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Radiotherapy (RT) plays an important role in the prognosis of lung adenocarcinoma (LUAD)
patients, but the radioresistance (RR) of LUAD is still a challenge that needs to be overcome.
The current study aimed to investigate LUAD patients with RR to illuminate the underlying
mechanisms.We utilized gene set variation analysis (GSVA) and The Cancer Immunome Atlas
(TCIA) database to characterize the differences in biological functions and neoantigen-coding
genes between RR and radiosensitive (RS) patients. Weighted Gene co-expression network
analysis (WGCNA) was used to explore the relationship between RT-related traits and hub
genes in two modules, i.e., RR and RS; two representative hub genes for RR (MZB1 and
DERL3) and two for RS (IFI35 and PSMD3) were found to be related to different RT-related
traits. Further analysis of the hub genes with the Lung Cancer Explorer (LCE), PanglaoDB and
GSVA resources revealed the differences in gene expression levels, cell types and potential
functions. On this basis, the Tumor and Immune System Interaction Database (TISIDB) was
used to identify the potential association between RR genes and B cell infiltration. Finally, we
used the Computational Analysis of Resistance (CARE) database to identify specific gene-
associated drugs for RR patients and found that GSK525762A and nilotinib might be
promising candidates for RR treatment. Taken together, these results demonstrate that
B cells in TME may have a significant impact on the RT and that these two drug candidates,
GSK525762A and nilotinib, might be helpful for the treatment of RR patients.
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INTRODUCTION

Lung cancer is one of the deadliest malignancies in the world. Eighty-five percent of lung cancer
patients suffer from non-small-cell lung cancer (NSCLC) and are in the advanced stage, requiring
more aggressive treatment options (Price, 2012; Kumarakulasinghe et al., 2015). Histopathologically,
NSCLC can be divided into lung adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC). LUAD is the most common subtype, accounting for more than 50% of all NSCLC cases
(Kumarakulasinghe et al., 2015; Faruki et al., 2017). The interaction between immune cells and the
tumor microenvironment (TME) is highly dynamic in different steps of cancer progression (Xiao
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et al., 2019; Deberardinis, 2020; Menzel and Black, 2020).
Although the microenvironment of normal tissue can inhibit
tumor growth, changes induced by tumor cells influence this
microenvironment to promote tumor progression and metastasis
(Wallace et al., 2013). In addition, numerous studies have shown
that the tumor-infiltrating immune cells play a pivotal role in the
TME (Chen et al., 2020).

Radiotherapy (RT) could not only reduce tumor burden to the
minimum but also trigger the anti-tumor immunity and
reprogram the TME (Liu et al., 2020). However,
Radioresistance (RR) limits the efficacy of RT through TME
alteration during fractionated RT (Gu et al., 2019). Several
studies have shown that interactions between multiple cells in
the TME are the main cause of treatment tolerance to RT (Yang
et al., 2019). Nevertheless, the molecular mechanism of
radioresistant LUAD is not yet well understood.

Over the past 25 years, high-throughput sequencing
technologies have been used to explore the mechanism of
tumorigenesis (Cancer Genome Atlas Research Network, 2014;
Girard et al., 2016). On this basis, a series of immune-related
prediction algorithms have been developed (Rigden and
Fernandez, 2020), which provide an excellent chance to
explore the TME of various tumors. To explore the
mechanism of RT in LUAD and provide helpful advice for
treatment, in this study, we performed integrated
bioinformatic analysis of LUAD and identified functional
differences among RT-treated LUAD patients after gene set
variation analysis (GSVA) with The Cancer Genome Atlas
(TCGA) data.

The Cancer Immunome Atlas (TCIA) was used to analyze
tumor neoantigen-coding genes associated with TME differences
among individual RT patients. Furthermore, we performed
weighted gene co-expression network analysis (WGCNA) to
identify the key modules related to clinical characteristics and
ClueGO to assess the potential function of these modules. Four
hub genes, including RR module genes (MZB1 and DERL3) and
radiosensitive (RS) module genes (PSMD3 and IFI35), were
selected for further analysis. Lung Cancer Explorer (LCE) and
PanglaoDB were used to determine the gene expression
and localization in different cells, and GSVA was used to
study the potential biological function of the hub genes. After
finding that RR was related to the response module and TME, the
Tumor and Immune System Interaction Database (TISIDB) was
used to evaluate the correlation between immune cell abundance
and the hub genes in the LUAD samples. Finally, we analyzed the
expression of the hub genes and the efficacy of drugs derived from
the Computational Analysis of Resistance (CARE) database to
provide potential complementary therapy for RR patients.

MATERIALS AND METHODS

Data Collection
Transcriptome RNA-seq data of 513 LUAD tumor samples
and the corresponding clinical data were downloaded from
TCGA (release-18.0) database (https://portal.gdc.cancer.gov/)
with level 3. Based on the TCGA sample phenotype, we

defined the patients with complete response (CR)/partial
response (PR) as RS, and those with progressive disease (PD)/
stable disease (SD) as RR.

Gene Set Variation Analysis
We utilized the GSVA (Hanzelmann et al., 2013) R package
version 1.34.0 to find the pathways most associated with RT and
the potential function of RT-related hub genes by setting kcdf �
“Poisson,”min.sz � 20, max.sz � 500. Fifty samples with RT data
inTable 1were selected for GSVA analysis, and both top 25 terms
enriched in RR or RS groups were selected for heatmap display
(Kolde, 2019).

Through GSVA analysis for a single gene, 513 TCGA-LUAD
tumor samples were divided into a high expression group and a low
expression group based on the median gene expression to reveal the
gene potential function. In addition, the “Limma”R package version
3.42.2 (Ritchie et al., 2015) was used to find the different essential
pathways of LUAD. Adjusted p < 0.001 was regarded as statistically
significant. The gene sets of “c2.cp.kegg.v7.0.symbols.gmt,”
“c2.cp.reactome.v7.0.symbols.gmt,” “c5.all.v7.0.symbols.gmt,” and
“c7.all.v7.0.symbols.gmt” were downloaded from the Molecular
Signature Database (MSigDB, http://software.broadinstitute.org/
gsea/downloads.jsp) (Liberzon et al., 2015) as the reference.

Weighted Gene Co-Expression Network
Construction
The R package Weighted Correlation Network Analysis
(WGCNA) version 1.70-3 (Langfelder and Horvath, 2008) was
applied to find clinical trait-related modules and hub genes
among them. The adjacency matrix was transformed into a
topological overlap matrix (TOM). According to the TOM-

TABLE 1 | Baseline characteristics of patients (N � 126).

Characteristic Median (range) or n (%)

Age (y) 64 (40–88)
Sex Male 64 (50.79)

Female 62 (49.21)
T stage T1 25 (19.84)

T2 81 (64.29)
T3 15 (11.90)
T4 4 (3.17)
TX 1 (0.79)

N stage N0 59 (46.83)
N1 33 (26.19)
N2 30 (23.81)
N3 2 (1.59)
NX 2 (1.59)

M stage M0 87 (69.05)
M1 8 (6.35)
MX 31 (24.60)

Chemotherapy response CR/PR (sensitive) 68 (53.97)
PD/SD (resistance) 34 (26.98)

Radiotherapy response CR/PR (sensitive) 31 (24.60)
PD/SD (resistance) 19 (15.08)

Note: y, years; n, number of patients; T, tumor; N, nodal status; M, metastasis; PD,
progressive disease; SD, stable disease; PR, partial response; CR, complete response.
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based dissimilarity measure, genes were divided into different
gene modules. Here, we set the soft-thresholding power to 3
(scale-free R2 � 0.85, networkType � “signed hybrid”), the cut off
to 0.25, deepSplit to 3, TOMType to unsigned, corType to
pearson, and the minimal module size to 50 to identify key
modules. The module with the highest and lowest correlation
with RT was selected to explore its biological function through
ClueGO analyses. Hub genes were defined as those with
eigengene connectivity (kME) > 0.8.

Gene Function Enrichment and Pathway
Analysis
We conducted Gene Ontology (GO) enrichment and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis
using Cytoscape version 3.7.2 (Doncheva et al., 2019) software
“ClueGO” (Bindea et al., 2009) as well as the R package
“clusterProfiler” version 3.14.3 (Yu et al., 2012). GO term or KEGG
pathwayswith adjusted p< 0.05were considered statistically significant
and visualized by “ClueGO” and “Enrichplot” (Yu, 2018).

Analysis of Neoantigen-Coding Genes of RT
Samples
The Cancer Immunome Atlas (https://tcia.at/home; Charoentong
et al., 2017) is widely used in the query for gene expression of
neoantigens and cancer germline antigens, by which we collected
the neoantigen-coding genes of RR and RS samples with default
parameters. We got the list of neoantigen-coding genes by
choosing the “Neoantigens” tab after inputting IDs of RS and
RR patients in the TCIA filter. In addition, a web tool for list
comparison, jvenn (http://jvenn.toulouse.inra.fr/app/example.
html; Bardou et al., 2014), was used to find different
neoantigen-coding genes from the RT samples. GO and KEGG
analyses were performed to study the biological functions and
associated pathways of the differential neoantigen-coding genes.

Analysis of Gene Expression in Different
Cell Types
To investigate the expression of hub genes in LUAD, we applied the
online tool Lung Cancer Explorer (http://lce.biohpc.swmed.edu/
lungcancer/metagenename.php; Cai et al., 2019), which contains
56 lung cancer datasets from the Sequence Read Archive (SRA) and
Gene Expression Omnibus (GEO) databases. From this database, we
collected a meta-analysis of hub gene expression. Then we
performed meta-analysis on the LUAD dataset with default
parameters. In addition, PanglaoDB, a single-cell gene expression
resource database (https://PanglaoDB.se/index.html; Franzen et al.,
2019), was used to confirm the cell type expressing hub genes.

Analysis of Gene Expression and
Tumor-Infiltrating Immune Cells
To investigate the correlation between the expression of selected
hub genes and the abundance of tumor-infiltrating lymphocytes
(TILs), we applied the online tool TISIDB (http://cis.hku.hk/

TISIDB/index.php; Ru et al., 2019), which reports 988 genes
involved in antitumor immunity. Then we determined the
relationship between hub gene expression and tumor-
infiltrating immune cells by TISIDB analysis with selection of
the tabs for lymphocytes, the LUAD dataset and antigen-
presenting cells (APCs).

Hub Gene Computational Analysis of Drug
Efficacy
Computational Analysis of Resistance (CARE, http://care.dfci.
harvard.edu/) (Jiang et al., 2018) was utilized to evaluate the hub
genes associated with drug efficacy. A positive CARE score
indicates a higher expression value to be associated with drug
response, while a negative score indicates drug resistance. CARE
can evaluate the relationship between hub genes and drug therapy
and can be used as an alternative therapy for RR. The 3D
structures of drugs were downloaded from the PubChem
database (http://pubchem.ncbi.nlm.nih.gov/).

Score Calculation of Tumor-Infiltrating
Immune Cells
To verify the differences of tumor-infiltrated immune cells
between RR and RS groups, we used CIBERSORT-ABS in an
online tool TIMER2.0 (Newman et al., 2015; Li et al., 2016; Sturm
et al., 2019) to calculate the scores of tumor-infiltrated immune
cells by tissue transcriptional profiles. The average CIBERSORT-
ABS scores of both groups are showed in a bar plot.

RESULTS

Identification of RT-Related Gene Function
and Tumor Immune Environment
Data analysis flow chart was shown in Figure 1. To find the
difference between the RR and RS groups, we utilized GSVA to
distinguish the biological function of the RR and RS samples
(Figure 2A). Based on GSVA analysis, we found that the
functional difference between RS and RR patients was
associated with extracellular matrix (ECM) and DNA-related
functions, which was consistent with previous reports
(Ljungman, 2009; Bian et al., 2020; Haeger et al., 2020).
Interestingly, two immune-related terms, immunoglobulin
receptor binding and CD22-mediated BCR regulation
(Figure 2A), were observed in the list of the top 25 terms
enriched in the RR or RS groups, indicating that the immune
microenvironment is involved in the RT response.

To identify neoantigen-coding genes in RR and RS patients,
the TCIA database was used for analysis, and we found that there
were only 13.6% neoantigen-coding genes with overlap. To
address the different functions of RS and RR neoantigen-
coding genes, GO and KEGG analyses were performed. In GO
term analysis, we observed that the RR group was mainly related
to the terms of cellular response to nutrient levels, cellular
response to external stimulus, regulation of small GTPase
mediated signal transduction, regulation of cell cycle phase
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transition, regulation of binding, centriole, spindle, microtubule
organizing center part, growth factor binding and Rho GTPase
binding, while the RS group was closely related to the terms
extracellular matrix organization, regulation of morphogenesis of
an epithelium, epithelial tube morphogenesis, positive regulation
of GTPase activity, focal adhesion, cell-substrate junction,
catalytic step 2 spliceosome, basement membrane, protein
tyrosine kinase activity, GTPase regulator activity and
transmembrane receptor protein kinase activity (Figure 2B).

The results of KEGG pathway analysis demonstrated that the
RR group was related to the terms osteoclast differentiation,
autophagy, cellular senescence, focal adhesion and B cell
receptor signaling pathway, while the RS group was mainly
related to human papillomavirus infection, protein processing
in the endoplasmic reticulum (ER), Th1 and Th2 cell
differentiation, thyroid hormone signaling pathway and axon
guidance (Figure 2C).

We used CIBERSORT-ABS in TIMER2.0 to identify the
tumor-infiltrating immune cell types of RR and RS patients
according to a previous study (Yi et al., 2021; Supplementary
Figure S1A). The proportion of the immune cells between the RR
and RS groups was different, especially the B cells, monocytes,
myeloid dendritic cells and eosinophils (Supplementary
Figure S1B).

Validation of RT-Related Gene Modules in
the TCGA-LUAD Dataset
The data of therapeutic effect on patients who accepted either
RT or chemotherapy or a combination of both treatments are
shown in Table 1 as the clinical case information. To identify
the key modules of RT, we performed WGCNA with the data
from 126 patients (Table 1). By setting the soft-thresholding
power as 3 (scale-free R2 � 0.85) and the cut height as 0.25, we
identified 17 modules (Figures 3A–C). From the module-

trait correlation heatmap, two modules were identified with
close relation to RT. The purple module was significantly
correlated with RS, and the red module was significantly
correlated with RR; neither module was related to
chemotherapy (Figure 3D). ClueGO was used to reveal the
potential biological functions and pathways of RR and RS
modules. Our results demonstrate that the RS module is
related to the type I interferon pathway (Figure 3E),
which is in agreement with previous reports (Burnette
et al., 2011; Wilkins et al., 2019). In contrast, the RR
module displays a close relation with protein assembly
transport (Figure 3F).

Identification of Hub Genes in RR and RS
Modules
Genes in the RR and RS modules with kME > 0.8 are displayed in
Tables 2, 3, with descending order on kME. Most of the genes in
the RR module belong to the immunoglobulin family.
Interestingly, some RR module genes, such as PIM2 (Guo
et al., 2005) (kME � 0.953), did not belong to the
immunoglobulin family but were reported to be associated
with RT. Then, we selected the top two genes MZB1 (kME �
0.928) and DERL3 (kME � 0.863) other than immunoglobulin
and previously reported genes as the hub genes. In the RSmodule,
we selected hub genes with the highest kME values, including
PSMD3 (kME � 0.924) and IFI35 (kME � 0.893), for further
analysis.

Hub Gene Expression in Different Cells in
Lung Adenocarcinoma
We performed a meta-analysis of those four genes in different
datasets from the Lung Cancer Explorer, and the results are
shown in Figures 4A–D. It was noted that three of the four

FIGURE 1 | Study workflow. TCGA-LUAD, The Cancer Genome Atlas LUAD datasets; GSVA, gene set variation analysis; WGCNA, weighted gene co-expression
network analysis; TCIA, The Cancer Immunome Database; TISIDB, Tumor and Immune System Interaction Database; PanglaoDB, single-cell RNA sequencing
experiments from mouse and human database; CARE, Computational Analysis of Resistance.
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FIGURE 2 | Identification of biological function and neoantigen-coding genes of RT patients. (A) Analysis of the biological functions of RT patients with GSVA. RR,
radioresistant; RS, radiosensitive. (B)GO term analysis for differential neoantigen-coding genes between the RR andRS groups in the TCIA database. (C)KEGG analysis
of differential neoantigen-coding genes between the RR and RS groups in the TCIA database.
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FIGURE 3 | Identification of key modules correlated with clinical traits in the TCGA-LUAD dataset with WGCNA and ClueGO. (A) Soft thresholding for WGCNA
analysis. (B) Clustering dendrogram of genes based on topological overlap. (C) Clustering of module eigengenes. The heatmap shows the correlation of the adjacency
module. (D) Heatmap of the correlation between module eigengenes and clinical traits of RT. (E) Enrichment analysis of the red module. Each node represents an
enrichment pathway. (F) Enrichment analysis of the purple module. Each node represents an enrichment pathway, and the circle color indicates different functional
groups.
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genes, i.e., MZB1, DERL3, and PSMD3, were more highly
expressed in cancer tissues than in adjacent normal lung
tissues (Figures 4A–D). Then, we used PanglaoDB to
explore gene expression in different cells and found that
the RR module genes MZB1 and DERL3 were mainly
expressed in B cells and plasma cells, while IFI35 and
PSMD3 were mainly expressed in endothelial cells
(Figure 4E). The results hint that the RR genes are
expressed in B cells infiltrated into the TME, and the RS
genes are mainly expressed in tumor tissues.

GSVA Reveals a Close Relationship
Between Hub Genes and the Immune
Microenvironment
We performed GSVA to further study the potential function
of these RR and RS genes in LUAD. The potential functions of

the RR genes MZB1 and DERL3 were significantly enriched in
terms of CD22-mediated BCR regulation and
immunoglobulin receptor binding (Figures 5A,B), while
the RS genes PSMD3 and IFI35 displayed a different
functional category. PSMD3 shows a significant
association with the proteasome accessory complex and U2
type catalytic step 2 spliceosome, and IFI35 is mainly
related to the function of interferon α–β signaling and the
negative regulation of type I interferon production
(Figures 5C,D).

Correlation Between RT Hub Gene
Expression and Antigen-Presenting Cells in
Lung Adenocarcinoma
Tumors were engulfed in a complex microenvironment,
which critically impacts disease progression and response

TABLE 2 | RR module gene (kME > 0.8) from WGCNA.

Ensemble ID Gene symbol kME Type Location Description

ENSG00000102096 PIM2 0.953494 Protein coding Xp11.23 Pim-2 proto-oncogene, serine/Threonine kinase
ENSG00000211592 IGKC 0.944670 Protein coding 2p11.2 Immunoglobulin kappa constant
ENSG00000170476 MZB1 0.928659 Protein coding 5q31.2 Marginal zone B and B1 Cell specific protein
ENSG00000253755 IGHGP 0.890621 Pseudogene 14q32.33 Immunoglobulin heavy constant gamma P
ENSG00000211677 IGLC2 0.884386 Protein coding 22q11.22 Immunoglobulin lambda constant 2
ENSG00000211896 IGHG1 0.883868 Protein coding 14q32.33 Immunoglobulin heavy constant gamma 1
ENSG00000099958 DERL3 0.863413 Protein coding 22q11.23 Derlin 3
ENSG00000211648 IGLV1-47 0.840419 Protein coding 22q11.22 Immunoglobulin lambda variable 1–47
ENSG00000211945 IGHV1-18 0.838534 Protein coding 14q32.33 Immunoglobulin heavy variable 1–18
ENSG00000224373 IGHV4-59 0.833868 Protein coding 14q32.33 Immunoglobulin heavy variable 4–59
ENSG00000239819 IGKV1D-8 0.829594 Protein coding 2p11.2 Immunoglobulin kappa variable 1D-8
ENSG00000211593 IGKJ5 0.823355 Protein coding 2p11.2 Immunoglobulin kappa joining 5
ENSG00000231292 IGKV1OR2-108 0.820230 Protein coding 2q14.1 Immunoglobulin kappa variable 1/OR2-108
ENSG00000211897 IGHG3 0.813846 Protein coding 14q32.33 Immunoglobulin heavy constant gamma 3
ENSG00000270550 IGHV3-30 0.812538 Protein coding 14q32.33 Immunoglobulin heavy variable 3–30
ENSG00000211956 IGHV4-34 0.809769 Protein coding 14q32.33 Immunoglobulin heavy variable 4–34
ENSG00000211966 IGHV5-51 0.805408 Protein coding 14q32.33 Immunoglobulin heavy variable 5–51
ENSG00000211679 IGLC3 0.803635 Protein coding 22q11.22 Immunoglobulin lambda constant 3
ENSG00000211965 IGHV3-49 0.803072 Protein coding 14q32.33 Immunoglobulin heavy variable 3–49

kME: eigengene-based connectivity. Type: gene type. Location: chromosome localization information.

TABLE 3 | RS module gene (kME > 0.8) from WGCNA.

Ensemble ID Gene symbol kME Type Location Description

ENSG00000108344 PSMD3 0.924858 Protein coding 17q21.1 Proteasome 26S subunit, non-ATPase 3
ENSG00000068079 IFI35 0.893972 Protein coding 17q21.31 Interferon induced protein 35
ENSG00000141696 P3H4 0.893253 Protein coding 17q21.2 Prolyl 3-hydroxylase family member 4
ENSG00000141698 NT5C3B 0.877200 Protein coding 17q21.2 5′-Nucleotidase, cytosolic IIIB
ENSG00000131475 VPS25 0.868741 Protein coding 17q21.2 Vacuolar protein sorting 25 homolog
ENSG00000277791 PSMB3 0.868408 Protein coding 17q12 Proteasome subunit beta 3
ENSG00000108774 RAB5C 0.849465 Protein coding 17q21.2 RAB5C, member RAS oncogene family
ENSG00000002834 LASP1 0.844632 Protein coding 17q12 LIM and SH3 protein 1
ENSG00000278845 MRPL45 0.829890 Protein coding 17q12 Mitochondrial ribosomal protein L45
ENSG00000136448 NMT1 0.822686 Protein coding 17q21.31 N-Myristoyltransferase 1
ENSG00000141756 FKBP10 0.822572 Protein coding 17q21.2 FKBP prolyl isomerase 10
ENSG00000131462 TUBG1 0.807538 Protein coding 17q21.31 Tubulin gamma 1
ENSG00000137563 GGH 0.803600 Protein coding 8q12.3 Gamma-glutamyl hydrolase

kME: eigengene-based connectivity. Type: gene type. Location: chromosome localization information.
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to therapy (Quail and Joyce, 2013). We used TISIDB to
explore the relationship between the expression of hub
genes and the infiltration of APCs (Slatter et al., 2016).

Interestingly, we found that the infiltration of APCs, as
well as B cells, had a positive correlation with RR but not
RS hub genes (Figure 6).

FIGURE 4 | Validation of hub gene expression. Meta-analysis of Hub gene expression by using the Lung Cancer Explorer database. (A) MZB1, (B) DERL3, (C)
PSMD3, (D) IFI35. (E) Analysis of cells expressing RR hub genes (MZB1, DERL3) and RS hub genes (PSMD3, IFI35) in the lung tissue with PanglaoDB.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6245758

Wang et al. Radioresistance-Associated Immune Cells in LUAD

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Prediction of Potential Therapy for RR
Treatment
To study alternative therapy for RR patients, we used the CARE
database to analyze the expression of the hub genes as well as the
efficacy of drugs. Our results show that the RR hub gene expression
in the databases the Broad Institute Cancer Cell Line Encyclopedia
(CCLE), the Cancer Therapeutics Response Portal (CTRP) and the
Genomics of Drug Sensitivity in Cancer (GDSC, also known as
CGP) had a positive correlation with drug efficacy (Figures 7A,B),
while the RS genes were associated with drug resistance (Figures
7C,D). Moreover, intersection was performed with the drugs
positively correlated with RR genes or negatively correlated with
RS genes in the CTRP and CGP databases (Figure 7E).

After exclusion of drugs targeting the RS genes, the drugs
targeting both RR genes DERL3 and MZB1 in the CTRP and
CGP databases were chosen for intersection analysis to find
shared drugs in both databases (Figure 7F). Finally, we obtained
the BRD4 inhibitor GSK525762A and the monoclonal antibody
nilotinib as potential drugs for RR treatment. The three-
dimensional structures of these two drugs are shown in
Figures 7G,H.

DISCUSSION

As one of mainstream cancer therapies, RT has a good effect in a
variety of tumors (De Ruysscher et al., 2019; Sia et al., 2020).

However, it is not so effective for several cancers, including
LUAD (Li et al., 2015). In the clinic, there are many NSCLC
patients who are failed to achieve a cure after surgery. In fact,
30–55% of patients with NSCLC develop recurrence and die of
their disease despite curative resection (Uramoto and Tanaka,
2014). In most cases, surgery for the patients with NSCLC does
not mean complete removal of cancer cells, especially for the
patients received RT. RT is used as a post-surgical adjuvant
therapy selectively for the patients at a risk of incomplete
removal of cancer cells after surgery. Recent studies
demonstrate that subsequent immune responses have a
significant impact on the efficacy of RT, except for direct
damage to cancer cells caused by high-energy rays (Dovedi
et al., 2016; Rodriguez-Ruiz et al., 2020).

Although microarray and RNA-seq techniques have been
applied in the study of LUAD, the mechanism by which RT
affects the TME is still not well understood. The classical
radiobiology dogma fails to consider the effect of RT on TME,
however, the response of TME to RT might be significant for the
success of treatment (Dai et al., 2020). To explore the factors
affecting RT, we utilized GSVA to distinguish the biological
functions of RR and RS tumors, indicating that the TME was
involved in the RT response. Based on the association between the
RT effect and the TME, we evaluated the different tumor
neoantigens from RR and RS patients by GO and KEGG
analysis and found that the TME significantly affected RT
efficacy.

FIGURE 5 | Validation of the cell type and function of hub genes. Functional volcano plot of RR hub genes MZB1 (A) and DERL3 (B) and RS hub genes PSMD3 (C)
and IFI35 (D) in the TCGA-LUAD dataset. Gene set variation analysis (GSVA) and the “Limma” R package were used to find the different essential pathways of LUAD for
the single hub genes, including MZB1, DERL3, PSMD3, and IFI35. Adjusted p < 0.001 and log2 (fold change) > |0.3| were regarded as statistically significant.
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In the present study, we performed bioinformatic analysis of
the gene transcriptional profiles in LUAD patients subjected to
RT, which demonstrated that B cells in TME were associated with

RR. B cells are the main humoral immune cells derived from
hematopoietic stem cells that play an essential role in antitumor
immunity. Apart from positive regulation of antitumor immune

FIGURE 6 | TCGA-LUADmicroenvironment of RT-treated patients. Correlation of the expression of hub genes with the infiltration of immune cells from TISIDB. (A)
MZB1, (B) DERL3, (C) PSMD3, (D) IFI35. Each dot represents a sample in the TCGA-LUAD dataset. ρ, Spearman correlation coefficient.
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process, tumor-infiltrating B cells (TIB) can also negatively
regulate antitumor immune response (Guo and Cui, 2019).
In this study, we also used WGCNA to explore new hub
genes associated with RT and found that the RR module was
mainly composed of immunoglobulin-related genes.
ClueGO analysis results demonstrated that ER to cytosol
retrograde protein transport was enriched in the RR module,
indicating that the RR module is involved in the term ER to
cytosol retrograde protein transport. The association of TIB
with RR may be related to the dysfunction of
immunoglobulin generated process by B cells. In contrast,
the biological function of the RS module was closely related
to the type I interferon pathway, which has been reported to
play an important role in the immune response of RT
(Burnette et al., 2011; Feng et al., 2020). Therefore,
further studies on the roles of hub genes in RR and RS
modules are needed.

Several studies had reported inconsistent roles for RR hub
genes, such as MZB1 and DERL3, in various malignancies. In
hepatocellular carcinoma, patients with high MZB1 expression
were found with a better prognosis. To the contrast of
hepatocellular carcinoma, high MZB1 expression was
associated with poor prognosis of patients with breast cancer.
Interestingly, DERL3 expression was found to be positively
correlated with MZB1 expression in the clinical specimens
from breast cancer patients, suggesting DERL3 may also
participate tumor progression (Watanabe et al., 2020). GSVA
analysis results demonstrated that the RR genes are related to the
immunoglobulin complex, indicating that they are closely related
to B cells.

As for RS hub genes, high PSMD3 expression was associated
with poor prognosis in the breast cancer patients (Fararjeh et al.,
2019). In addition, IFI35 was reported to be involved in the
regulation of radiosensitivity of colorectal cancer (CRC) cells,

FIGURE 7 | CARE analysis for hub genes in response to targeted therapy. (A–D) CARE analysis of the resistance module genesMZB1 (A) and DERL3 (B) and the
response module genes PSMD3 (C) and IFI35 (D) in the databases of the Broad Institute Cancer Cell Line Encyclopedia, the CTRP and the Genomics of Drug Sensitivity
in Cancer (CGP). (E) Venn diagram showing the overlap of target drugs affected by MZB1, DERL3, PSMD3, and IFI35 in the CTRP and CGP databases. (F) Venn
diagram showing the potential target drugs for RR patients, i.e., GSK525762A and nilotinib. (G–H) Three-dimensional (3D) structures of GSK525762A (G) and
nilotinib (H).
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indicating that IFI35 might be a RT target for CRC (Hu et al.,
2021). Intriguingly, the RS hub genes PSMD3 and IFI35 were
found in the same GO term “positive regulation of defense
response” (Subramanian et al., 2005; Watanabe et al., 2020),
indicating that they are closely related to reactivity of RT.

Importantly, the GSVA result showed that the RS
representative genes PSMD3 and IFI35 were associated with
cellular homeostasis and immune responses, including the
proteasome accessory complex and interferon α–β signaling,
reflecting the characterization of tumors and immune
responses induced by RT. Interestingly, we found that RS
genes are mainly located in genomes 17q21 and 17q12,
which indicates that the short arm of chromosome 17
contains some essential genes that influence the RT effect
on LUAD.

To study alternative therapy for RR patients, we selected the
efficacy of specific gene-associated drugs. We found that two RR
gene-associated drugs, i.e., nilotinib and GSK525762A, were
shared by CTRP and CGP databases. Intriguingly, nilotinib
(Sun et al., 2019) and GSK525762A (Klingbeil et al., 2016;
Zhang et al., 2018) have been reported to inhibit LUAD cell
proliferation or growth. Our study provides drug candidates for
the therapy of LUAD patients with RR.

In general, by integrating GSVA, WGCNA and other immune
microenvironment databases, we found that the RR of LUAD
might be associated with the infiltration of immune cells,
especially B cells, which was in line with the finding that
B cells are a key factor promoting carcinogenesis by
immunosuppression (Schioppa et al., 2011; Klinker and
Lundy, 2012). It is reasonable to conclude that the
composition of the TME may have a significant impact on the
treatment of LUAD. Furthermore, our novel findings on the
expression of the hub genes and the efficacy of specific gene-
associated drugs provide potential drug candidates for RR
patients. However, more studies are required to reveal the
effectiveness of the drugs in the treatment of LUAD.
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