wallis test by 
ranks was used to examine the differences in ATTs and 
PTTs between the three participating groups (Normal, 
OPe, and OPo). P values below 0.05 were considered as 
significant. The significance level was corrected using 
the Holm-Bonferroni method for multiple comparisons 
between groups. Statistical analysis was performed using 
MATLAB software.

https://qims.amegroups.com/article/view/10.21037/qims-23-1341/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-1341/rc
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Results

UTE (TE =0.032 ms) and second echo (TE =2.2 ms) axial 
images of the lower leg of a healthy subject are presented 
in Figure 1. While the UTE image detects a high signal 
in tendons, it lacks adequate contrast to be used for the 
selection of the tendon ROIs. The second echo image 
(Figure 1B) was used by the data analysts to select ROIs 
covering the ATTs and PTTs. 

Figure 2 shows aFrac-LongT2 maps generated over 
ATTs and PTTs of three representative Normal, OPe, 
and OPo subjects. For these examples, aFrac-LongT2 was 
clearly higher for OPe and OPo patients compared with the 
Normal participant.

Table 1 summarizes the estimated mean and standard 
deviation (SD) values of aFrac-LongT2 and CSA in the 
ATTs and PTTs of participants from the Normal, OPe, 
and OPo groups. ICC was higher than 0.95 indicating a 
high level of consistency between the readers. Mean and 
SD values of body mass index (BMI) and age for subjects in 
each group are presented in Table 1. 

The percentage differences and statistical significances of 
aFrac-LongT2 and CSA between the Normal, OPe, and OPo 
groups are presented in Table 2. aFrac-LongT2 in the ATTs 
and the PTTs were significantly higher for the OPo group 
than in the Normal group. The Normal/OPo difference 
was larger in the PTTs than in the ATTs (22.2% and 34.8% 
in the ATT and PTT, respectively). CSA in the ATTs was 

BA TE =2.2 msTE =0.032 ms

UTE

Figure 1 Representative axial images of the ATT and PTT of a healthy 25-year-old female subject. (A) Axial image acquired with UTE 
Cones MRI sequence (TE =0.032 ms). (B) Axial image acquired with Cones MRI sequence at TE =2.2 ms. Representative ROIs for the 
anterior and posterior tibialis tendons (ATT and PTT) were selected at TE =2.2 ms as it provided higher contrast (indicated by the red 
dashed boundary). TE, echo time; UTE, ultrashort echo time; ATT, anterior tibialis tendon; PTT, posterior tibialis tendon; MRI, magnetic 
resonance imaging; ROI, region of interest.
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Figure 2 Generated aFrac-LongT2 pixel maps over the ATTs and PTTs for representative subjects in studied groups. (A) aFrac-LongT2 
pixel map in a normal subject (28-year-old female). (B) aFrac-LongT2 pixel map in an OPe subject (75-year-old female). (C) aFrac-LongT2 
pixel map in an OPo subject (85-year-old female). aFrac-LongT2 in tendons was clearly higher in the OPe and OPo patients than in the 
Normal participant. OPe, osteopenia; OPo, osteoporosis; aFrac-LongT2, apparent long T2 signal fraction; ATT, anterior tibialis tendon; 
PTT, posterior tibialis tendon. 
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Table 1 aFrac-LongT2 (%) and CSA (mm2) in the ATTs and the PTTs for Normal, OPe, and OPo groups 

Variables Normal OPe OPo ICC

Age (years) 35.1±18.1 72.3±6.9 73.0±6.4 –

BMI (kg/m2) 23.2±4.3 25.8±6.2 22.0±3.8 –

ATT

aFrac-LongT2 (%) 40.4±10.3 47.5±12.2  49.4±12.3 0.96±0.03

CSA (mm2) 27.2±8.0 30.3±9.8 35.1±9.4 0.91±0.05

PTT

aFrac-LongT2 (%) 31.4±6.9 37.1±10.2 42.3±12.2 0.97±0.03

CSA (mm2) 28.7±8.8 29.9±8.2 33.9±11.2 0.92±0.06

The value is presented as means ± SD. aFrac-LongT2, apparent long T2 signal fraction; CSA, cross-sectional area; ATT, anterior tibialis 
tendon; PTT, posterior tibialis tendon; OPe, osteopenia; OPo, osteoporosis; ICC, intraclass correlation coefficients; BMI, body mass index. 

Table 2 Average differences in percentage as well as the Kruskal-Wallis test results of aFrac-LongT2 and CSA between the studied groups

ROI Variables
Normal/OPe Normal/OPo OPe/OPo

Difference (%) P Difference (%) P Difference (%) P

ATT aFrac-LongT2 17.7 0.13 22.2 <0.01 3.9 0.92

CSA 11.3 0.53 28.7 <0.01 15.6 0.27

PTT aFrac-LongT2 18.1 0.25 34.8 <0.01 14.1 0.35

CSA 4.2 0.94 17.9 0.18 13.2 0.54

aFrac-LongT2 OPo aFrac-LongT2 NormalNormal/OPo difference 100%
aFrac-LongT2 Normal

−
= × . aFrac-LongT2, apparent long T2 signal fraction; CSA, cross-

sectional area; OPe, osteopenia; OPo, osteoporosis; ROI, region of interest; ATT, anterior tibialis tendon; PTT, posterior tibialis tendon. 

significantly higher for the OPo group than in the Normal 
group (Normal/OPo difference was 28.7, P<0.01). Such a 
difference for PTTs did not reach the significance level. aFrac-
LongT2 and CSA showed a higher trend in the OPe group 
compared with the Normal group for both ATTs and PTTs, 
although the differences did not reach statistical significance 
after the Holm-Bonferroni correction. aFrac-LongT2 and 
CSA showed a higher trend in the OPo group compared with 
the OPe group, however, the differences were not significant. 

Figure 3 demonstrates the mean, median, SD, and the 
first and third quartiles of aFrac-LongT2 and CSA for each 
studied group using box and whisker plots. The dashed 
lines between groups, indicated with an asterisk, refers to 
statistically significant differences.

Discussion

This study investigated the differences in aFrac-LongT2 of 
ATTs and PTTs between OPo, OPe, and Normal subjects. 

aFrac-LongT2 is an estimation of the proton pools with 
long T2 in tendons divided by the total proton pool. aFrac-
LongT2 was calculated using a rapid dual-echo UTE 
MRI sequence which generally takes under five minutes 
to acquire. Such a rapid UTE-MRI-based technique 
for quantitative tendon evaluation can be considered 
translatable into the clinical workflow due to its simplicity 
and time efficiency.

Notably, the required time for dual-echo UTE MRI 
sequence depends on the acquisition techniques. For 
example, two-dimensional (2D) UTE acquisition (32,33) 
is faster than a three-dimensional (3D) acquisition (using 
radial, spiral, or cones trajectories) (22,34), while among 
the 3D acquisitions, the spiral or Cones is faster than a 
radial technique. Moreover, the UTE scan time can be 
improved by several acceleration techniques such as the 
stretching spokes in Cones (35), compressed sensing (36-38),  
and parallel imaging (39,40). Since the proposed method 
here for aFrac-LongT2 at most requires two acquisitions 
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Figure 3 Mean aFrac-LongT2 and CSA for Normal, OPe, and OPo groups. (A) Box-whisker plot of aFrac-LongT2 in ATTs. (B) Box-
whisker plot of CSA in ATTs. (C) Box-whisker plot of aFrac-LongT2 in PTTs. (D) Box-whisker plot of CSA in PTTs. The central line and 
the cross-point in each plot indicate the median and mean values, respectively. The upper and lower edges of the box indicate the first and 
third quartiles, respectively. aFrac-LongT2 was significantly higher in OPo patients than the Normal group for both the ATTs and PTTs. 
CSA was significantly higher in the OPo group than the Normal only for ATTs. Asterisks indicate significant difference. ATT, anterior 
tibialis tendon; aFrac-LongT2, apparent long T2 signal fraction; OPe, osteopenia; OPo, osteoporosis; CSA, cross-sectional area; PTT, 
posterior tibialis tendon.

(for some resolutions it  can be performed as one 
acquisition), they are likely faster than techniques with 
multiple acquisitions. Several UTE MRI techniques have 
been reported in the literature for both ex vivo and in vivo 
tendon assessments that utilize multiple acquisitions per 
exam, including UTE-T2* (17,20,21,27,41-47), UTE-T1  
(43,48-51), UTE-T1ρ (52), MT (42,49,50,53-56), and 
inversion recovery (IR) UTE-T2* (57). The Achilles 
(18,20,21,41-44,49,51,52,55,56,58,59), rotator cuff 
(46,53,54), tibialis (49,50), and patellar tendons (44,58,60) 
are the main targeted tendons for UTE-MRI-based 
assessments.

aFrac-LongT2 in the ATTs and PTTs were significantly 
higher for OPo compared with the Normal group (22.2% 
and 34.8 in ATT and PTT, respectively). Similar ranges of 
differences were reported in one of our previous studies for 
MMF reduction (−32.1 ATT and −24.2 for PTT) for the 

same group of patients (49). However, the UTE technique 
used in the prior study required 33 minutes of scan time 
(including the prerequisite T1 measurement and UTE-MT 
sequence). 

aFrac-LongT2 showed a higher trend in the OPe 
group compared with the Normal group for both ATTs 
and PTTs, although the differences were not statistically 
significant. This agreed with the non-significant tendons’ 
MMF reduction revealed previously in OPe patients 
compared with the Normal group (49). The aFrac-LongT2 
differences between the OPe and OPo groups were not 
significant. Therefore, the proposed MRI techniques may 
lack the required sensitivity to detect all age- or bone-
health-related differences in tendons, particularly with the 
current imaging setup. Group OPe notably had a higher 
BMI than other groups, which might result in insignificant 
differences of aFrac-LongT2 with other groups. 
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The performance, quality, and composition of tendons 
are influenced by aging (61-63). Concurrent with age-
related changes, OPo-related bone weakening may affect 
the tendons’ quality. In more details, lower levels of insulin-
like growth factor-I (IGF-I), growth hormone (GH), and 
sex steroids can lead to the bone, tendon, and muscle 
deterioration (6-9,64,65), as they reduce the protein 
turnover and cell activity in these tissues (1,3,8,66). For 
example, the rotator cuff tendon’s mechanical strength has 
shown significant correlation to bone mineral density in the 
humeral head of a rabbit model (4).

The limitations of this study can be summarized in four 
aspects. First, the subject pool for this study was limited 
to only female participants to avoid sex-related differences 
(29-31). Repeating this study on a male patient population 
and comparisons with the current results will be necessary 
in the future. Second, a limited number of patients were 
recruited for the current study, and also there was a control 
age-matched limitation in this study. Aging can affect the 
tendons’ quality, so a portion of OPe/Normal and OPo/
Normal differences might be only age-related. Including 
a control age-matched group should be considered in 
future investigations. aFrac-LongT2 should be examined 
on a larger group of OPe and OPo patients to confirm its 
clinical applications for tendons assessment in OPo disease 
monitoring and there is also a need to compare the results 
with ultrasonography results as the gold standard and check 
for the sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV). Third, the current 
imaging setup, particularly the resolution with a 0.87×0.87×5 
mm3 voxel size and the small tendon cross-sectional 
area may result in partial volume artifacts. The potential 
chemical shift artifacts might also affect the results. Future 
phantom studies should be performed to optimize the 
image resolutions and slice thickness for specific tendons 
of interest. Fourth, the magic angle sensitivity (67-69) of 
aFrac-LongT2 has not been investigated yet. Although 
there is limited room for variations in the orientation of 
the lower leg tendons’, utilizing this technique for tendons 
around joints, that are subject to large orientation changes, 
may need thorough magic angle sensitivity assessment.

Conclusions

This study investigated the differences in apparent 
aFrac-LongT2 of the lower leg tendons between OPo, 
OPe, and Normal subjects. Apparent Frac-LongT2 was 
calculated using a rapid dual-echo UTE MRI technique 

and showed potential for the detection and evaluation of 
changes in the tibialis tendons of the patients with OPo. 
Apparent Frac-LongT2 showed significantly higher values 
in the tibialis tendons of the OPo group compared with 
the Normal group. The results of this study highlight 
the need for a larger-scale study to further validate the 
preliminary findings. Tendon insufficiency causes marked 
discomfort and impairs the balance; therefore tendons are 
recommended to be evaluated in patients with bone loss to 
avoid potential debilitating sequela.
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