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A B S T R A C T   

Thermally stable proteins find extensive applications in industrial production, pharmaceutical development, and 
serve as a highly evolved starting point in protein engineering. The thermal stability of proteins is commonly 
characterized by their melting temperature (Tm). However, due to the limited availability of experimentally 
determined Tm data and the insufficient accuracy of existing computational methods in predicting Tm, there is an 
urgent need for a computational approach to accurately forecast the Tm values of thermophilic proteins. Here, we 
present a deep learning-based model, called DeepTM, which exclusively utilizes protein sequences as input and 
accurately predicts the Tm values of target thermophilic proteins on a dataset consisting of 7790 thermophilic 
protein entries. On a test set of 1550 samples, DeepTM demonstrates excellent performance with a coefficient of 
determination (R2) of 0.75, Pearson correlation coefficient (P) of 0.87, and root mean square error (RMSE) of 
6.24 ℃. We further analyzed the sequence features that determine the thermal stability of thermophilic proteins 
and found that dipeptide frequency, optimal growth temperature (OGT) of the host organisms, and the evolu-
tionary information of the protein significantly affect its melting temperature. We compared the performance of 
DeepTM with recently reported methods, ProTstab2 and DeepSTABp, in predicting the Tm values on two blind 
test datasets. One dataset comprised 22 PET plastic-degrading enzymes, while the other included 29 thermally 
stable proteins of broader classification. In the PET plastic-degrading enzyme dataset, DeepTM achieved RMSE of 
8.25 ℃. Compared to ProTstab2 (20.05 ℃) and DeepSTABp (20.97 ℃), DeepTM demonstrated a reduction in 
RMSE of 58.85% and 60.66%, respectively. In the dataset of thermally stable proteins, DeepTM (RMSE=7.66 ℃) 
demonstrated a 51.73% reduction in RMSE compared to ProTstab2 (RMSE=15.87 ℃). DeepTM, with the sole 
requirement of protein sequence information, accurately predicts the melting temperature and achieves a fully 
end-to-end prediction process, thus providing enhanced convenience and expediency for further protein 
engineering.   

1. Introduction 

Thermally stable proteins possess the characteristic of maintaining 
their structural integrity and functionality under high-temperature 
conditions. As a result, they are widely employed in industrial 

production [1–3], pharmaceutical development [4–6], and serve as 
highly evolved starting points in protein engineering [7–11]. To assess 
the thermal stability of proteins, it is commonly characterized by the 
melting temperature (Tm) of the protein. However, with the exponential 
growth of protein sequence numbers, the existing protein and mutant 
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thermodynamic database, ProThermDB [12], only contains approxi-
mately 120,000 records, of which fewer than 10,000 contain Tm infor-
mation. In contrast, the UniProtKB/Swiss-Prot and UniProtKB/TrEMBL 
(Release 2023_01) [13] databases already include over 200 million 
protein sequence entries. This poses a significant challenge to the cur-
rent endeavors in thermal stability assessment. To accurately determine 
the Tm value of a protein in the laboratory, a series of complex pro-
cedures are required, involving steps such as protein expression, puri-
fication, and the utilization of specialized instrumentation. Currently, 
the commonly applied methods for determining Tm values of proteins 
include Differential Scanning Calorimetry (DSC), Circular Dichroism 
(CD) spectroscopy, and Differential Scanning Fluorimetry (DSF) [14]. 
Differential Scanning Calorimetry (DSC) measures the relationship be-
tween the power supplied to the test sample and the reference material 
with respect to temperature, achieved through controlled temperature 
programming, to obtain the heat capacity. Circular Dichroism (CD) 
spectroscopy uses left- and right-circularly polarized light passing 
through optically active media with chiral structures like biomolecules. 
During a temperature ramp, it measures the circular dichroism spectrum 
of substances such as proteins, reflecting the trend of structural changes 
with increasing temperature. Differential Scanning Fluorimetry (DSF) 
employs the characteristic of exposing hydrophobic groups inside the 
protein upon heating. There are two approaches: one involves adding 
dyes that generate a fluorescence signal by binding selectively to the 
hydrophobic regions of the protein, and the fluorescence signal curve 
during the temperature ramp is recorded to determine the Tm value. The 
other approach detects changes in the hydrophobic environment of ar-
omatic amino acids (tryptophan and tyrosine) with fluorescent chro-
mophores during the protein unfolding process to measure the Tm value. 
In certain scenarios, particularly when screening a large number of 
protein scaffolds, computational prediction may be more practical 
compared to experimental methods. Additionally, the challenges asso-
ciated with protein expression and purification can be limiting factors 
for experimentally determining Tm values. In summary, for the vast 
number of proteins with unknown Tm values, it is evidently impractical 
to measure them using experimental methods, primarily due to the high 
cost and lengthy experimental duration [15]. Therefore, the utilization 
of rational computational methods to predict the melting temperature of 
proteins has become an urgent task and a crucial solution to address the 
discrepancy between protein sequence information and thermal stability 
data. 

Currently, there are two types of computational methods available 
for predicting the melting temperature of proteins: statistical-based 
methods and machine learning-based methods (see Supplementary 
Table 1). For instance, Zhang et al. [16] employed support vector ma-
chines to classify thermophilic and mesophilic proteins by extracting the 
composition of the 20 amino acids in the primary structure as feature 
vectors. They achieved an accuracy of 90.1% on a dataset consisting of 
152 proteins. Pucci et al. [17] utilized temperature-dependent statistical 
potentials to predict the thermal stability of homologous proteins in a 
dataset containing 166 proteins from 11 homologous families. In 
cross-validation, the RMSE between the experimental and predicted Tm 
values was found to be 13.6 ℃. By excluding the six proteins with the 
poorest predictions, the RMSE decreases to 8.3 ℃. Dehouck et al. [18] 
computed a correlation coefficient of 0.59 between the environmental 
survival temperature (Tenv, equivalent to the optimal growth tempera-
ture of the host organisms, OGT) and the protein Tm based on a dataset 
of 127 proteins. The regression equation derived from their analysis is 
approximately Tm ≈ 42.9℃ + 0.62Tenv. Ku et al. [19] categorized pro-
teins into high Tm group (Tm > 65 ℃) and low Tm group (Tm < 55 ℃) 
based on their protein Tm values. They employed the composition of 
dipeptides within protein sequences as features for classification. 
Remarkably, they achieved 100% accuracy in their classification on a 
dataset consisting of 35 proteins. Gromiha et al. [20] calculated a cor-
relation coefficient of 0.91 between Tenv and the protein Tm for each 
protein family. The corresponding regression equation derived from 

their analysis is Tm = 24.4℃ + 0.93Tenv. Pucci et al. [21] proposed a 
method for predicting Tm, which relies on the optimal growth temper-
ature of the protein host organisms, protein properties, standard statis-
tical potentials, and temperature-dependent statistical potentials. In 
their experiments, this method yielded a Pearson correlation coefficient 
(P) of 0.72 when applied to a dataset comprising 22 proteins. Gorania 
et al. [15] characterized proteins by utilizing amino acid composition 
and pseudo-amino acid composition, and employed an artificial neural 
network approach to predict the melting temperature of proteins. Li 
et al. [22] utilized transfer learning methods to predict the melting 
temperature of proteins based on a prediction model for the optimal 
growth temperature of the host organisms (OGT). They conducted these 
predictions on two distinct datasets comprising 2506 and 41,725 protein 
sequences, respectively. The results revealed that the R2, attained values 
of 0.73 and 0.58 on the two datasets, respectively. Yang et al. [23] 
developed the protein melting temperature prediction algorithm, 
ProTstab2, utilizing the gradient boosting algorithm. They achieved a 
determination coefficient (R2) of 0.58, a Pearson correlation coefficient 
(P) of 0.753, and a root mean square error (RMSE) of 7.005 ℃ when 
evaluated on a dataset containing 34,913 protein melting temperatures. 
Jung et al. [24] developed the DeepSTABp protein melting temperature 
prediction algorithm based on a Transformer-based language 
pre-training model. By incorporating experimental conditions used in 
Thermal Proteome Profiling (TPP), amino acid sequences, and OGT, the 
algorithm predicted protein melting temperatures on a dataset con-
taining 35,112 protein sequences. The results exhibited a determination 
coefficient (R2) of 0.8, a Pearson correlation coefficient (P) of 0.9, and a 
root mean square error (RMSE) of 4.3 ℃. Although there are numerous 
tools available for characterizing the thermal stability of proteins, 
accurately predicting the Tm value of proteins based solely on their se-
quences remains a significant challenge. Research [18,20] has revealed 
a strong correlation between the optimal growth temperature of the host 
organisms and the Tm value of proteins. Furthermore, the utilization of 
information from homologous protein families allows for a more robust 
characterization of protein thermal stability [17,18,25–28]. Simulta-
neously, protein contact maps [29] can capture the underlying re-
lationships between residue-residue pairs in the spatial dimension of 
proteins [30]. Therefore, utilizing the evolutionary information [31,32] 
of proteins and protein contact maps to predict their melting tempera-
tures is a promising direction worth exploring. 

This study presents a novel protein representation method that 
combines the host’s optimal growth temperature, evolutionary infor-
mation of the protein, protein contact map, seven physicochemical 
properties (steric parameters, hydrophobicity, volume, polarizability, 
isoelectric point, helix probability, and sheet probability), protein sec-
ondary structure descriptors, as well as amino acid and dipeptide fre-
quencies to characterize proteins. Subsequently, we constructed a deep 
neural network model (Fig. 1) called DeepTM, using graph convolu-
tional neural networks [33] and self-attention networks, with the aim of 
directly predicting the Tm values of proteins from their sequence infor-
mation. Additionally, to validate the practical performance of the 
model, we collected a dataset (Supplementary Table 2) comprising 22 
PET (Polyethylene terephthalate) plastic-degrading enzymes along with 
their experimentally determined Tm values, as well as a dataset (Sup-
plementary Table 3) containing 29 thermally stable proteins with a 
broader classification and their corresponding experimental Tm values 
to serve as two external validation set, demonstrating the applicability 
of our model in real-world scenarios. In the biodegradation pathway of 
polyester waste recycling, the search for thermally stable PET 
plastic-degrading enzymes is a crucial step. Currently, PET 
plastic-degrading enzymes lack robustness in terms of temperature 
range and exhibit slow reaction rates [34]. Therefore, precise prediction 
of protein melting temperatures can offer convenience in this regard and 
aid researchers in identifying more stable PET plastic-degrading 
enzymes. 
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2. Methods 

2.1. Dataset 

OGT Dataset Our OGT dataset consists of two parts, with both 
datasets provided by Li. [35]. Specifically, we downloaded the bren-
da_sequences_20180109.fasta and enzyme_ogt_topt.tsv files from 
https://zenodo.org/record/2539114 and subjected them to the 

following processing steps: (1) Select sequences containing experi-
mental OGT data, retaining only sequence ID, experimental OGT value, 
and protein sequence; (2) Remove duplicate sequences and apply the 
CD-HIT [36] algorithm for clustering (-c 0.5 -n 3 -M 16000 -d 0 -T 8, with 
default values for other parameters); (3) Remove protein sequences 
containing non-standard amino acids (X, U, O); (4) Remove protein se-
quences with OGT values less than 0 ℃ or greater than 110 ℃; (5) 
Remove protein sequences with a length exceeding 1028 (since on a 

Fig. 1. Architecture of deep learning predictor DeepTM. (a) Four steps of neural network model: Input protein sequence data; Encode protein vector repre-
sentation and input it to the neural network in the form of a graph; Train the neural network using GCN layers and attention layer; Predict continuous Tm values. GCN 
Layers consist of two graph convolutional layers. After each graph convolutional layer, layer Normalization is applied to prevent overfitting. The activation function 
used in the graph convolutional layers is ReLU(⋅). FC Layer refers to a fully connected layer. (b) Stepwise Feature Extraction. The PSSM, HMM, SPD33, and Contact 
Map profiles are generated using the PSI-BLAST [44], HH-Suite3 [47], SPIDER3 [50], and Spot-contact [29] programs, respectively. The PP7 was obtained from the 
literature [51]. The amino acid frequency (AA) and dipeptide frequency (Dipeptide) were calculated. OGT was predicted using the OGT predicting model. The symbol 
(*) indicates that this feature was obtained using models trained specifically for this experiment. (c) Feature vectors encoding contact maps and sequence infor-
mation. (d) Multi-head attention mechanism [56]. 

Fig. 2. Distribution of OGT and Tm for all proteins in the OGT dataset and Tm dataset. (a) Distribution of the number of protein sequences in the OGT dataset for 
each temperature interval of OGT. The abscissa represents the temperature intervals of OGT (starting from 0 ℃ with each interval size of 10 ℃), while the ordinate 
represents the number of protein sequences within each corresponding temperature interval. Tm: Melting Temperature. OGT: Optimal Growth Temperature of the 
host organisms. (b) Distribution of the number of protein sequences in the Tm dataset for each temperature interval of Tm. Comparison of sequence distributions 
among the entire Tm dataset, Tm training set, and Tm test set, represented by orange, blue, and yellow colors, respectively. The abscissa represents the temperature 
intervals of Tm (starting from 0 ℃ with each interval size of 10 ℃). The data labels on top of each bar indicate the number of sequences within that interval. 
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server with 12 GB RAM, the CCMPred [37] software can generate mat 
profiles with a maximum sequence length of 1028); (6) Divide the OGT 
data into intervals of 10 ℃. If the number of sequences within a tem-
perature interval exceeds 3000, select 3000 sequences. If it is less than 
3000, select the actual number of sequences. Ensure a balanced distri-
bution of the dataset across temperature levels. Following these pre-
processing steps, we filtered out 2822 and 23,030 protein sequences 
from the respective datasets. Consequently, we constructed a final 
dataset comprising 25,852 protein sequences (Fig. 2a, Supplementary 
Fig. 1a, Supplementary Fig. 1c). Furthermore, the dataset also includes 
the UniprotKB ID and amino acid sequence information for each protein. 

Tm Dataset We have gathered data from the Meltome atlas [38] and 
performed pre-processing. The pre-processing steps for this dataset 
encompassed the following procedures: (1) Removal of duplicate se-
quences and clustering using the CD-HIT [36] algorithm with parame-
ters (-c 0.5 -n 3 -M 16000 -d 0 -T 8, default values for other parameters); 
(2) Exclusion of protein sequences containing non-standard amino acids 
(X, U, O); (3) Elimination of protein sequences with melting tempera-
tures (Tm) below 0 ℃ or above 100 ℃; (4) Removal of protein sequences 
exceeding a length of 1028, ensuring consistency in sequence length. 
Finally, we obtained a dataset comprising 18,281 protein sequences 
accompanied by their corresponding experimental Tm values. 

Dataset of Plastic-Degrading Enzymes The plastic-degrading 
enzyme dataset was employed as a blind test dataset to evaluate the 
performance of the model in practical applications. We selected protein 
sequences from Erickson et al. [39] that included experimentally 
determined Tm values and OGT values. These sequences were subjected 
to 50% clustering using the CD-HIT [36] algorithm. After processing, the 
final dataset comprised 22 protein sequences, all of which exhibited 
experimentally determined Tm values above 50 ℃ (Supplementary 
Table 2). 

Dataset of Thermally Stable Proteins The thermally stable protein 
dataset, serving as the second blind test dataset, encompasses a broader 
range of protein classes. This dataset comprises two components. Firstly, 
we obtained protein sequences with experimentally determined Tm 
values from the ProThermDB [40] and MPTherm [41] databases. Sub-
sequently, we employed the experimental DSC method to determine the 
Tm values for three esterase sequences. Following this, we applied the 
CD-HIT [36] algorithm for sequence deduplication (-c 0.5 -n 3 -M 16000 
-d 0 -T 8, default values for other parameters). After processing, the final 
dataset contains 29 protein sequences (Supplementary Table 3), 
including three esterase sequences, fifteen membrane protein sequences, 
nine antibody sequences, and two transcription factor sequences. All 
these proteins have experimentally determined Tm values above 50 ℃. 

2.2. Protein representation 

2.2.1. Node features 
Blocks Amino Acid Substitution Matrices We employ BLOSUM62 

[42,43] encoding to represent amino acid residues, which is a substi-
tution matrix commonly used in bioinformatics for sequence alignment 
purposes. The BLOSUM62 encoding is derived from the observation and 
statistical analysis of highly conserved sequences within protein families 
in the BLOCKS database, leading to the compilation of amino acid 
substitution probabilities. The matrix size is 24 × 24, and in the calcu-
lations, we utilized the first 20 rows and 20 columns to represent the 20 
natural amino acids. 

Position Specific Scoring Matrix The Position Specific Scoring 
Matrix (PSSM) represents the evolutionary relationships among a set of 
proteins. It is generated through Multiple Sequence Alignment (MSA). 
During the process of Multiple Sequence Alignment (MSA), multiple 
homologous sequences are aligned, resulting in a series of amino acids at 
corresponding positions. Subsequently, the frequency of occurrence of 
different amino acids at each position is calculated. Specifically, in the 
PSSM, an element pij represents the likelihood of an amino acid at po-
sition j in the sequence mutating into the i-th amino acid during the 

process of evolution. If the value is positive, it indicates a higher like-
lihood, whereas if the value is negative, it indicates a lower likelihood. 
In the computation, we utilized the PSIBLAST2.6.0 +[44] program to 
perform three iterations on the Uniref90 [45] database, generating 
protein PSSM profiles in bulk. 

Hidden Markov Matrix The Hidden Markov Model (HMM) encap-
sulates the evolutionary information [46] of proteins and is commonly 
used to depict specific patterns and probability distributions that arise 
within diverse biological sequences. Additionally, it provides informa-
tion about the relative positions of amino acids and the probabilities of 
their transitions within these sequences. In this experiment, we 
employed the HHblits [47] program to perform searches in the Uni-
clust30_2020_06 [48] database, generating HMM profiles in bulk. These 
HMM profiles also include seven transition probabilities and three local 
alignment diversity values, which we consider as features [49]. 

SPD33 Representing a series of protein secondary structure de-
scriptors. This includes one Solvent Accessible Surface Area (ASA), two 
Half Sphere Exposure (HSE) based on Cα atoms, eight sine and cosine 
values of main chain torsion angles (φ, ψ, θ, τ), and three probabilities 
for predicting secondary structure [50]. In the computation, we utilized 
the SPIDER3 [50] program to generate spd33 profiles in bulk. 

Physicochemical Properties The seven physicochemical properties 
(PP7) of amino acids are as follows: steric parameters, hydrophobicity, 
volume, polarizability, isoelectric point, helix probability, and sheet 
probability. The numerical values of these physicochemical properties 
were obtained from Meiler et al. [51]. 

Amino Acid Frequency and Dipeptide Frequency The frequency 
of amino acids and dipeptides in proteins refers to the occurrence rate of 
each amino acid and the occurrence rate of adjacent dipeptides formed 
by two amino acids in the protein sequence. We calculate the corre-
sponding frequencies for each protein. 

Finally, these features constitute node features XL×f , where f repre-
sents the dimension of node features and L represents the length of the 
protein sequence. Supplementary Table 4 presents all node features and 
their dimensions. Before inputting into the neural network, all data are 
standardized to have zero mean and unit variance. 

2.2.2. Edge feature 
Protein Contact Map The protein contact map is a two-dimensional 

matrix representation that captures the contact relationships between 
each amino acid residue and other residues within a protein. Each 
element in this matrix indicates whether there is a contact between two 
amino acid residues. If two residues are in close proximity in the native 
structure, meaning that the Euclidean distance between their Cβ atoms is 
less than 8 Å, they are considered to form a contact [29]. In computing, 
we utilize the SPOT-Contact [29] software to predict protein contact 
maps from protein sequences, where each element represents the 
probability of contact between two amino acid residues. 

2.3. Deep Learning Predictor 

In this study, we propose a protein Tm value prediction model based 
on deep neural networks. The neural network framework of this model is 
illustrated in Fig. 1, combining three distinct modules: Graph Con-
volutional Neural Network (GCN), Self-attention Network, and Multi-
layer Perceptron. We refer to this model as DeepTM. The model takes 
amino acid sequences as input, and after extracting features from the 
sequences, it passes through a graph convolutional neural network to 
embed node features and edge features, thereby obtaining protein 
sequence representations. Subsequently, this vector is fed into a self- 
attention layer to extract the parts that are relevant to the Tm value. 
Then, through a fully connected layer, the sequence representation 
vector is transformed to the desired size and outputs the model’s pre-
dicted Tm value of proteins. 

In this study, we utilized the PyTorch [52] deep learning framework, 
along with Scikit-learn [53] and Python 3.7, to construct our neural 
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network models. To train this model, we employed the Adam [54] 
optimizer with a mean squared error loss function. We set the batch size 
for each training iteration to 32 and trained the model for 100 epochs. 
The ReLU(⋅) [55] activation function was utilized. In addition, to avoid 
overfitting, we applied L2 regularization. Finally, we selected the best 
model based on higher coefficients of determination (R2) and Pearson 
correlation coefficients (P), as well as lower root mean square error 
(RMSE), as our final model. 

Graph Convolution Network A approach using neural networks to 
learn graph-structured data, with the primary objective of extracting 
and uncovering features and patterns within the graph structure to meet 
the requirements of subsequent tasks. Given an amino acid sequence of 
length L, the node features are represented as XL×f , where f denotes the 
dimensionality of the node features. The node features consist of the 
BLOSUM62 encoding, PSSM, HMM, seven physicochemical properties 
(PP7), secondary structure features, amino acid frequencies, and 
dipeptide frequencies of the protein sequence. The edge features are 
represented as AL×L, which is composed of a protein contact map where 
each element represents the contact probability between two amino 
acids. To ensure that the values of node features remain within the range 
of − 1–1, it is necessary to normalize the node features by 

X′
L×f =

XL×f − XL×f

σL×f
(1)  

where X represents the mean of node features, σ is the variance, and X′ is 
the normalized node features. To avoid altering the original distribution 
of features after multiplying them by the feature matrix, we standardize 
the edge features by: 

Ã = DAD (2)  

D = diag
((∑

k
Aik

)− 1
2
)

(3)  

where D refers to a diagonal matrix with its diagonal elements being the 
negative 1/2 power of the row sums of the adjacency matrix A. Ã is the 
normalized adjacency matrix. Ultimately, the formula for graph con-
volutional neural networks is as follows: 

G(l+1) = σ
(

ÃG(l)W(l) +B(l)
)

(4)  

where the initial state G(0) = X′, G(l) ∈ RL×f is the output of the l-th layer 
after applying the activation function. W(l) ∈ Rf×f′ represents the weight 
matrix of a specific layer, which maps the feature vectors from dimen-
sion f to dimension f′. B(l) ∈ Rf×f′ is the bias matrix of a specific layer. σ 
represents the activation function ReLU(⋅). To accelerate convergence 
and prevent overfitting, we add a Normalization layer after each graph 
convolutional layer. The final output of the graph convolutional neural 
network is denoted as follows: 

UL×p = (v1, v2, v3,…, vL) (5)  

U is a two-dimensional matrix, where vi represents the embedding of a 
node, and p represents the dimensionality of the embedding vector. 

Self-attention Network The attention network [56] allows the 
neural network to focus only on the parts that are of interest while 
ignoring the uninteresting parts. We use the output matrix U of the 
graph convolutional neural network as the input to the self-attention 
network. 

T = Attention(U) = softmax
(
W2⋅tanh

(
W1UT) )U (6)  

H =
1
r

∑r

k
(T)k (7) 

Here, UT represents the transpose of the matrix U ∈ RL×p, and W1 ∈

Rq×p and W2 ∈ Rr×q are two weight matrices. The parameters p, q, and r 
are hyperparameters. In self-attention networks, the softmax function 
normalizes the weight matrix along each row, ensuring that the sum of 
each row equals 1. Next, we use weight matrices W1 and W2 to transform 
U, and then apply the softmax function to obtain the attention matrix T. 
A set of r different coefficients is used to evaluate the correlation be-
tween each residue and the Tm value from different perspectives. 
Finally, we average the r sets of attention coefficients to obtain the final 
feature representation H ∈ R1×p. 

Multi-layer Perceptron The output of the self-attention network is 
passed as input to the multi-layer perceptron (MLP), which performs a 
series of nonlinear transformations on the data to predict the Tm value. 
Specifically, it can be expressed by the following equation: 

O = Sigmoid
(
W3HT +B

)
(8)  

where W3 ∈ 1 × p is the weight matrix and B ∈ ℝ is the bias term. The 
sigmoid activation function maps the predicted values to the (0, 1) in-
terval, providing a probabilistic interpretation to the output. 

In order to enhance memory utilization and model training speed, 
thus ensuring greater accuracy in the direction of gradient descent, we 
have implemented measures for parallelization. Specifically, we con-
ducted transformations on the node features and edge features of all 
proteins to ensure they have the same dimensionality, with the value of 
N set to 1028. This value was determined based on the maximum length 
of protein sequences in the Tm dataset. For node features and edge 
features with sequence lengths smaller than 1028, we employed a 
padding strategy known as "zero-padding" (Supplementary Fig. 2). After 
performing the "zero-padding" operation, the node features are repre-
sented as XN×f , and the edge features are represented as AN×N. The 
original node feature matrix and edge feature matrix are located in the 
top left corner of the new matrix, while the remaining positions are filled 
with zeros to maintain the integrity of the matrix. 

2.4. Training and evaluation 

2.4.1. Hyper-parameter optimization 
To train our final model, we employed a random search strategy to 

adjust the hyper-parameters by sampling values from the defined 
parameter spaces (Supplementary Table 5). Approximately 50–100 sets 
of parameters were sampled and tested. The optimal hyper-parameters 
were chosen based on the parameter set with the lowest R2 value on 
the validation set. Subsequently, we conducted an analysis of the results 
obtained from the random search strategy and manually fine-tuned 
several hyper-parameters. The best model, determined by the lowest 
R2 value on the validation set, was selected as the final set of hyper- 
parameters. For detailed information on the specific hyper-parameters 
adjustment process, please refer to Supplementary Table 6. To assess 
the impact of different hardware on model training, we utilized two 
distinct hardware configurations: GPU (GeForce® RTX 4090) and pure 
CPU (64-Core AMD® EPYC 7H12 @ 1.5 GHz). It is worth noting that 
GPU training can be completed in just 3 h, whereas only-CPU training 
takes a significantly longer time, lasting up to 17 h. The source code of 
DeepTM can be accessed publicly through the following link: https:// 
github.com/liimy1/DeepTM (accessed on 13 June 2023). It is worth 
mentioning that, on a single-core CPU, DeepTM has an average execu-
tion time of less than 180 min for protein sequences containing 1000 
amino acids. Among these, the primary time is spent on the stage of 
generating PSSM features using PSI-BLAST [44], which accounts for 
approximately 94% of the total duration. More importantly, given the 
corresponding hardware support, DeepTM has the ability to parallel 
process protein sequences during the feature extraction step. This im-
plies that DeepTM is capable of simultaneously processing feature 
extraction of multiple protein sequences, thereby significantly 
enhancing the efficiency of the entire model. After the completion of the 
feature extraction process, the model’s prediction time can reach a level 
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measured in seconds. 

2.4.2. Evaluation metrics 
In order to assess the performance of the model, we employed three 

distinct sets of metrics. Root Mean Square Error (RMSE) is a metric used 
to quantify the disparity between predicted values and observed values, 
serving as a measure of the model’s performance. In the experiment, we 
calculated RMSE using the following formula: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(ŷi − yi)
2

n

√

(9)  

where n is the number of samples, yi is the observed values, ŷi is the 
predicted values by the model. 

R-squared, also known as the coefficient of determination, is a sta-
tistical measure used to quantify the goodness of fit of a model. It reflects 
the degree of correlation between the predicted values of the model and 
the actual observed values. The calculation method is as follows: 

R2 = 1 −
∑

(y − ŷ)2

∑
(y − y)2 (10)  

where y is the mean value of the observed values, and ŷ is the predicted 
values of the model. 

The Pearson correlation coefficient (P) is a statistical measure that 
quantifies the linear relationship between two variables. Its calculation 
method is as follows: 

ρX,Y =
cov(X, Y)

σXσY
=

E[(X − μx)(Y − μy) ]
σXσY

(11)  

where cov(X,Y) is the covariance between the two variables and σX is the 
standard deviation. 

2.5. DeepTM web application 

DeepTM is available for free as a web application on http://deeptm. 
top/index.html (accessed on August 22, 2023). The program uses pro-
tein sequence(s) as input. DeepTM provides prediction results, which are 
sent to users by email when ready. This website contains datasets for 
training and testing. 

3. Results and discussion 

3.1. Data partitioning 

We employ two distinct datasets to train deep neural network 
models, each dedicated to predicting OGT values and Tm values of 
proteins, respectively. These two datasets are referred to as the OGT 
dataset and the Tm dataset, respectively, with the OGT experimental 
values and Tm experimental values serving as the labels. The OGT 
dataset and Tm dataset encompass experimental values within temper-
ature ranges of [0, 110 ℃] and [0, 100 ℃], respectively (Fig. 2). To 
train the model, we split these two datasets into separate training and 
test sets. Specifically, when training the OGT model, the ratio of training 
set to test set in the OGT dataset is 19:1. Additionally, 20% of the data 
from the training set is selected as the validation set. To ensure a 
balanced distribution of the OGT dataset at the OGT level, we use a 
temperature interval size of 10 ℃ and select a maximum of 3000 se-
quences within each temperature interval. In cases where the number of 
protein sequences within a temperature interval exceeds 3000, we 
randomly sample 3000 sequences. For intervals with fewer than 3000 
sequences, we include all the available protein sequences in that inter-
val. Finally, Fig. 2a illustrates the distribution of the number of protein 
sequences in each temperature interval for the OGT dataset. The number 
of protein sequences for each temperature interval in the range of 

10–90 ℃ remains between 2000 and 3000. However, there are fewer 
protein sequences in the 90–110 ℃ range, totaling 768 sequences, 
which accounts for 2.97% of the entire OGT dataset. There are a total of 
1924 protein sequences in the OGT dataset with OGT below 10 ℃, ac-
counting for 7.44% of the entire OGT dataset. When training DeepTM, 
we partitioned the Tm dataset into training and test sets in an 8:2 ratio, 
and further selected 20% of the data from the training set as the vali-
dation set. To maintain a consistent data ratio between the training set 
and the test set within a small range, we partitioned the Tm dataset based 
on the experimental Tm values of proteins into intervals of 10 ℃. Sub-
sequently, we selected protein sequences from each interval in a ratio of 
8:2 for the training set and test set, respectively (Fig. 2b). Therefore, in 
the entire Tm dataset, as well as in the training set and test set, the 
proportion of protein sequences contained within each temperature in-
terval is similar. Within the entire Tm dataset, 83% of protein sequences 
exhibit Tm values ranging from 40 ℃ to 60 ℃. Protein sequences with 
Tm values below 30 ℃ account for a mere 0.4% of the entire Tm dataset, 
totaling 76 sequences. On the other hand, there are 1017 protein se-
quences with Tm values exceeding 80 ℃, representing 5.6% of the entire 
Tm dataset. The experimental Tm values of proteins in the Tm dataset 
predominantly concentrate around 50 ℃, with a decreasing frequency 
of data as one moves towards the extremes. In order to mitigate the 
occurrence of random variations in the training results, we employed a 
5-fold cross-validation method to train the model. In neural network 
modeling, using larger-scale datasets can potentially enhance the 
model’s generalization performance. Currently, public datasets con-
taining information about protein’s Tm are relatively scarce. If other 
melting data related to Tm, such as Tonset and distribution width, could 
be included in public databases, it would likely enrich the dataset and 
lead to more accurate predictions by neural network models. 

3.2. Predicted results for OGT 

We trained a deep neural network model using the OGT dataset, as 
depicted in Supplementary Fig. 3, to predict the OGT values of proteins. 
The trained model is referred to as the OGT model. The model takes 
protein sequences as input, where node features are composed of BLO-
SUM62 encoding, PSSM, HMM, seven physicochemical properties 
(PP7), amino acid frequencies, and dipeptide frequencies. The edge 
features are represented by the protein contact map. Through the utili-
zation of graph convolutional neural networks and attention mecha-
nisms, the model is capable of extracting OGT-related information from 
protein sequences. Subsequently, the extracted representation vectors 
are processed through a multi-layer perceptron (MLP) to predict the 
protein’s OGT. On the training set, the performance evaluation results of 
the OGT model are as follows: R2 = 0.78, P = 0.89, RMSE = 11.8 ℃ 
(Fig. 3a). On the test set, the model performs as follows: R2 = 0.74, 
P = 0.86, RMSE = 12.97 ℃ (Fig. 3b). However, when the OGT of pro-
teins is above 90 ℃, the model tends to underestimate the OGT values. 
On the other hand, when the OGT of proteins is in the range of 0–10 ℃, 
the model tends to overestimate the OGT values. This could be attrib-
uted to a larger number of protein sequences with OGT below 90 ℃ 
compared to those with OGT above 90 ℃ during the model training. 
Additionally, there is a significantly greater quantity of sequences with 
OGT above 10 ℃ compared to those with OGT below 10 ℃ in the OGT 
dataset. This could be attributed to a larger number of protein sequences 
with OGT below 90 ℃ compared to those with OGT above 90 ℃ during 
the model training. Additionally, there is a significantly greater quantity 
of sequences with OGT above 10 ℃ compared to those with OGT below 
10 ℃ in the OGT dataset. As a result, the model learned more exten-
sively from the OGT features within the range of 10–90 ℃, causing it to 
exhibit a tendency to predict OGT values closer to this range for proteins 
with OGT values outside the 10–90 ℃ range. However, on the test set, 
our model achieved a Pearson correlation coefficient (P) of 0.86 between 
the predicted OGT values and the experimentally measured OGT values 
of proteins. Therefore, we can utilize the trained OGT model to predict 
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the OGT information of proteins. During the training process, the top- 
performing OGT model utilized the feature combination from the 11th 
group in Supplementary Table 7 for training, with the following hyper- 
parameter settings: a learning rate of 0.0001, 25 epochs for iteration, 
and a batch size of 1 for inputting into the neural network. In the sub-
sequent section on Tm prediction task, we employ this model to forecast 
the OGT values of proteins. 

3.3. Predicted results for Tm 

We trained a deep neural network model called DeepTM, as shown in 
Fig. 1, using the Tm dataset to predict the protein’s Tm values. On the 
training set, the model achieved the following performance evaluation 
results: R2 = 0.69, P = 0.83, RMSE = 7.11 ℃ (Fig. 4a). As for the test 
set, the model exhibited the following performance: R2 = 0.65, 
P = 0.81, RMSE = 7.5 ℃ (Fig. 4b). We hypothesize that protein se-
quences with higher Tm values are more capable of accurately capturing 
the thermal stability characteristics of proteins. To validate this hy-
pothesis, protein sequences are initially classified into four categories 
based on their Tm values: hyperthermophilic proteins (> 70 ℃), ther-
mophilic proteins (50–70 ℃), mesophilic proteins (25–50 ℃), and 
psychrophilic proteins (5–25 ℃)[57]. In this study, we exclusively focus 
on thermophilic proteins and hyperthermophilic proteins. Next, we 
select protein sequences with Tm ≥ 50 ℃ from the training and test sets 
of the entire Tm dataset to create a new dataset, referred to as the Tm50 
dataset in the following sections (Supplementary Figs 1b, 1c), and 
retrain the model on this new training set. On the training set of the 
Tm50 dataset, the performance evaluation of the model yields the 
following results: R2 = 0.81, P = 0.9, RMSE = 5.52 ℃ (Fig. 4c). On the 
test set of the Tm50 dataset, the model demonstrates the following 
performance: R2 = 0.76, P = 0.87, RMSE = 6.17 ℃ (Fig. 4d). It is worth 
noting that the latter model (Tm ≥ 50 ℃) shows significant improve-
ments in the evaluation metrics on the test set compared to the former. 
The coefficient of determination (R2) has increased by 17.4%, the 
Pearson correlation coefficient (P) has increased by 7.4%, and the root 

mean square error (RMSE) has decreased by 22.3%. This result validates 
our hypothesis that training the model exclusively on protein sequences 
with Tm ≥ 50 ℃ leads to a stronger predictive ability for the melting 
temperatures of thermophilic proteins. Subsequently, we re-adjusted the 
scale of the training dataset and retrained the model using experimental 
Tm values within the temperature ranges of [30, 60 ℃], [40, 60 ℃], [40, 
100 ℃], and [50, 100 ℃] (Supplementary Table 8) to assess the impact 
of training set variations on model performance. The computational 
results indicate that the model performs optimally when using experi-
mental Tm values within the [50, 100 ℃] range. We speculate that the 
inclusion of proteins with Tm values in the 30–50 ℃ range may have led 
the model to learn a significant number of features unrelated to thermal 
stability in mesophilic enzymes, which subsequently compromised the 
model’s ability to predict Tm. In the subsequent research, we will 
conduct testing on the Tm50 dataset. Additionally, when training 
DeepTM, we will utilize the OGT model mentioned in the previous 
section to predict the OGT values of each target protein. 

We have chosen temperature intervals of [50, 60 ℃], [60, 80 ℃], 
and [80, 100 ℃] to represent the expected accuracy levels of DeepTM as 
good, fair, and poor, respectively. In these three temperature intervals, 
the root mean square errors on the test set are 4.14 ℃, 8.07 ℃, and 
9.50 ℃, respectively. Based on the root mean square error results, it 
aligns with the Tm distribution in the Tm50 dataset. The [50, 60 ℃] 
interval has the highest number of sequences, totaling 4785, accounting 
for 61% of the total. The [60, 80 ℃] interval has a relatively balanced 
distribution of sequences, with a total of 2005. The [80, 100 ℃] interval 
has a relatively lower number of sequences, with only 1023, making up 
13% of the total. To further enhance the model’s predictive performance 
in the 80–100 ℃ temperature range, additional protein data with Tm 
values in this range may be needed. 

In order to investigate the impact of OGT values of the host organ-
isms on the protein’s Tm values, we divided the test set into two subsets 
based on OGT: one subset exclusively comprising protein sequences with 
OGT ≥ 50 ℃, and the other subset exclusively comprising protein se-
quences with OGT < 50 ℃ (Fig. 4e). We recalculated three evaluation 

Fig. 3. Prediction results of OGT trained on the OGT dataset. The abscissa represents the experimental values of OGT, while the ordinate represents the predicted 
values of OGT. The points on the diagonal represent the experimental values of OGT and the corresponding predicted values are identical. RMSE: Root mean square 
error. R2: Coefficient of determination. P: Pearson correlation coefficient. n: Number of data points. OGT: Optimal Growth Temperature of the host organisms. (a) 
Comparison between the experimental values and predicted values of OGT in the training set. (b) Comparison between the experimental values and predicted values 
of OGT in the test set. 
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metrics, namely R2, P, and RMSE, for these two subsets of the test set. 
Subsequently, we compared these metrics with the evaluation metrics of 
the model on the entire test set (Fig. 4f). In the entire test set, as well as 
the test subset (OGT ≥ 50 ℃) and test subset (OGT < 50 ℃), both the 
coefficient of determination (R2) and Pearson correlation coefficient (P) 
exhibit a decreasing trend. The Pearson correlation coefficient (P) in-
dicates that the predicted Tm values exhibit extremely strong correla-
tion, strong correlation, and moderate correlation with the experimental 
Tm values in these three datasets, respectively. Although the number of 
proteins in the test subset (OGT ≥ 50 ℃) accounts for only 29.68% of the 
entire test set, the number of proteins in the test subset (OGT < 50 ℃) 
represents 70.32% of the entire test set. However, the former calculates 
higher values for both R2 and P, indicating that the model performs 
better in the test subset (OGT ≥ 50 ℃) compared to the latter. However, 
The fact that the proteins in the test subset (OGT ≥ 50 ℃) all have Tm 
values ≥ 50 ℃ suggests that proteins may exhibit optimal activity when 
approaching the host’s optimal growth temperature, which is consistent 
with the findings in the references [57,58]. In terms of root mean square 
error (RMSE), the test subset (OGT ≥ 50 ℃) exhibits the highest 
calculated RMSE of 7.74 ℃, while the test subset (OGT < 50 ℃) dem-
onstrates the lowest calculated RMSE of 5.46 ℃. The latter shows a 
relative reduction of 29.46% in RMSE compared to the former. This 
could be attributed to the fact that within the test subset (OGT ≥ 50 ℃), 
there are 336 proteins with experimental Tm values ≥ 70 ℃, accounting 
for 85.28% of the proteins with Tm values ≥ 70 ℃ in the entire test set. 
According to Eq. (9), the error is amplified when calculating RMSE, 
resulting in a higher RMSE for the test subset (OGT ≥ 50 ℃) compared 
to the entire test set. However, the overall prediction error remains 
within 10 ℃. 

Furthermore, we compare the computational results of our model on 
the Tm50 dataset with those of other approaches [15–17,19,21,22,59] 
(see Supplementary Table 1). The outcomes demonstrate the 
outstanding performance of our model across three evaluation metrics, 
namely R2, P, and RMSE. Method 7 [22] in Supplementary Table 1 
represents one of the recent research achievements. Our results, 
compared to their results based on dataset 1 [22], exhibit improvements 
of 4.11%, 1.16%, and 22.88% in the evaluation metrics R2, P, and RMSE, 
respectively. Furthermore, when compared to their results based on 
dataset 2 [22], our model demonstrates enhancements of 31.03%, 
14.47%, and 2.06% in R2, P, and RMSE, respectively. Prior to this, the 
majority of researchers employed traditional machine learning methods 
and statistical approaches to investigate the Tm values of proteins. We 
are the first to apply the protein graph structure pattern representation 
to the prediction of protein Tm values. Moreover, we utilized an 
exceptionally large Tm dataset, which greatly contributed to the 
improvement in the model’s performance. 

3.4. Deciphering the factors in the sequence that contribute to thermal 
stability 

To identify factors in protein sequences that contribute to protein 
thermal stability, we tested different combinations of features to train 
the model. We combined seven features, namely PSSM, HMM, SPD33, 

seven physicochemical properties (PP7), amino acid frequency, dipep-
tide frequency, and OGT, and analyzed the impact of each feature on the 
model’s performance. Specifically, we trained the model using 15 
different combinations of features (Supplementary Table 7) and 
compared their performance. Firstly, we utilized the model trained with 
a combination of all features as the baseline model to evaluate the 
performance of models trained with other feature combinations. Sub-
sequently, we validated seven feature combinations by removing one 
feature at a time from the baseline feature combination. This was done 
to assess the impact of each feature on the model’s performance. Due to 
the strong correlation between protein OGT and Tm, we have removed 
the OGT feature from each of the seven feature combinations, resulting 
in the formation of six new feature combinations. Lastly, building upon 
the baseline feature combination, we have computed the OGT feature 
twice to enhance its weight, and evaluated the impact of the OGT feature 
on the model performance. We utilized the Tm50 dataset comprising 
7790 protein sequences, with a training-to-test ratio of 8:2. The per-
formance of the models trained with different feature combinations was 
evaluated through 5-fold cross-validation. Figs. 5a and 5b assess the 
predictive capabilities of the model using the coefficient of determina-
tion (R2) and the Pearson correlation coefficient (P) calculated by the 
model on the test set, respectively. The results indicate that the best 
model performance is achieved when using PSSM, HMM, SPD33, PP7, 
amino acid frequency, dipeptide frequency, OGT value, and protein 
contact map as features. We observed that incorporating the OGT value 
as a feature during model training generally enhanced performance. 
Therefore, we hypothesize that increasing the weight of the OGT feature 
might lead to even better performance. Contrary to expectations, on the 
basis of the baseline feature combination, adding the OGT feature once 
again and retraining the model did not improve the model’s perfor-
mance. Furthermore, among individual features, dipeptide frequency 
had the greatest impact on the model, followed by HMM features, and 
OGT value ranked third (Fig. 5c and Fig. 5d). 

We opted to conduct a separate analysis of the dipeptide frequency, 
which had the most significant impact on the model’s performance 
among the feature combinations, as well as another feature closely 
related to it, namely amino acid frequency. In order to further explore 
their relationship with protein thermal stability and their impact on the 
model’s performance. In the test set, we utilized the best model for 
predictions and divided the test set into two groups based on the dif-
ference between predicted and experimental Tm values: a protein dataset 
where the difference between predicted and experimental Tm values is 
≤ 10 ℃ and a protein dataset where the difference is > 10 ℃. Among 
them, the protein dataset where the difference between predicted and 
experimental Tm values is ≤ 10 ℃ accounts for 90.52% of the entire test 
set. Subsequently, we computed the frequency of 20 amino acids and 
400 dipeptides for both protein datasets and the entire test set sepa-
rately. We then calculated the average values for each of the three 
datasets, as illustrated in Fig. 6. In the dataset where the difference 
between predicted Tm values and experimental Tm values is ≤ 10 ℃, the 
distribution of amino acid frequencies is roughly similar to the overall 
amino acid frequency distribution of the test set. The differences in 
amino acid frequencies are less than 0.002. The results reveal that the 

Fig. 4. Prediction results of Tm and impact of OGT features on the performance of DeepTM. RMSE: Root mean square error. R2: Coefficient of determination. P: 
Pearson correlation coefficient. n: Number of data points. Tm: Melting temperature. TExp

m : Experimental value of Tm. (a-b) The model trained on the training set of the 
entire Tm dataset. The abscissa represents the experimental values of Tm, while the ordinate represents the predicted values of Tm. The points on the diagonal 
represent cases where the experimental values of Tm and the corresponding predicted values are identical. (a) Comparison between the experimental values and 
predicted values of Tm in the training set, (b) Comparison between the experimental values and predicted values of Tm in the test set. (c-d) The model trained on the 
training set of the Tm50 dataset (Tm ≥ 50 ℃). (c) Comparison between the experimental values and predicted values of Tm in the training set of the Tm50 dataset (Tm 
≥ 50 ℃), (d) Comparison between the experimental values and predicted values of Tm in the test set of the Tm50 dataset (Tm ≥ 50 ℃). (e) Distribution of protein 
sequences in the test set (Tm ≥ 50 ℃). The abscissa represents three different datasets, namely the test set (Tm ≥ 50 ℃), test subset (OGT ≥ 50 ℃), and test subset 
(OGT < 50 ℃). The ordinate represents the number of sequences in each dataset. Each dataset is divided into two parts: data with experimental Tm values ≥ 70 ℃ 
and data with experimental Tm values < 70 ℃. The numbers inside the bars represent the number of sequences in each category. (f) Analysis of the model’s per-
formance on the test set (Tm ≥ 50 ℃). The left ordinate represents the RMSE, while the right ordinate represents either R2 or P. RMSE, R2, and P represent the 
relationship between the experimental values and predicted values of Tm. 
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Fig. 5. Performance comparison of DeepTM models trained on different feature combinations using the training set (Tm ≥ 50 ℃) and evaluated on the test set (Tm ≥

50 ℃). (a) R2 scores of models trained on 15 different feature combinations evaluated on the test set (Tm ≥ 50 ℃). The error bars represent the standard deviation of 
the R2 scores obtained from 5-fold cross-validation. The abscissa represents different feature combinations, where the numbers 1–8 correspond to specific features: 1: 
PSSM, 2: HHM, 3: spd33, 4: PP7, 5: AA, 6: Dipeptide, 7: OGT, 8: Spotcon. The ordinate represents the R2 scores obtained by the models. (b) The Pearson correlation 
coefficients (P) of models trained on 15 different feature combinations evaluated on the test set (Tm ≥ 50 ℃). The error bars represent the standard deviation of the P 
scores obtained from 5-fold cross-validation. The ordinate represents the P scores obtained by the models. (c-d) Impact of individual features on the model (Tm ≥

50 ℃). (c) Comparison of R2 scores on the test set (Tm ≥ 50 ℃) for models trained with the addition or removal of a single feature, using the model trained with the 
second feature group in the feature combination as the baseline. The abscissa represents models trained with different feature combinations, arranged from left to 
right as follows: the baseline model, models trained with individual features removed from the feature combination, and the "2 *OGT" model, which indicates a 
model was trained by adding an additional OGT feature to the feature combination used for training the baseline model. The ordinate represents the R2 score 
obtained by the model. The data labels above the bars represent the following: "Baseline" indicates the absolute R2 score, while the others indicate the relative 
changes compared to the Baseline. Negative values indicate a decrease in the R2 score, while positive values indicate an improvement in the R2 score. (d) Comparison 
of P scores on the test set (Tm ≥ 50 ℃) for models trained with the addition or removal of a single feature, using the model trained with the second feature group in 
the feature combination as the baseline. The ordinate represents the P score obtained by the model. The data labels above the bars represent the following: "Baseline" 
indicates the absolute P score, while the others indicate the relative changes compared to the Baseline. Negative values indicate a decrease in the P score, while 
positive values indicate an improvement in the P score. 
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frequencies of Leu, Ala, Glu, and Gly are greater than 0.07, whereas the 
frequencies of Trp, Cys, His, and Met are less than 0.03. In the dataset 
where the difference between predicted and experimental Tm values is 
> 10 ℃, the frequencies of amino acids such as Ala, Glu, Arg, Leu, and 
Gly were higher compared to the frequencies in the other two datasets. 
The amino acid frequency differences were greater than 0.003 and were 
arranged in descending order based on these differences. On the other 
hand, amino acids such as Ser, Gln, Thr, and Cys exhibited lower fre-
quencies compared to the other two datasets. The differences in amino 
acid frequencies were greater than 0.003. The common characteristic of 
these amino acids is that they are all uncharged polar amino acids. This 
finding is consistent with the discoveries in the literature [57], indi-
cating that amino acids such as Ala, Arg, Cys, Gly, Gln, and other un-
charged polar amino acids significantly contribute to the thermal 
stability of proteins. 

To analyze the correlation between the prediction accuracy of the 
model and the experimental Tm values of proteins in the dataset, we 
divided the test set into two groups based on the experimental Tm values: 
the hyperthermophilic group (Tm values ≥ 70 ℃) and the thermophilic 
group (50 ℃ ≤ Tm values < 70 ℃). We then calculated the amino acid 
frequencies for each group. Subsequently, we categorized the 20 amino 
acids based on the two different classification criteria for the two groups. 
The first group consists of two categories: a dataset where the difference 
between predicted and experimental Tm values is ≤ 10 ℃, and a dataset 
where the difference is > 10 ℃. The other group comprises two cate-
gories: the hyperthermophilic group and the thermophilic group. Each 
group includes these 20 natural amino acids, and based on the frequency 
of amino acids within the two categories of each group, the amino acids 
are classified into the category with the higher frequency (see Supple-
mentary Table 9). We will sort the amino acids from left to right, in 
descending order, based on the difference in amino acid frequency be-
tween the two categories within each group. It is worth noting that the 
first three amino acid types in the dataset where the difference between 
predicted Tm values and experimental Tm values is ≤ 10 ℃ are exactly 
the same as the top three amino acid types in the thermophilic group. 
Additionally, the fourth amino acid type ranks fifth in the thermophilic 
group. There are 7 amino acid types common between the hyperther-
mophilic group and the dataset where the difference between predicted 
Tm values and experimental Tm values is > 10 ℃, accounting for 70% of 
the total amino acid types in the hyperthermophilic group. The distri-
bution of amino acid frequencies corroborates our experimental find-
ings, indicating that our model exhibits high accuracy in predicting the 
Tm values of thermophilic proteins. The RMSE is calculated to be 
4.95 ℃. However, in predicting the Tm values of hyperthermophilic 
proteins, further improvement in the model’s accuracy is needed, as the 
RMSE is measured to be 8.97 ℃. 

To analyze the differences in dipeptide frequency distribution among 
the dataset where the difference between predicted and experimental Tm 
values is > 10 ℃, the dataset where the difference is ≤ 10 ℃, and the 
entire test set, we set a threshold of 0.007. Subsequently, we filtered out 
dipeptides with frequencies greater than this threshold in each of the 
three datasets (Fig. 6b-d). The results indicate that within the entire test 
set and the dataset where the difference between the predicted and 
experimental Tm is ≤ 10 ℃, the same dipeptide types exceed the 

threshold frequency. These include: Leu-Leu, Ala-Leu, Leu-Ala, Ala-Ala, 
Leu-Glu, Glu-Glu, and Val-Leu, arranged in descending order of dipep-
tide frequency. However, in the dataset where the difference between 
the predicted and experimental Tm is > 10 ℃, in addition to the afore-
mentioned seven dipeptide types, it also includes: Glu-Ala, Leu-Gly, Gly- 
Leu, Arg-Leu, and Ala-Glu, likewise arranged in descending order of 
dipeptide frequency. These results indicate that our model performs well 
in learning dipeptide features, despite the potential negative impact of 
the presence of dipeptides such as Glu-Ala, Leu-Gly, Gly-Leu, Arg-Leu, 
and Ala-Glu on the model’s predictive outcomes. 

In our approach, we solely utilize protein sequences as input infor-
mation without directly incorporating protein structure for predicting 
its thermal stability. However, we employ protein contact maps and 
descriptors of protein secondary structure to characterize the secondary 
structure features of proteins. Additionally, we utilize HMM, PSSM, and 
BLOSUM62 matrices to capture the evolutionary features of proteins. 
The interplay among these features is integrated into our neural network 
model. 

3.5. Prediction of Tm values for thermophilic plastic-degrading enzymes 

We collected a dataset comprising 22 thermally stable plastic- 
degrading enzymes [39] as a blind test dataset of protein sequences 
that have no overlap with the training and testing sets of the model. The 
dataset includes highly active and thermally stable PET 
plastic-degrading enzymes, namely LCC [60] and PETase [61], which 
have been discovered through current scientific research. These en-
zymes are used to validate the utility of the model. In the dataset of PET 
plastic-degrading enzymes, our model achieved a RMSE of 8.25 ℃ 
(Fig. 7a). Specifically, for protein YNPsite05_CeleraDRAFT_401410 
[62], the experimental Tm value is 75.13 ℃, and the predicted Tm value 
is 73.29 ℃, resulting in a prediction error of 1.84 ℃. For PETase, the 
experimental Tm value is 56.8 ℃, and the predicted Tm value is 
55.49 ℃, resulting in a remarkably low prediction error of only 1.31 ℃. 
Despite the difference between the OGT for these two proteins and their 
experimental Tm values, which are 17.53 ℃ and 29.5 ℃ respectively, 
our model still exhibits relatively low errors. This indicates that our 
model possesses good predictive capability even for proteins whose Tm 
values are not close to their OGT. 

Our model performs excellently on the dataset of plastic-degrading 
enzymes, allowing us to predict the Tm values for enzymes selected 
from thermophilic microorganisms, such as AAZ54920.1, ADM47605.1, 
CAH17554.1, with a difference of around 2 ℃ between the predicted 
and experimental values. This outcome confirms our previous findings 
that our model exhibits high accuracy and low error in predicting the Tm 
values of thermophilic enzymes. Consequently, our model can be 
employed for the screening of novel thermophilic enzymes, demon-
strating feasibility in practical applications. Further sequence feature 
analysis revealed (Fig. 7b, compared to Fig. 6) that the frequency dis-
tribution of amino acid types Arg, Ser, Thr, and Cys in PETase is similar 
to the frequency distribution in the dataset where the difference be-
tween predicted and experimental Tm values is ≤ 10 ℃. The frequency 
distribution of amino acid types Arg, Ser, Thr, as well as dipeptides Glu- 
Ala, Leu-Gly, Gly-Leu, Arg-Leu, and Ala-Glu in protein WP_117215036.1 

Fig. 6. Impact of amino acid frequency and dipeptide frequency on protein thermal stability. (a) The occurrence frequency of amino acids in the test set (Tm ≥

50 ℃) for all proteins. The test set is divided into two groups: the first group includes protein samples with a difference between predicted and experimental Tm 
values ≤ 10 ℃ (blue), and the second group includes samples with a difference > 10 ℃ (yellow). A comparison is made between the occurrence frequencies of amino 
acids in these two groups and the entire test set (orange). The abscissa represents the 20 types of natural amino acids, while the ordinate represents the frequency of 
occurrence of each amino acid. Tm: Melting temperature. (b) The frequency of occurrence of dipeptides in the test set (Tm ≥ 50 ℃) comprising all proteins. The 
abscissa represents 400 dipeptides arranged in ascending order based on their alphabetical abbreviation. Every 20 dipeptides are displayed with intervals on the 
abscissa. The ordinate represents the frequency of occurrence of dipeptides. The red dashed line represents a dipeptide frequency of 0.007. Dipeptides with fre-
quencies greater than 0.007 include LL, AL, LA, AA, LE, EE, and VL. (c) The dipeptide frequency of proteins in the test set (Tm ≥ 50 ℃) with a difference between 
predicted and experimental Tm values ≤ 10 ℃. The dipeptides with frequencies greater than 0.007 include LL, AL, LA, AA, LE, EE, and VL. (d) The dipeptide fre-
quency of proteins in the test set (Tm ≥ 50 ℃) with a difference between predicted and experimental Tm values > 10 ℃. The dipeptides with frequencies greater than 
0.007 include LL, AL, LA, AA, LE, EE, VL, EA, LG, GL, RL, and AE. 
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also matches the frequency distribution of this dataset, consistent with 
the conclusions in the Predicted results for Tm section of this paper. 

We conducted a comprehensive analysis of the PET plastic-degrading 
enzyme dataset, including amino acid frequencies (Supplementary 
Table 10), dipeptide frequencies (Supplementary Table 11), sequence 
similarity (Supplementary Table 12), and structural similarity (Supple-
mentary Table 13). In the PET plastic-degrading enzyme dataset 

(Supplementary Table 2, Fig. 7a), approximately 73% of the sequences 
have experimental Tm values concentrated within the range of 65–75 ℃, 
with a high correlation between predicted and experimental values, 
maintaining an error margin within 7 ℃. The experimental Tm values of 
the remaining sequences are distributed in the ranges of 75–100 ℃ and 
50–65 ℃. However, the correlation between their predicted and 
experimental Tm values is not significant, with an error range between 

Fig. 7. Predicted Tm value of PET plastic-degrading enzymes. (a) Prediction of Tm values in the dataset of PET plastic-degrading enzymes using a model trained 
on a training set (Tm ≥ 50 ℃), and a comparison between the experimental Tm values and the predicted Tm values. The abscissa represents the experimental Tm 
values, while the ordinate represents the predicted Tm values. Points along the diagonal line indicate instances where the experimental Tm values are equal to the 
predicted Tm values. RMSE: Root mean square error. n: Number of data points. Red triangle: LCC. Red rectangle: PETase. (b) The representative amino acid and 
dipeptide frequencies of protein PETase and protein WP_117215036.1 (NCBI). The abscissa represents amino acids or dipeptides, distributed on both sides of the 
dashed line. The left ordinate represents amino acid frequencies, while the right ordinate represents dipeptide frequencies. (c) The prediction results of the ProTstab2 
model on the dataset of PET plastic-degrading enzymes, and the comparison between the experimental Tm values and the predicted Tm values. (d) The prediction 
results of the DeepSTABp model on the dataset of PET plastic-degrading enzymes, and the comparison between the experimental Tm values and the predicted 
Tm values. 
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10 and 18 ℃, except for PETase. We compared proteins with Tm values 
between 75-100 ℃ and 50–65 ℃ to those within the range of 65–75 ℃. 
Across these three temperature ranges, amino acids exhibiting signifi-
cant differences include Ala, Cys, and Gly (Supplementary Table 10). 
Furthermore, proteins in the 75–100 ℃ and 50–65 ℃ ranges show dif-
ferences in one or more dipeptide frequencies compared to those in the 
65–75 ℃ range (Supplementary Table 11). These disparities in amino 
acid and dipeptide frequencies may be contributing factors to the lower 
predictive correlation of Tm values for proteins within the 75–100 ℃ 
and 50–65 ℃ ranges. Within the 65–75 ℃ clustering, 53% of sequence 
similarity scores [63] exceed 90 (Supplementary Table 12). However, 
outside of these clusters, sequences WP_083947829.1 and 
WP_068752972.1, as well as 53% of sequences within the aforemen-
tioned clusters, exhibit similarity scores ranging from 70 to 90, yet their 
performance on DeepTM is suboptimal. We utilized TM-Align [64] to 
conduct structural similarity calculations for proteins with existing 
crystal structures in the PDB database (Supplementary Table 13). Spe-
cifically, this involved the proteins PETase, 5LUK_A, and LCC, with 
experimental Tm values distributed within the ranges of 50–65 ℃, 
65–75 ℃, and 75–100 ℃, respectively. PETase and 5LUK_A exhibited 
relatively small prediction errors, at 1.31 ℃ and 0.51 ℃, respectively, 
while LCC showed a higher prediction error of 14.95 ℃. Nonetheless, 
their TM-Scores all exceeded 0.9, indicating a high level of structural 
similarity. Interestingly, the sequence similarity among these three 
proteins was relatively low. Hence, we deduce that the degree of 
sequence similarity does not directly impact the accuracy of Tm pre-
dictions, and likewise, the level of structural similarity cannot guarantee 
the accuracy of Tm predictions. 

We directly compared the Tm prediction performance of DeepTM 
with the latest Tm prediction models, ProTstab2 [23] and DeepSTABp 
[24], on the dataset of PET plastic-degrading enzymes to assess the 
practicality of the models (Fig. 7a, Fig. 7c, Fig. 7d, and Supplementary 
Table 2). Since the dataset of plastic-degrading enzymes only consists of 
22 protein sequences, we will solely utilize the RMSE as the evaluation 
criterion in this case. The results demonstrate that DeepTM exhibits a 

commendable generalization capability when applied to previously 
unseen datasets. Fig. 7a depicts the distribution of all data points clus-
tered closely to the diagonal line, with a RMSE of 8.5 ℃. ProTstab2 
achieved an RMSE of 20.05 ℃ on the dataset of plastic-degrading en-
zymes, while DeepSTABp obtained an RMSE of 20.97 ℃. In contrast, our 
model, DeepTM, demonstrated a reduction in RMSE for predicting Tm 
relative to ProTstab2 and DeepSTABp by 58.85% and 60.66%, respec-
tively. Specifically, the predicted errors for protein PETase in DeepTM, 
DeepSTABp, and ProTstab2 are 1.31 ℃, 10.18 ℃, and 8.62 ℃, respec-
tively. DeepTM demonstrates superior predictive performance in this 
case. 

However, for proteins with Tm values exceeding 80 ℃, such as LCC 
and GxsBSedJan11_10009658, the performance of our model in terms of 
prediction is moderate. Specifically, the prediction error for LCC is 
14.95 ℃, and the prediction error for GxsBSedJan11_10009658 is 
15.26 ℃. This could be attributed to the fact that proteins with Tm 
values exceeding 80 ℃ accounted for only 13.04% of our dataset, which 
may have resulted in the model not fully capturing the relationship 
between the features related to the thermal stability of these proteins 
and their Tm values. 

3.6. Prediction of Tm values for thermally stable proteins 

We selected a set of proteins with a broader class as the second 
external validation dataset [40,41,65] (Supplementary Table 3), aiming 
to further verify the generalization performance of DeepTM. On this 
dataset, we used both DeepTM and ProTstab2 to predict the proteins’ Tm 
values (Supplementary Table 3, Fig. 8, Supplementary Figure 6). The 
results demonstrated that DeepTM continues to perform accurately on 
the thermally stable protein dataset, showcasing strong generalization 
capabilities. DeepTM achieved an RMSE of 7.66 ℃ on this dataset, with 
the prediction error for 20 sequences being within 7 ℃, accounting for 
69% of the total. This includes 12 membrane proteins, 5 antibodies, 1 
transcription factor, and 2 esterase sequences. In contrast, ProTstab2 
achieved an RMSE of 15.87 ℃, with only seven sequences having a 

Fig. 8. Predicted Tm value of thermally stable proteins. (a) Prediction of Tm values in the dataset of thermally stable proteins using a model trained on a training 
set (Tm ≥ 50 ℃), and a comparison between the experimental Tm values and the predicted Tm values. The abscissa represents the experimental Tm values, while the 
ordinate represents the predicted Tm values. Points along the diagonal line indicate instances where the experimental Tm values are equal to the predicted Tm values. 
RMSE: Root mean square error. n: Number of data points. (b) The prediction results of the ProTstab2 model on the dataset of thermally stable proteins, and the 
comparison between the experimental Tm values and the predicted Tm values. 
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prediction error within 7 ℃, representing 24% of the total. Seven pro-
teins had prediction errors ranging from 20 to 32 ℃, also accounting for 
24% of the total. For transcription factors and esterase sequences, their 
prediction errors exceeded 15 ℃. Relatively, DeepTM model reduced 
the root mean square error for Tm prediction in the thermally stable 
protein dataset by 51.73% compared to ProTstab2. Additionally, the 
residuals between the predicted Tm values of DeepTM and the experi-
mental Tm values (Supplementary Figure 6) are distributed in the upper 
and lower range of 0 ℃, while the residuals of ProTstab2 are all above 
0 ℃. 

4. Conclusion 

Here, we have developed an end-to-end deep learning model called 
DeepTM, based on graph convolutional neural networks and self- 
attention networks. The objective of DeepTM is to predict Tm values of 
proteins based only on sequences. We trained the model using a dataset 
consisting of 7790 sequences of thermophilic proteins. On the test set of 
1550 samples, the model demonstrates a high coefficient of determi-
nation (R2 = 0.76), a strong Pearson correlation coefficient (P = 0.87), 
and a low root mean square error (RMSE = 6.17 ℃). These findings 
robustly validate the precise depiction of thermal stability attributes of 
thermophilic proteins by our model. DeepTM, based on graph con-
volutional neural networks, incorporates protein contact maps as one of 
its features, enabling the model to predict protein melting temperatures 
with enhanced precision. The improved accuracy can be attributed to 
the ability of protein contact maps to directly represent the 2D structural 
characteristics of proteins and capture the underlying relationships be-
tween protein residue-residue pairs. In addition, we applied the concept 
of Stacking [66–68] from machine learning: using the OGT model as an 
excellent base model and DeepTM as the meta-model. Following this, we 
incorporated the output of the base model as one of the inputs for the 
meta-model training to enhance the predictive performance of the 
model. This approach not only avoids potential issues related to circular 
inference arising from using experimental OGT data but also effectively 
leverages features associated with OGT. This may have contributed to 
the improvement in model performance. Furthermore, we have also 
discovered that dipeptide frequencies, OGT values of the host organ-
isms, and evolutionary information of proteins significantly influence 
the model’s prediction of the melting temperature of thermophilic 
proteins. While we did not directly use experimentally obtained OGT 
data in the training process of DeepTM, relying solely on our OGT model 
to predict protein’s OGT values, it is undeniable that incorporating 
predicted OGT features into the model significantly improved its per-
formance (Fig. 5). However, assigning higher weights to these predicted 
OGT features did not further enhance the predictive capabilities of the 
model (Fig. 5). However, DeepTM does not account for differences in 
experimental conditions. In future research, we may explore incorpo-
rating the protonation states of titratable amino acids under different pH 
conditions based on their isoelectric points as an additional feature in 
the neural network. 

We evaluated the performance of DeepTM, ProTstab2, and Deep-
STABp in practical applications by validating them on blind test datasets 
containing 22 PET plastic-degrading enzymes and 29 thermally stable 
proteins with a broader classification. By comparing the root mean 
square error (RMSE) of these three algorithms on the PET plastic- 
degrading enzyme dataset, we observed that DeepTM (RMSE =

8.25 ℃) significantly outperformed ProTstab2 (RMSE = 20.05 ℃) and 
DeepSTABp (RMSE = 20.97 ℃). On the thermally stable protein dataset, 
we found that DeepTM (RMSE = 7.66 ℃) demonstrated a 51.73% 
reduction in RMSE compared to ProTstab2 (RMSE = 15.87 ℃). This 
indicates that DeepTM exhibits superior generalization performance on 
the blind test datasets. Furthermore, compared to DeepSTABp, DeepTM 
only requires the protein sequence as input for predicting protein 
melting temperature, eliminating the need for additional experimental 
conditions such as TPP and information about the protein’s host optimal 

growth temperature. DeepTM has achieved a fully end-to-end Tm pre-
diction process, making the prediction of Tm more convenient. As an 
underlying framework, DeepTM can be easily extended to other tasks 
involving the design of thermophilic proteins that require the utilization 
of protein sequences. 
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