
Contents lists available at ScienceDirect

Data in Brief

Data in Brief 8 (2016) 605–612
S
M

T

http://d
2352-34
(http://c

n Corr
E-m
journal homepage: www.elsevier.com/locate/dib
Data Article
Data describing the solution structure of the
WW3* domain from human Nedd4-1

Vineet Panwalkar a,n, Marianne Schulte a,b, Justin Lecher a,b,
Matthias Stoldt a,b, Dieter Willbold a,b, Andrew J Dingley a,n

a ICS-6 Strukturbiochemie, Forschungszentrum Jülich, 52425 Jülich, Germany
b Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
a r t i c l e i n f o

Article history:
Received 19 February 2016
Received in revised form
26 May 2016
Accepted 15 June 2016
Available online 22 June 2016

Keywords:
Chemical shift
Neuronal precursor cell expressed devel-
opmentally down-regulated gene 4-1
NMR
NOE distance restraints
WW domain
x.doi.org/10.1016/j.dib.2016.06.024
09/& 2016 The Authors. Published by Else
reativecommons.org/licenses/by/4.0/).

esponding authors.
ail addresses: v.panwalkar@fz-juelich.de (V
a b s t r a c t

The third WW domain (WW3*) of human Nedd4-1 (Neuronal
precursor cell expressed developmentally down-regulated gene
4-1) interacts with the poly-proline (PY) motifs of the human
epithelial Naþ channel (hENaC) subunits at micromolar affinity.
This data supplements the article (Panwalkar et al., 2015) [1].
We describe the NMR experiments used to solve the solution
structure of the WW3* domain. We also present NOE network
data for defining the rotameric state of side chains of peptide
binding residues, and complement this data with χ1 dihedral
angles derived from 3J couplings and molecular dynamics
simulations data.
& 2016 The Authors. Published by Elsevier Inc. This is an open

access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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ow data was
acquired
Heteronuclear multidimensional solution-state NMR spectroscopy and MD
simulations from experimental structure.
ata format
 Processed, analyzed

xperimental
factors
The NMR experiments were performed on samples containing 1.5–1.8 mM
WW3* domain (13C, 15N-labeled) from human Nedd4-1 in 20 mM sodium
phosphate buffer (pH 6.5), 50 mM NaCl, 0.1% (w/v) NaN3 and 1 mM DSS in a
93%/7% (v/v) H2O/D2O mixture.
xperimental
features
All NMR spectra were acquired at 25 °C on Bruker BioSpin Avance III HD 600
and Varian INOVA 900 spectrometers and data were processed using
NMRPipe.
ata source
location
ICS-6 (Strukturbiochemie), Forschungszentrum Jülich, Jülich, Germany
ata accessibility
 Data are within this article and have been deposited in the RCSB Protein Data
Bank (http://www.rcsb.org) under the accession number PDB: 5AHT and in the
BioMagResBank (accession code: 25349).
Value of the data

� The NOE network defines clearly the side chain orientations of particular ligand-binding residues;
� MD simulations provide atomistic descriptions of conformational fluctuations within the WW3*

domain that are not observed in the NMR-derived structure of the domain;
� This data set serves as a reference for future studies involving WW domains.
1. Data

We have collected 1592 NOE distance restraints from three-dimensional 15N-edited and 13C-edited
NOESY spectra, which were processed using NMRPipe [2] and analyzed using CcpNMR Analysis [3].
The NOE dataset consists of 390 sequential, 416 intra-residue, 266 medium-range and 256 long-range
NOE distance restraints. In addition, 60 dihedral angle restraints and five sidechain χ1 angle restraints
determined from combined 3Jαβ and 3JNβ couplings were used for structure calculation. The NOEs
were picked manually and assigned in a semi-automated manner using the Aria 2.3.1 [4] software
package. The structure calculation was carried out by a combination of Aria 2.3.1 and CNS version 1.21
[5] using the PARALLHDG force field. The protocol employed by Aria for calculation of the solution
structure of the WW3* domain is provided as supplementary material. The experiments performed to
acquire chemical shift assignments, 3J couplings and NOE distance restraints are summarized in
Table 1. The 3J couplings and the subsequently determined rotameric state for the WW3* domain are
given in Table 2.

We provide, as examples, the NOE networks for two key peptide binding residues I440 and T447
(Figs. 1 and 2), side chain rotamers of which differ between NMR and the crystal structures [6]. MD
simulations data of χ1 rotameric states of six key peptide binding residues (R430, F438, I440, H442,
T447 and W449) over 100 ns in the apo and hENaC peptide bound state of the WW3* domain is
provided (Fig. 3).
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Table 1
NMR experiments used for structure determination.

Experiment Sweep width (ppm) Data matrices Chemical shift offset (ppm) Number of scans Recycle delay (s) Time (h)

Backbone assignmentsa

3D HNCO 16 (H)�32 (N)�13 (C) 1024* (H)�32* (N)�40* (C) 4.7 (H)�117.1 (N)�175.2 (C) 8 1.1 15
3D HNCA 12.5 (H)�29 (N)�28 (C) 1024* (H)�42* (N)�64* (C) 4.7 (H)�117.1 (N)�56.8 (C) 8 1.1 28
3D CBCA(CO)NH 16 (H)�32 (N)�50 (C) 1024* (H)�32* (N)�48* (C) 4.7 (H)�117.1 (N)�50 (C) 8 1.1 38

Side chain assignments
3D H(CCO)NH 14 (H)�32 (N)�7.5 (H) 1024* (H)�24* (N)� 64* (C) 4.7 (H)�117.1 (N)�3.0 (H) 16 1.1 38
3D CC(CO)NH 14 (H)�32 (N)�70 (C) 1024* (H)�42* (N)� 64* (C) 4.7 (H)�117.1 (N)�42 (C) 16 1.1 57
3D 15N-edited TOCSY 12.5 (H)�32 (N)�12.5 (H) 1024* (H)�20* (N)�50* (H) 4.7 (H)�117.1 (N)�4.7 (H) 16 1.1 24
3D HCCH-TOCSY 6.5 (H)�74 (C)�6.5 (H) 512* (H)�38* (C)�100* (H) 3.2 (H)�45.2 (C)�1.5 (H) 16 1.1 90
2D (HB)CB(CGCD)HD 15 (H)�33 (C) 750* (H)�32* (C) 4.7 (H)�35 (C) 32 1.5 1
2D (HB)CB(CGCDDE)HE 15 (H)�33 (C) 750* (H)�32* (C) 4.7 (H)�35 (C) 32 1.5 1

Distance restraints
3D 15N-edited NOESY 15 (H)�27 (N)�12.5 (H) 1024* (H)�46* (N) �128* (H) 4.7 (H)�119 (N)�4.7 (H) 8 1.2 80
3D 13C-edited NOESY 14 (H)�38 (C)�6 (H) 768* (H)�94* (C)�73* (H) 4.7 (H)�29 (C)�2.8 (H) 16 1.1 161
3D 13C-edited NOESY(aromatic region) 14 (H)�23 (C)�6 (H) 832* (H)�36* (C)�50* (H) 4.7 (H)�123.4 (C)�7.3 (H) 16 1.1 43

Dihedral restraints
3D HNHB 12.5 (H)�32 (N)�12.5 (H) 1024* (H)�21* (N)�64* (H) 4.7 (H)�117.1 (N)�4.7 (H) 16 1.2 35
3D HAHBCACONH 12.5 (H)�32 (N)�12.5 (H) 1024* (H)�10* (N)�61* (H) 4.7 (H)�117.1 (N)�2.7 (H) 128 1.2 134

a NMR backbone and side chain spectra as well as 3J data were recorded at 600 MHz, whereas distance restraint experiments were recorded at 900 MHz.
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Fig. 1. Strips from a 13C-edited NOESY spectrum for the δ1 methyl protons (A) and the γ2 methyl protons (B) of the residue I440
of the WW3* domain are shown. The 13C chemical shifts are shown at the top of each strip. The NOE network that gives rise to
the trans rotamer for I440 is mapped onto the structure (C). The γ2 methyl protons show NOEs to the β and γ protons of E428 as
well as the δ protons of R430 (red dashed lines in Fig. 1C). The δ1 methyl protons of I440 do not show NOEs to E428 and R430
but show NOEs to the amide proton and the α proton of H442 (black dashed lines in Fig. 1C). This NOE pattern defines the side
chain conformation of I440.

Table 2
3J couplings and the subsequently derived side chain rotamer used in structure determination of the WW3* domain.

Residue 3J coupling (Hz) χ1 angle

3J Nβ 3J αβ

N434 2.1570.89, 3.64 70.50 3.4271.02, 4.38 70.79 gauche-
D441 0.5870.19, 0.95 70.12 N.D., N.D. trans
H442 4.0770.09, 1.73 70.22 3.06a, 11.1471.19 gaucheþ
D451 1.1570.11, 0.85 70.15 N.D., N.D. trans
R453 1.4370.09, 0.85 70.15 4.12 71.06, 10.3170.37 gaucheþ

N.D. Not determined
a upper limit value for the 3J coupling.
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Fig. 2. Strips from a 13C-edited NOESY spectrum for the β proton (A) and the γ2 methyl protons (B) of the residue T337 of the
WW3* domain are shown. The NOE network that gives rise to a gaucheþ rotamer is mapped onto the structure (C). This NOE
pattern defines the side chain conformation of T447.
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2. Experimental design, materials and methods

2.1. Protein expression, purification and NMR sample preparation

The WW3* domain (41 residues, 4.8 kDa) from neuronal precursor cell expressed developmentally
down-regulated gene 4-1 (Nedd4-1) was overexpressed in E. coli BL21 (DE3)pLysS cells, as described
previously [7,8]. Protein purification was performed as described previously [1,7,8].
2.2. NMR spectroscopy

Standard heteronuclear multidimensional NMR experiments [9] were performed on samples
containing 1.5–1.8 mM WW3* domain (13C, 15N-labeled) from human Nedd4-1 in 20 mM sodium
phosphate buffer (pH 6.5), 50 mM NaCl, 0.1% (w/v) NaN3 and 1 mM DSS in a 93%/7% (v/v) H2O/D2O



Fig. 3. Plots of side chain rotameric states for key peptide binding residues (R430, F438, I440, H442, T447 and W449) observed
over 100 ns MD simulations of the apo- and hENaC peptide bound forms of the WW3* domain are shown.
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mixture. NMR spectra were recorded at 25 °C on NMR spectrometers equipped with cryogenically
cooled z-gradient probes operating at 1H frequencies of 600 and 900 MHz. 1H, 15N and 13C chemical
shift assignments of the WW3* domain were obtained using experiments in Table 1. An example of a
backbone sequential walk using three-dimensional (3D) HNCA and CBCA(CO)NH spectra between
residues F438 and H442 is presented in Fig. 4. Near complete backbone (193/200 or 96.5%) and side
chain assignments (302/319 or 94.5%) were obtained. To derive NOE distance restraints for structure
calculation, 15N-edited and 13C-edited NOESY spectra were recorded using mixing times between 150
and 180 ms. Backbone dihedral angles were obtained from TALOSþ [10] using a combination of
backbone (1HN, 1Hα,

13Cα,
13C’ and 15N) and 13Cβ chemical shifts. Sidechain χ1 dihedral angles were

obtained from a combination of 3Jαβ and 3JNβ couplings derived from 3D HNHB [11] and 3D HAHB
(CACO)NH [12] experiments (Table 2).
2.3. MD simulations

MD simulations were performed using parameters described in [1].



Fig. 4. Strips from 3D HNCA (red) and 3D CBCA(CO)NH (green) spectra illustrating the backbone sequential walk from F438 to
H442 of the WW3* domain. The 15N chemical shift is shown at the top of each strip.
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