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(LIPM), UMR2594, Castanet-Tolosan, France, 3 CNRS-UMR 8030 and Commissariat à l’Energie Atomique CEA/DSV/IG/Genoscope LABGeM, Evry, France, 4 INRA, UMR1388
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Abstract

Horizontal gene transfer (HGT) is an important mode of adaptation and diversification of prokaryotes and eukaryotes and a
major event underlying the emergence of bacterial pathogens and mutualists. Yet it remains unclear how complex
phenotypic traits such as the ability to fix nitrogen with legumes have successfully spread over large phylogenetic distances.
Here we show, using experimental evolution coupled with whole genome sequencing, that co-transfer of imuABC error-
prone DNA polymerase genes with key symbiotic genes accelerates the evolution of a soil bacterium into a legume
symbiont. Following introduction of the symbiotic plasmid of Cupriavidus taiwanensis, the Mimosa symbiont, into
pathogenic Ralstonia solanacearum we challenged transconjugants to become Mimosa symbionts through serial plant-
bacteria co-cultures. We demonstrate that a mutagenesis imuABC cassette encoded on the C. taiwanensis symbiotic plasmid
triggered a transient hypermutability stage in R. solanacearum transconjugants that occurred before the cells entered the
plant. The generated burst in genetic diversity accelerated symbiotic adaptation of the recipient genome under plant
selection pressure, presumably by improving the exploration of the fitness landscape. Finally, we show that plasmid imuABC
cassettes are over-represented in rhizobial lineages harboring symbiotic plasmids. Our findings shed light on a mechanism
that may have facilitated the dissemination of symbiotic competency among a- and b-proteobacteria in natura and provide
evidence for the positive role of environment-induced mutagenesis in the acquisition of a complex lifestyle trait. We
speculate that co-transfer of complex phenotypic traits with mutagenesis determinants might frequently enhance the
ecological success of HGT.
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Introduction

Horizontal gene transfer (HGT) drives bacterial ecological

diversification by providing genomes with new genes and functions

[1–4]. Key changes in lifestyle can result from the acquisition by

HGT of genes facilitating symbiosis, either mutualistic or parasitic,

with eukaryotes [5,6]. For example, the high virulence of Shigella
flexneri and Vibrio cholerae results directly from the acquisition of

virulence factors in mobile genetic elements [7,8]. Mobile elements

also confer traits that are involved in the establishment of

mutualistic associations [9]. Many mobile genetic elements have

narrow-host ranges and this favors horizontal transfer between

closely related bacteria [10]. Transfer is also more likely to be

successful when it concerns simple traits and takes place between

closely related bacteria because this increases the probability of

gene expression and integration in the host genetic background

[11,12]. Nevertheless, genetic transfer of complex traits between

very distantly related taxa has an important role in bacterial

evolution [13]. Transfer of complex traits is expected to lead to

bursts of adaptation in the newly acquired traits. For example,

acquisition of type 3 secretion systems by plant-associated

pathogenic bacteria was followed by the replacement of the
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needle by pilus-like structures more adequate to interact with the

plant cell wall [14]. Yet the environmental and genetic factors that

determine the evolutionary success of HGT remain poorly

understood.

Soil bacteria termed rhizobia are remarkable examples of

bacteria that arose through HGT. Rhizobia are phylogenetically

dispersed bacteria currently distributed in at least 13 saprophyte-

and pathogen-containing genera of a- and b-proteobacteria [15],

which have evolved the environmentally essential function of

fixing atmospheric nitrogen in symbiosis with legumes. Rhizobial

mutualistic symbiosis with legumes is a complex process involving

three main steps: nodule organogenesis, intracellular infection, and

nitrogen fixation [15,16]. This endosymbiosis is controlled by a

large number of genes in both partners including a set of essential

nodulation and nitrogen fixation bacterial genes clustered in

mobile genetic elements such as symbiotic plasmids or genomic

islands [16,17]. Horizontal transfer of essential symbiotic genes has

been key in the conversion of soil bacteria into mutualistic

symbionts of legumes [18]. Although compared phylogenies of

rhizobia and nodulation genes predict that symbiotic genes have

been transferred over large phylogenetic distances [19–21],

transfer alone in lab conditions is usually unproductive between

evolutionary distant taxa [22–24].

To get an insight into the evolutionary mechanisms that

facilitated rhizobium diversification, we experimentally replayed

the evolution of rhizobia. We introduced the symbiotic conjugative

plasmid pRalta (0.5 Mb) of the Mimosa symbiont Cupriavidus
taiwanensis into the plant pathogen Ralstonia solanacearum
GMI1000 and used Mimosa to trap symbiotic variants of this still

pathogenic and non nodulating ancestor [24]. Spontaneous

nodulating variants of the chimeric Ralstonia GMI1000pRalta

were then submitted to serial and parallel ex planta-in planta
(Mimosa) passages (see Figure 1A). This alternation recapitulated

the shifts between free-living and symbiotic lives that have shaped

the natural evolution of rhizobia. Evolution was surprisingly fast

since the first two major symbiotic steps, nodulation and

intracellular infection, were not only activated but also dramat-

ically improved over 17 cycles (,400 generations) in all lineages

(see Figure 1A–1D) [24–26]. A first level of nodulation and

infection capacity was reached via inactivation of regulatory or

structural genes of the virulence pathway of the recipient genome,

revealing that acquisition of symbiotic proficiency in phylogenet-

ically distant bacterial lineages requires further recipient genome

remodeling [24,25].

Here we provide evidence for a mechanism facilitating the

dissemination of rhizobial symbiotic competency over large

phylogenetic distances in natura. The symbiotic plasmid of C.
taiwanensis bears stress-responsive error-prone imuABC DNA

polymerase genes that, following transfer to R. solanacearum,

accelerate the adaptation of the recipient genome to its new plant

host. The phylogenetic distribution of imuABC cassettes supports

their role in the evolution of rhizobia that arose via plasmid

transfer.

Results and Discussion

Chimeric Ralstonia Underwent Environment-Induced
Hypermutagenesis during Their Experimental Evolution
into Legume Symbionts

Whole genome re-sequencing of the nine final clones of the

evolution experiment revealed between 41 to 128 point mutations

scattered in each genome and absent from the chimeric

GMI1000pRalta ancestor (Figure 1A). This large number of

mutations prompted us to test the hypothesis that mutators had

arisen during our experiment. Yet, no mutation was detected in

the DNA repair system of adapted clones. Furthermore fluctuation

tests [27], which allow measuring the mutation rate of growing

bacteria, confirmed that neither the chimeric ancestor GMI1000-

pRalta nor the three first nodulating clones CBM212, CBM349,

and CBM356 (Figure 1A) were constitutive hypermutators (Figure

S1). These results suggest that transient hypermutagenesis

generated genetic diversity during the evolution experiment.

In each cycle plants in tubes were inoculated with bacteria,

which diffused in the carbon-free and nitrogen-free plant culture

Jensen medium before entering the root and multiplying within

the newly induced nodules (Figure 1E). To determine whether

genetic diversification occurred outside or inside the plant, we

replayed a single evolution cycle several times independently and

re-sequenced pools of 19 or 20 clones randomly isolated from the

culture medium or from nodules 21 days after inoculation (single

evolution cycle and re-sequencing [SEC&R] assay). Three to ten

different point mutations were found in pools isolated from

nodules following inoculation by the nodulating ancestor CBM349

(Figure 2A; Table S1). Using the number of observed synonymous

mutations, the genome sequencing coverage and the density of

synonymous sites, we estimated the in planta synonymous point-

mutation rate to 0.6–2610211 per bp per generation, slightly

lower than estimations from long-term Escherichia coli evolution

experiments (4–14610211 per bp per generation) [28]. By

contrast, the non-nodulating ancestor GMI1000pRalta accumu-

lated in the same period of time on average five and 20 times more

mutations when incubated in the medium alone or in the medium

with Mimosa seedlings, respectively (Figure 2A; Table S1). In

bacterial populations, both strong selective pressures and hyper-

mutability can trigger fast fixation of mutations [29]. We found no

evidence for widespread positive selection in detected mutations

and very few convergent mutations either in our SEC&R assay or

in the final evolved clones. Instead, many synonymous mutations

and an excess of these over non-synonymous mutations indicated

an imprint of purifying selection (Table S2). This finding suggests

that most detected mutations are not adaptive and have achieved

Author Summary

Horizontal gene transfer has an extraordinary impact on
microbe evolution and diversification, by allowing explo-
ration of new niches such as higher organisms. This is the
case for rhizobia, a group of phylogenetically diverse
bacteria that form a nitrogen-fixing symbiotic relationship
with most leguminous plants. While these arose through
horizontal transfer of symbiotic plasmids, this in itself is
usually unproductive, and full expression of the acquired
traits needs subsequent remodeling of the genome to
ensure the ecological success of the transfer. Here we
uncover a mechanism that accelerates the evolution of a
soil bacterium into a legume symbiont. We show that key
symbiotic genes are co-transferred with genes encoding
stress-responsive error-prone DNA polymerases that tran-
siently elevate the mutation rate in the recipient genome.
This burst in genetic diversity accelerates the symbiotic
evolution process under selection pressure from the host
plant. A more widespread involvement of plasmid muta-
genesis cassettes in rhizobium evolution is supported by
their overrepresentation in rhizobia-containing lineages.
Our findings provide evidence for the role of environment-
induced mutagenesis in the acquisition of a complex
lifestyle trait and predict that co-transfer of complex
phenotypic traits with mutagenesis determinants might
help successful horizontal gene transfer.

Transient Hypermutagenesis in Rhizobium Evolution
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fixation by hitchhiking with adaptive ones. Altogether these results

showed that bacteria were subjected to hypermutagenesis,

presumably stress-induced, ex planta but probably not in nodules.

Further work is needed to identify the inducing environmental

factors. We speculate that nutrient starvation, a condition

frequently encountered in the soil [30], could be involved since

it was endured by bacteria in both media. Bacteria showed very

few divisions within 21 days (Figure S2C–S2E) and rapidly entered

stationary then mortality phases (Figure S2A and S2B). The

production by Mimosa plants of reactive oxygen species or other

toxic compounds could account for the increased genetic diversity

observed in the presence of the plant.

Transferred ImuABC Error-Prone DNA Polymerases
Trigger Environment-Induced Hypermutability

Few (5–7) mutations were found in pools of the R. solanacearum
wild-type strain GMI1000 incubated in the medium with or

without the plant, revealing the key role of pRalta in hypermu-

tagenesis (Figure 2A; Table S1). The pRalta plasmid harbors a

locus of three genes encoding a protein of unknown function

(ImuA2), a Y-family DNA polymerase (ImuB2), and a C-family

error-prone polymerase (ImuC2) [31]. This cassette, either

complete or without the imuA gene, is widespread in bacteria

and has been shown to mediate stress-induced mutagenesis as part

of the SOS response [32–36]. The imuA2B2C2 operon is

preceded by a typical b/c-proteobacterial LexA binding SOS

box (CTGTN8ACAG) [34] in pRalta, and its expression depends

on LexA, a negative regulator of the SOS response (Figure S3).

To investigate whether the imuA2B2C2 cassette was responsi-

ble for hypermutability in GMI1000pRalta in our experimental

conditions, we monitored the spontaneous appearance of nalidixic

acid (NalR) resistant clones during incubation of the (non-growing)

bacteria in Jensen medium. We checked that NalR mutants did

not exhibit a growth advantage in Jensen medium by performing

competition experiments between the chimeric strain GMI1000-

pRalta and spontaneous NalR derivatives. Competition experi-

ments showed no increase in NalR mutant frequency because of

selection (competitive index NalR/WT 0.9960.32, p.0.5, one-

sample t-test), indicating that this assay faithfully measured

mutability. In line with whole-genome re-sequencing results, NalR

mutant frequency in the medium was ,15 times higher for

GMI1000pRalta than for GMI1000 as soon as from three days of

incubation (Figure S4A). Both deletion and insertion imuA2B2C2
mutants of GMI1000pRalta exhibited a NalR mutant frequency

comparable to that of GMI1000 seven days after incubation with

(Figure S4B) or without (Figure 2B) the plant. The mutator

phenotype was restored by complementing GMI1000 or

GMI1000pRaltaDimuA2B2C2 with the wild-type cassette under

the control of its promoter (Figure 2B). A SEC&R assay on

GMI1000pRaltaDimuA2B2C2 confirmed that the imuA2B2C2
cassette mediates hypermutagenesis (Figure 2A). Hence hypermu-

tagenesis observed in the Jensen plant medium was strictly

dependent upon the pRalta imuA2B2C2 products.

Figure 1. Experimental evolution of R. solanacearum into Mimosa symbionts. (A) R. solanacearum GMI1000 containing the C. taiwanensis
symbiotic pRalta plasmid was evolved under M. pudica selection pressure. In a first step, three spontaneous M. pudica-nodulating derivatives of
GMI1000 pRalta, CBM212, CBM349, and CBM356 (selection cycle), were selected using M. pudica as a trap [24]. Nine independent lineages have been
then derived from CBM212 (A–C), CBM349 (G–I), and CBM356 (M, N, S) using serial M. pudica-bacteria co-culture cycles of 21 days (evolution cycles)
[24,25]. Green and red arrow heads indicate activation of nodulation and intracellular infection, respectively [24,25]. Numbers between brackets
indicate the total number of point mutations detected in each clone relative to its closest re-sequenced ancestor. Point mutations are available on
the Microscope platform (https://www.genoscope.cns.fr/agc/microscope/expdata/evoProject.php). (B–D) Nodulation and infection have been
dramatically improved over 16 evolution cycles. In planta fitness (B) and nodulation competitiveness (C) of final clones relative to their respective
nodulating ancestors, following equal co-inoculation of each of the nine final/ancestral pairs. Nodule infectiveness (D) of final clones (Ev) as compared
to ancestors (An). Graphs summarize data from [25,26]. *p-value (t-test) ,0.05. (E) In each cycle, bacteria were inoculated in the Jensen plant medium.
Root nodules, which appeared from 5 days after inoculation, were each induced by a single bacterial cell that subsequently multiplied within nodule
tissue [56]. In the selection and evolution cycles bacteria spent ,21 days and from a few days up to 14 days in the plant medium, respectively.
Population sizes are estimates. gen., generations. Raw data are provided in Data S1.
doi:10.1371/journal.pbio.1001942.g001
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We tested whether the cassette leads to hypermutagensis in C.
taiwanensis the primary pRalta host. Under the same experimen-

tal conditions we found no evidence of pRalta-dependent

hypermutagenesis in C. taiwanensis harboring the pRalta plasmid

(Table S1). Hypermutagenesis generates a large load of deleterious

mutations [37] that may be compensated by adaptive mutations in

poorly adapted, but not in well-adapted, clones [38]. C.
taiwanensis may thus have evolved strategies to silence plasmid

imuABC-based mutagenesis. Altogether this suggests that im-
uA2B2C2-mediated hypermutagenesis specifically occurs in a

recipient genome following plasmid transfer in our experimental

conditions.

Figure 2. Environment-induced and pRalta-dependent hypermutability of chimeric Ralstonia. (A) Number of point mutations detected in
pools of 19 or 20 bacteria isolated from nodules (red bars), Jensen medium (blue bars), or Jensen medium plus Mimosa (green bars). Full and hatched
bars represent mutations present in one or two clones and in more than two clones, respectively. * and # Indicate values significantly different from
N1–N4 values (J1–J5: Wilcoxon test p = 0.02, ANOVA p,0.005; JM1–JM3: Wilcoxon test p,0.05; ANOVA p,0.002); and from JM1–JM3 (J1–J5: Wilcoxon
test p,0.05; ANOVA p,0.005; N1–N4: Wilcoxon test p,0.05; ANOVA p,0.002; J7–JM7:Wilcoxon test p,0.05; ANOVA p,0.005; J6–JM12:Wilcoxon
test p,0.05; ANOVA p,0.005), respectively. Details are provided in Tables S1 and S4. (B) Frequency of spontaneous NalR mutants in bacterial
populations of GMI1000, GMI1000pRalta, imuA2B2C2 mutants (lanes 3 and 4), or complemented imuA2B2C2 mutants (lanes 5 and 6) in Jensen
medium. Bacterial strains were grown overnight in rich medium and then transferred into Jensen medium. The frequency of NalR mutants was
measured before (T0) and after (T7) a 7-day incubation. Each dot represents an independent measurement. Horizontal bars represent medians.
*Indicates T7 values significantly different from GMI1000 (two-tailed Kruskal-Wallis test, p,0.05). T0 values are not significantly different. Raw data are
provided in Data S2.
doi:10.1371/journal.pbio.1001942.g002

Transient Hypermutagenesis in Rhizobium Evolution

PLOS Biology | www.plosbiology.org 4 September 2014 | Volume 12 | Issue 9 | e1001942



imuABC-Mediated Hypermutagenesis Accelerates the
Symbiotic Evolution of R. solanacearum

To directly evaluate whether imuA2B2C2-dependent mutagen-

esis accelerates the evolution of chimeric Ralstonia into Mimosa
symbionts, we replayed evolution using either imuA2B2C2+ or

DimuA2B2C2 chimeras as ancestors. To shorten the experiment

we bypassed the selection stage (Figure 1A) by using a nodulating

(hrpG) background. Inactivation of this single regulatory gene

allows elementary nodulation and infection in GMI1000pRalta

[24]. We used two different regimes of selection, one involving

serial ex planta-in planta passages and the other only ex planta
passages (Figure 3A).

Competition experiments revealed that, after only five cycles of

ex planta-in planta evolution imuA2B2C2+ populations colonized

Mimosa nodules much better than DimuA2B2C2 populations,

while imuA2B2C2+ and DimuA2B2C2 ancestors were found

equally fit in planta (Figures 3B and S5B). This increase in fitness

could reflect an improvement of the pre-symbiotic and symbiotic

performances such as root colonization/attachment, root entry,

nodule formation, and in planta multiplication and persistence.

Alternatively it could reflect a better survival in the plant culture

medium. Loss of the cassette in the chimeric Ralstonia indeed

reduced its survival in Jensen with Mimosa (Figure S2B). Two lines

of evidence however led us to exclude that cycles of plant-bacteria

co-culture have selected for bacterial variants that had increased

chances of being able to initiate a nodule exclusively because they

better survived ex planta. First, the symbiotic advantage of

imuA2B2C2+ bacteria was more important in populations evolved

ex planta-in planta than those evolved exclusively ex planta
(Figures 3B, S5B, and S5C). Second, ex planta-in planta passages

did not improve the survival of imuA2B2C2+ populations in the

Jensen medium with Mimosa (Figures 3C and S5D). Our results

indicate that beneficial variants were enriched by in planta
passages, likely through the selection by the plant of the most

beneficial rhizospheric variants possibly at several stages. Alto-

gether we propose that rounds of ex planta imuABC-mediated

phenotypic diversification, selection by the plant of beneficial

variants, and in planta clonal expansion of the selected variants

accelerate symbiotic evolution (Figure 4).

imuABC Cassettes Are Over-represented in pSym-rhizobia
Rhizobia harboring nodulation and nitrogen fixation genes on

plasmids (pSym-rhizobia) belong to four a-proteobacterial genera,

Agrobacterium, Rhizobium, Sinorhizobium, and Ochrobactrum,

and two b-proteobacterial genera, Burkholderia and Cupriavidus.
Rhizobia emerged several times independently in these lineages by

horizontal gene transfer, as attested by phylogenetic data and the

observation that these genera contain both symbiotic and non-

symbiotic species/strains [15]. To assess the overall contribution of

imu(A)BC cassettes in the natural evolution of pSym-rhizobia we

analyzed the 349 available genomes of a- and b-proteobacteria,

representing 109 genera, for the presence of imuBC genes. More

than half of the genomes possess a chromosomal imuBC genes but

only 28 have a plasmid imuBC cassette (Table S3). We found that

Figure 3. Evolvability of imuA2B2C2+ populations. (A) Experimental evolution of imuA2B2C2+ and DimuA2B2C2 nodulating chimeric Ralstonia.
Each ancestor was evolved using serial M.pudica-bacteria co-culture cycles, either ex planta-in planta cycles of 21 days (nodule bacteria serving as
inoculum in each cycle, red lines) or ex planta cycles of 7 days (rhizospheric bacteria serving as inoculum in each cycle, blue lines). For ex planta
lineages, 7-day cycles were chosen since the mean time bacteria spent ex planta in the 16 cycle evolution experiment (Figure 1) was estimated to be
7 days. Ancestors were antibiotic resistant derivatives of a hrpG mutant of GMI1000pRalta. Four to five independent lineages have been derived from
each ancestor. SpeR, spectinomycin-resistant strain. KanR, kanamycin-resistant strain. (B) Relative in planta fitness of imuA2B2C2+ versus DimuA2B2C2
populations following co-inoculations of final populations derived from ex planta-in planta lineages (red legend, all Ev-imu+(i) versus Ev-Dimu(i) pairs)
or from ex planta lineages (blue legend, all Ev-imu+(i9) versus Ev-Dimu(i9) pairs). Nodule bacteria were counted 21 days after inoculation. *Indicates
significant differences between ancestral imu+ clones and evolved imu+ populations (t-test, p,0.05). #Indicates significant differences between Ev-
imu+(i) (evolved ex planta-in planta) and Ev-imu+(i9) (evolved ex planta) populations (t-test, p,0.05). `Indicates significant differences between Ev-
imu+ and Ev-Dimu populations for each series of competition experiments (either Ev-imu+(i) versus Ev-Dimu(i) or Ev-imu+(i9) versus Ev-Dimu(i9), t-test,
p,0.001). See Figure S5B and S5C and Data S3 for details. (C) Relative ex planta fitness of imuA2B2C2+ versus DimuA2B2C2 populations following co-
inoculations of final populations derived from ex planta-in planta lineages. Bacteria recovered from the Jensen medium were counted 7 days after
inoculation in Gibson tubes containing M. pudica plants. imuA2B2C2+ ancestors better survived in Jensen-Mimosa than DimuA2B2C2, in accordance
with results presented in Figure S2A. `Indicates significant differences between imu+ and Dimu populations for each series of competition
experiments (either An-imu+(i) versus An-Dimu(i) or Ev-imu+(i) versus Ev-Dimu(i), t-test, p,0.01). No significant difference was observed between
ancestral imu+ clones and evolved imu+ populations. Raw data are provided in Data S3.
doi:10.1371/journal.pbio.1001942.g003
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(i) 82% of all plasmid imuBC cassettes fall in the six genera that

contain pSym-rhizobia, and (ii) 45% of the symbiotic plasmids

carry a imuBC cassette (Figure 5; Table S3). Noteworthy, vestigial

imuBC genes were found in some rhizobia (e.g., Rhizobium sp.

IRBG74 GenBank, http://www.ncbi.nlm.nih.gov/Genbank, ac-

cession number CDI11787.1/CDI11788.1) suggesting that muta-

genesis cassettes have been lost, possibly as a result of counter-

selection of hypermutagenesis in well-adapted symbiotic popula-

tions. We thus speculate that symbiotic plasmid ImuBC error-

prone DNA polymerases have enhanced the dissemination of

symbiotic proficiency among a- and b-proteobacteria. Error-prone

DNA polymerases may have been maintained in recipient

genomes because they increase survival under stress conditions.

In line with the proposal that Cupriavidus nodulation genes have

been recently acquired from Burkholderia [20], the plasmid

imuB2C2 genes of C. taiwanensis are phylogenetically closer to

Burkholderia imuBC cassettes than to the chromosomally encoded

cassette (Figure S6). Interestingly imuBC genes are also found on

large non-symbiotic plasmids, including the pAt and pTi virulence

plasmids of the plant pathogen Agrobacterium (Figure S6),

suggesting that imuABC cassettes also play(ed) a role in the spread

of plasmid-encoded accessory biological functions.

Conclusion
How complex phenotypic traits can be successfully transferred

to evolutionary distant taxa is a poorly documented question

despite its ecological and evolutionary importance. Whereas

physical and genetic barriers restricting HGT have been identified

[10], the many examples of successful HGT over large phyloge-

netic distances [13,39] suggested the existence of environmental,

genetic, or selective conditions favoring long-range HGT.

Comparative genomics and experimental data have previously

established the role of HGT in rhizobium evolution [18,40,41].

They also pointed out that activation and/or optimization of the

symbiotic potential might rely on a combination of molecular

events, involving integration of incoming symbiotic functions into

pre-existing regulatory circuitries and recruitment, modulation or

inactivation of local functions [15,24], allowing the newly acquired

functions to adjust to both the recipient cell and the new plant

environment. Each plant indeed represents a complex ecosystem

with specific requirements, e.g., in terms of immunity and

metabolism, to which the bacterium must adapt.

Here, we describe a mechanism that may have facilitated post-

HGT adaptation of emerging rhizobia to their new host in natura
and better accounts for the great extant diversity of rhizobia

(Figure 4). This may have facilitated the evolution of specific

interactions with a wide range of legume species all over the Earth.

Upon experimentally replaying rhizobium evolution, we provide

conclusive evidence that the co-transfer of imuABC error-prone

DNA polymerase genes with key symbiotic genes accelerated the

overall evolution of a soil bacterium into a legume symbiont under

plant selection pressure by transiently increasing genetic diversity

and thus likely accelerating the exploration of the fitness

landscapes. Evolution of microorganisms in response to changing

environments relies on the natural selection of genetic variants

harboring beneficial phenotypic traits [42]. Yet, standing genetic

variation may not provide sufficiently adaptive variants when

environmental changes are radical. It has previously been

proposed that environment-induced increase in the rate of

generation of genetic diversity could accelerate adaptive processes

[43–45]. Although the molecular mechanisms underlying envi-

ronment-induced mutagenesis are well known [45], its ultimate

biological significance has been debated [46]. Our findings

provide conclusive evidence for the role of environment-induced

mutagenesis in the acquisition of a complex lifestyle trait.

HGT plays a ubiquitous role in the diversification of

prokaryotes and exploration of new ecological niches [1,2]. The

presence of various types of error-prone polymerases on mobile

genetic elements [34,47], metabolic [48], and virulence plasmids

of plant (Figure S6) and animal pathogens [49] suggests that co-

transfer of environment-induced mutagenesis determinants with

genes encoding complex phenotypic traits enhances the success of

HGT, hence facilitating drastic lifestyle shifts.

So far, experimental evolution, combined in recent years with

whole genome sequencing, has been predominantly used to study

genetic adaptation to simple and well controlled conditions [29].

Figure 5. Distribution of plasmid nodABC (pnod) and plasmid imuBC (pimuBC) genes among a- and b-proteobacteria. Blue and yellow
rectangles indicate presence and absence of genes in the corresponding genome, respectively, as assayed by BlastP analysis. Dark blue rectangles
indicate nodABC and imuBC genes co-localized on the same plasmid. a- and b-proteobacteria are arranged according to their position on the core
genome phylogeny. Species of the same genus are similarly colored. See Table S3 for details.
doi:10.1371/journal.pbio.1001942.g005

Figure 4. Model for symbiotic and mutagenic plasmid-driven
evolution of rhizobia. Following horizontal transfer of a symbiotic
plasmid to a soil bacterium, the recipient genome accumulates
environment-induced mutations that lead to phenotypic diversification.
The most beneficial variants are selected by the plant and clonally
multiply within nodules before being released. Rounds of ex planta
phenotypic diversification/plant selection/clonal multiplication may
have driven the adaptation process in natura.
doi:10.1371/journal.pbio.1001942.g004
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Our results highlight the potential of this approach to get further

insight into very complex biological processes such as the

emergence of symbiotic or pathogenic associations with multicel-

lular eukaryotes.

Materials and Methods

Strains and Culture Conditions
Bacterial strains and plasmids used in this work are listed in

Table S5. Ralstonia strains were routinely grown at 28uC on rich

BG medium [24] or on MM minimal medium [24] supplemented

with 2% glycerol. Antibiotics were used at the following

concentrations (in micrograms per milliliter): nalidixic acid, 30;

trimethoprim, 100; gentamycin, 25; kanamycin, 50; tetracycline,

10; spectinomycin, 40. C. taiwanensis strains were grown at 28uC
on TY medium [50] supplemented with 6 mM CaCl2.

During evolution of A, B, C, G, H, and I lines the mean time

bacteria spent in the plant tube before entering roots was

estimated using nodulation kinetics of all ancestral and final

clones. We calculated the mean time when half of the nodules

appeared from which we subtracted 3 days (estimated time

between the moment bacteria enter and the moment the nodule is

visible).

For the SEC&R assay, 107 bacteria grown overnight in rich BG

medium were inoculated to a Gibson tube filled with quarter-

strength Jensen medium alone (Jensen medium [51]) or containing

in addition two M. pudica seedlings from surface-sterilized seeds as

previously described [24]. Gibson tubes were incubated for 21

days—evaluated time bacteria spent in the plant medium in the

selection cycle—at 28uC and under a 16-hour daylight period. For

nodule-isolated clones the number of bacterial generations

following plant entry was calculated using the formula ‘‘logn

(number of bacteria per nodule)/logn2+3 logn(109)/logn2,’’ taking

into account free-living cultures before genomic DNA preparation.

For plasmid-loss experiments [52], bacterial strains in which the

pLAFR6 plasmid had been previously introduced were grown for

several days in different conditions and plasmid loss was

determined by plating dilutions of bacterial cultures on agar

medium with or without tetracycline.

For the 5-cycle evolution experiment of the imuA2B2C2+ and

DimuA2B2C2 strains, ancestors were antibiotic resistant deriva-

tives of the nodulating chimera GMI1000pRalta hrpG and its

DimuA2B2C2 mutant. GMI1000pRalta hrpG was chosen as

founder since inactivation of this single regulatory gene allows

nodulation in the first nodulating clones CBM212 and CBM349

[24]. The hypermutable and non-hypermutable phenotypes of the

imuA2B2C2+ and DimuA2B2C2 ancestors were checked using

the NalR assay after incubation 7 days in Jensen medium (Figure

S5A).

The imuA2B2C2+ and DimuA2B2C2 strains were evolved

using either serial ex planta-in planta or ex planta cycles. 108

bacteria of ancestral strains (RCM861, RCM863, RCM865, and

RCM1035) grown overnight in rich BG medium were inoculated

to four or five Gibson tubes filled with quarter-strength Jensen

medium containing two M. pudica plantlets. For ex planta-in
planta cycles, all nodules were collected from each tube separately

21 days after inoculation, surface sterilized, and crushed. Nodule

bacterial populations recovered from each tube were grown

24 hours at 28uC in BG medium and 108 bacteria were used to

inoculate a new tube containing two M. pudica plantlets in Jensen

medium for the next cycle. On average, 1866 nodules were

collected per tube at each cycle. For ex planta cycles, the Jensen

liquid medium of each plant tube was separately collected 7 days

after inoculation and centrifuged 15 min at 5,000 rpm. Bacterial

pellets were resuspended in 5 ml of BG medium and grown

24 hours at 28uC. 108 bacteria from each culture were used to

inoculate a new tube of plants for the next cycle. One tube per

lineage was inoculated in each cycle. In each cycle samples of

populations were stored at 280uC for further analysis. Non

contamination between imuA2B2C2+ and DimuA2B2C2 popula-

tions was checked by PCR.

For fitness comparisons, different pairs of imuA2B2C2+/

DimuA2B2C2 final populations were spread on plates from

280uC, resuspended in water and co-inoculated to M. pudica at a

1:1 ratio (106/106 bacteria per tube of plants). Relative in planta
fitness was evaluated by counting bacteria recovered from all

nodules of ten plantlets 21 days after inoculation as previously

described [25]. Relative ex planta fitness was evaluated by

counting alive bacteria in Jensen medium 7 days after plant

inoculation. Each competition was performed at least three times

independently.

For survival measurements, single colonies of GMI1000pRalta-

DimuA2B2C2 (RCM567) and spectinomycin-derivatives of

GMI1000pRalta (RCM1069) were grown overnight in rich BG

medium and 107 bacteria were inoculated to Gibson tubes filled

with quarter-strength Jensen medium containing two M. pudica
plantlets. Bacteria were counted by plating. Twelve independent

experiments were performed.

Sampling, Library, and DNA Preparation
In SEC&R experiments, ex planta and nodule populations were

isolated as follows: nodules were collected, surface-sterilized as

previously described [25], and ground separately in 1 ml of sterile

water. The Jensen liquid medium was stirred to resuspend

deposited matter, centrifuged, and the resulting pellet suspended

in 1 ml of sterile water. Bacteria were plated on BG supplemented

with the appropriate antibiotic and 19 to 20 clones were randomly

chosen. Genomic DNA from each clone was prepared from a 1 ml

overnight culture, using the Wizard Genomic DNA kit (Promega)

according to the manufacturer’s instructions. DNA concentrations

were quantified using the Quant-iT PicoGreen dsDNA Assay kit

(Invitrogen). DNA pools were constituted by mixing equimolar

amounts of 19 or 20 genomic DNAs.

Genome Re-sequencing
Individual clones and pools of clones were re-sequenced using

the Illumina/Solexa technology, either the GA2X or HiSeq

technology (Table S1). Sequence data production was performed

by the C.E.A/IG/Genoscope (clones A16, B16, C16, G16, H16,

I16, M16, N16, S16, and pools N1–3, J1, JM1–2), DNA Vision

(pool JM6), or the PlaGe platform (other pools of clones and

RCM252–RCM271 clones). Average sequence coverage of pools

and clones from pools is indicated in Table S1.

High throughput sequencing (HTS) data were analyzed using

the PALOMA bioinformatic pipeline implemented in the Micro-

scope platform [53]. The current pipeline is a ‘‘Master’’ shell script

that launches the various modules of the analysis (i.e., a collection

of C homemade software) and controls for all tasks having been

completed without errors. In a first step, the HTS data were

preprocessed to assess its quality. This step includes options such as

read trimming, merging, or splitting paired-end reads. In a second

step, reads were mapped onto the reference replicons (RefSeq

accession number NC_003295.fna and NC_003296.fna for the R.
solanacearum str. GMI1000 chromosome and megaplasmid,

respectively, RefSeq accession number NC_010528.fna,

NC_010530.fna, and NC_010529.fna for the C. taiwanensis str.

LMG19424 Chromosome 1, Chromosome 2, and pRalta,

respectively) using the SSAHA2 package [54]. Only unique
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matches having an alignment score equal to at least half of their

length were retained as seeds for full Smith-Waterman realign-

ment [55] with a both sides five nucleotides extended region of the

reference genome. All computed alignments were then screened

for discrepancies between read and reference sequences and in fine, a

score based on coverage, allele frequency, quality of bases, and strand

bias was computed for each detected event to assess its relevance. The

complete collections of events generated for all the clones from this

study are available on the Microscope platform (https://www.

genoscope.cns.fr/agc/microscope/expdata/evoProject.php).

To filter sequencing errors or undetected events in ancestors,

the following criteria were applied: minimum reads on a position

was 10 and strand ratio was 0.25. For clones, SNPs/indels having

a score (high quality reads on the position/total reads on the

position) ,0.4 and an allele ratio (mutated reads on the position/

total reads on the position) ,0.61 were removed as well as SNPs/

indels present in .30% of all clones. For pools of clones, SNPs/

indels having a score ,0.1 were removed as well as SNPs/indels

present in .20% of pools. Point mutations already present in

appropriate founder strains were not considered. Finally, muta-

tions in genes Rsp0540, Rsp0641, Rsp0642, Rsp1180, Rsp1620,

and Rsc0104 that harbor low complexity regions were removed.

For pools of clones derived from C. taiwanensis LMG19424,

which was not sequenced using the Illumina technology, mutations

with an allele ratio .0.5 were considered as ancestral and

removed. Filtered pool mutations are listed in Table S4.

For each mutation detected in pools of clones, the number of

clones bearing each mutation was directly scored (pool JM3), or

estimated using allele ratios (other pools).

Mutation Analysis
For the validation of selected SNPs/indels, a ,400 bp fragment

containing the mutation was amplified by PCR either on

individual clones or on pools of five or ten clones and subsequently

sequenced by standard Sanger procedure. 97% of the 129

mutations tested in clones CBM124GenR, CBM212, CBM349,

CBM356, A16, C16, G16, H16, M16, and N16 were validated by

Sanger sequencing. Validations of mutations in pools or in clones

RCM252–272 are indicated in Tables S1 and S4.

To calculate the in planta mutation rate, we used pools of

CBM349 clones isolated from nodules. Considering that a single

bacterium enters and multiplies within a nodule [56] to ,106

bacteria/nodule, we kept point-mutations having an allele ratio ,

0.9, i.e., likely having been acquired after root entry. From these

mutations acquired in ,110 generations (,20 generations in
planta and ,90 generations for clone purification on plates), we

calculated an estimated synonymous point-mutation rate (synon-

ymous mutations/synonymous positions/110) and the CI was

computed according to a binomial distribution using the R ‘‘stats’’

package and the binom.test function (http://www.R-project.org)

[57].

To evaluate the evolutionary processes acting on newly arising

mutations, we counted the number of synonymous, non-synony-

mous, and intergenic mutations in the sequenced regions. We used

synonymous mutations of 38 GMI1000pRalta clones to build the

mutation spectrum of the genome as they are expected to be the

least affected by selection. For example, having n synonymous

positions with G in the reference genome and x substitutions

GRA detected in evolved genomes, the frequency of GRA

changes is given by x/n. This assumes no multiple mutations in the

same site. This assumption is consistent with the low density of

mutations (1/13,130 bp) and the lack of identical mutations in

different lineages. We simulated genome evolution using this

mutation spectrum to obtain the expected number of synonymous,

non-synonymous, and intergenic mutations. We did 1,000 such

random experiments, which allowed drawing the distribution of

the expected number of each mutation and thus placing intervals

of confidence around the average values observed in the

simulation. The dN/dS and dI/dS simulated values were then

compared to the values observed in the experiments. The

simulations were done separately for the chromosomes and for

the pRalta plasmid because they have different GC compositions

(respectively, ,67% and 60%). Since replicons were not re-

sequenced to completion, the analysis of each experiment was

done independently to properly account for the fraction of the

replicon covered by sequencing in that experiment.

Fluctuation Tests
For each strain, an overnight culture in rich medium (BG)

grown from a single colony was used to inoculate fresh BG

medium that was subsequently divided into 23 individual cultures

of ,104 bacteria/ml. The cultures were then grown to saturation

(2 days at 28uC, on a rotary shaker) and an aliquot from each

culture was plated on BG agar plates supplemented or not with

nalidixic acid. Mutation rates were calculated using the Ma-

Sandri-Sarkar maximum likelihood (MSS-ML) method [27], as

implemented by the Falcor web tool [58].

Mutagenesis Assays
For the NalR assay, strains were grown overnight in BG

medium until early stationary phase. Quarter-strength Jensen

filled Gibson tubes containing two M. pudica plantlets or not were

inoculated with 4 ml of bacterial suspension adjusted to ,2.5

109 cfu/ml and incubated at 28uC. CBM124 was used as

GMI1000pRalta strain. Total bacteria and nalidixic acid resistant

clones were numerated by plating appropriate dilutions on

selective media.

For CBM124/CBM124NalR competition experiments, ten

spontaneous NalR derivatives of CBM124 were recovered by

plating on BG supplemented with nalidixic acid an overnight

culture grown in BG medium. Ten Gibson tubes filled with

quarter-strength Jensen medium were each inoculated with a 1:1

mixture of ten CBM124/CBM124NalR pairs. Bacteria were

incubated for 7 days and numerated by plating on appropriate

medium. Statistical significance of these results was determined

using the unpaired two-tailed Student’s test.

Genetic Manipulations
Primers used for DNA amplification are listed in Table S6.

Spectinomycin-resistant derivatives of evolved clones and

ancestors were constructed as previously described [25]. To

construct the spectinomycin- or kanamycin-resistant derivative of

GMI1000pRalta (RCM1069) and GMI1000pRalta hrpG
(RCM865 and RCM1035), the glmS-RSc0179 intergenic region

was amplified using the oCBM1574/oCBM1575 primer pair and

cloned into the pGEM-T plasmid. SmaI-digested resistance gene

cassettes VSpe from pHP45-V or VKan from pHP45-VKan were

inserted into the SmaI site of the cloned region. The resulting

plasmids were linearized with ScaI and introduced into the

chimeric Ralstonia CBM124 and CBM1627 by natural transfor-

mation [24].

For the generation of pVO155 insertion mutants, internal

regions of imuB2 (pRalta_0100), imuC2 (pRalta_0099), and lexA
(RSc1304) were amplified by PCR using the oCBM1798/11799,

oCBM1800/1801, and oCBM1808/1809 primer pairs, respec-

tively, and cloned into pVO155 as BamHI/XbaI restriction

fragments. pVO155 derivatives were introduced into C. taiwa-
nensis, R. solanacearum, and chimeric Ralstonia strains by
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triparental mating using the helper plasmid pRK600 in E. coli
HB101. Transconjugants were selected on appropriate selective

media and insertions of pVO155 in the appropriate genes were

checked by PCR.

To generate the imuA2B2C2 deletion mutants (RCM567,

RCM861, and RCM863), flanking regions of this locus were

separately amplified using the oCBM1756/1757 and oCBM1758/

1759 primer pairs and subsequently cloned side-by-side into

pGEM-T. SmaI-digested resistance gene cassettes VSpe from

pHP45-V or VKan from pHP45-VKan were cloned between the

two regions. The resulting plasmids were linearized with PsiI and

introduced into chimeric Ralstonia by natural transformation [24].

Recombinant strains were selected on media with adequate

antibiotics and gene exchanges were checked by PCR.

For complementation studies, the whole imuA2B2C2 locus

together with 500 bp upstream from imuA2 was amplified using

the oCBM1900/1901 primer pair and cloned as a AvrII/XbaI

restriction fragment into pRCK-lacZ1 plasmid [59]. The resulting

plasmid was linearized with PsiI and the imuA2B2C2 cassette

integrated at the glmS-RSc0179 intergenic region by natural

transformation in Ralstonia strains.

Quantitative Reverse Transcription-PCR
To measure the expression of error-prone polymerases in Jensen

medium, bacteria were first grown in rich BG medium to mid-

exponential phase (OD600 = 0.6), then 1010 bacteria were

centrifuged, resuspended in 1 ml of water, and transferred to

39 ml of Jensen medium at 28uC for 4 hours without agitation.

3 ml of cultures were then mixed with 2 vol of RNAprotect

Bacteria Reagent (Qiagen), centrifuged for 10 min at 5,000 rpm,

and stored at 280uC until RNA extraction. Bacteria were lysed in

200 ml of TE buffer containing 10 mg/ml lysozyme for 5 min at

room temperature and RNAs were extracted using the RNeasy

mini kit (Qiagen) according to manufacturer’s instructions. RNA

integrity was verified on a Bioanalyzer (Agilent). Reverse

transcription was performed using Superscript II reverse tran-

scriptase (Invitrogen) and random hexamers as primers on 1 mg of

RNAs previously treated with TURBO DNase (Ambion). Real-

time PCRs were run on a LightCycler system (Roche) using the

FastStart DNA MasterPLUS SYBRGreen 1 kit (Roche) according

to manufacturer’s instructions. Oligonucleotide sequences used for

quantitative PCR are listed in Table S6.

Phylogeny and Distribution of Plasmid Cassettes
Genomes of a- and b-proteobacteria larger than 1 Mb were

downloaded from GenBank RefSeq as available in February 2013.

ImuABC cassettes were identified in protein coding sequences as

genomically contiguous matches of PFAM profiles for Y- and C-

polymerases (respectively, PF00817.15 and PF07733.7). Rhizobial

genomes were identified by the presence of the common nodABC
genes, respectively, PFAM domains PF02474, PF01522, PF00535.

Profiles were searched using hmmer with eval ,1025 and only hits

whose alignments covered more than half of the profile were

selected. nodABC and imuBC genes were classified according to

the replicon where they were encoded as chromosomal or

plasmid-encoded.

Amino acid sequences of imuBC genes extracted from GenBank

RefSeq complete genomes as available in February 2013 were

aligned with Muscle [60] or MAFFT [61] and informative

positions were extracted using BMGE [62]. Phylogenetic trees of

individual genes and concatenates were constructed with PhyML

[63] using optimal parameters given by Protest (LG matrix, 4-

categories-discretized Gamma distribution for rate variation

among sites, empirical frequencies of amino-acids) [64]. Node

support values were computed by non-parametric bootstrap (1,000

experiments).

Sequence Data
Sequence data for clones (SYMPA) or pools of clones (MUTA)

are available on https://www.genoscope.cns.fr/agc/microscope/

expdata/evoProject.php

Supporting Information

Figure S1 Mutation rates of R. solanacearum GMI1000,
the GMI1000 mutS:aacC3-IV mutant, the chimeric Ralsto-
nia ancestor GMI1000pRalta (CBM124GenR), and the
nodulating chimera CBM212, CBM349, and CBM356.
Frequency of nalidixic acid resistance was assessed by fluctuation tests.

Error bars represent 95% CIs. Raw data are provided in Data S4.

(EPS)

Figure S2 Survival and replication in Jensen and Jensen-
Mimosa. (A) and (B), GMI1000pRalta (red curves) and

GMI1000pRaltaDimuA2B2C2 (green curves) were individually

incubated in Jensen-filled Gibson tubes containing (B) or not. (A)

M. pudica plants and alive population sizes were estimated at

different times. Twelve independent experiments were performed

for each strain. GMI1000pRalta was labeled with the same

spectinomycin-resistance cassette as GMI1000pRaltaDi-
muA2B2C2 to avoid cassette-dependent growth modification

(see Methods). The loss of the cassette significantly reduced the

survival of the bacterium in the medium with Mimosa (p,0.001, t-

test; p,0.001, Signed-rank test). (C,D, and E) Bacteria containing

the replicative but unstable plasmid pLAFR6 were grown in log

phase for several days in rich BG medium (C), in minimal MM 2%

glycerol medium (D), or inoculated into Jensen-filled Gibson tubes

containing or not M. pudica plantlets (E). The presence of

pLAFR6 was determined by plating bacteria on appropriate

medium. Dots represent independent replicates from three

independent experiments, diamonds represent the mean. The

rate of plasmid loss per generation was similar (R2 = 0.9601) in (C)

(y = 20.0297x+0.9748) and (D) (y = 20.0276x+1.0869) and thus

independent from the culture medium. On the basis of this rate,

we estimated a maximum of five and three generations,

respectively after 21 days in Jensen or Jensen Mimosa, suggesting

that cells expressing the growth advantage in stationary phase

phenotype [65] were not significantly selected during this period.

Raw data are provided in Data S5.

(EPS)

Figure S3 The imuA2B2C2 cassette. (A) pRalta imuA2,

imuB2, and imuC2 genes are organized in one operon, as assessed

by RT-PCR on C. taiwanensis RNAs, and preceded by a typical

b/c-proteobacterial LexA binding SOS box (CTGTN8ACAG)

[34]. (B) In Jensen medium the expression of imuA2, imuB2, and

imuC2 in GMI1000pRalta depends on LexA, the negative

regulator of the SOS response. Bacteria were grown in exponential

phase in rich Phi medium prior to inoculation to Jensen medium

and incubated for 4 hours. Gene expression was measured by

qRT-PCR and normalized by three housekeeping genes rplA,

rpoA, and dnaA. Values are averages 6 standard deviations from

three independent experiments. Raw data are provided in Data

S6.

(EPS)

Figure S4 Kinetics and genetics of NalR mutation
frequency. (A) The frequency of NalR mutants regularly

increased with time for both R. solanacearum GMI1000 and the

chimeric Ralstonia GMI1000pRalta after incubation in Jensen
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medium suggesting dependence on the severity of the stress.

Values are from seven independent replicates. Asterisks indicate

significant differences between GMI1000 and GMI1000pRalta (p-

values from Wilcoxon test ,0.01). (B) For each strain, the

frequency of spontaneous NalR mutants in bacterial populations is

plotted before (T0) and after (T7) a 7-day incubation in Jensen plus

Mimosa. Values are from ten to 12 independent replicates.

Asterisks indicate T7 values significantly different from GMI1000

(two-tailed Kruskal-Wallis test, p,0.05); T0 values are not

significantly different (p.0.05). Horizontal bars represent medi-

ans. Raw data are provided in Data S7.

(EPS)

Figure S5 Competitions between imuA2B2C2+ and Di-
muA2B2C2 strains and populations. (A) The imuA2B2C2+

and DimuA2B2C2 chimeric ancestors, from which populations

were derived via ex planta - in planta or ex planta lineages, were

respectively confirmed as being mutable and non mutable in

Jensen using the NalR assay. SpeR, spectinomycin-resistant strain.

KanR, kanamycin-resistant strain. Values are from eight to ten

independent replicates. Asterisks indicate T7 values significantly

different from DimuA2B2C2 strains (multiple comparison after

Kruskal-Wallis test, p,0.05). T0 values are not significantly

different (p.0.05). Horizontal bars represent medians. (B)

Percentage of imuA2B2C2+ strains in nodule populations

following co-inoculation with pairs of An-imu+(i) and An-Dimu(i)

ancestors or with each pair of Ev-imu+(i) and Ev-Dimu(i)

populations evolved through ex planta-in planta cycles (see

Figure 3A). Nodule bacteria were counted 21 days after

inoculation. Values are from three to five independent competition

experiments. *Indicates significant differences between imu+ and

Dimu ancestors/populations for each competition experiment.

Horizontal bars represent means. (C) Percentage of imuA2B2C2+

strains in nodule populations following co-inoculation with pairs of

An-imu+(i) and An-Dimu(i) ancestors or with each pair Ev-imu+(i9)

and Ev-Dimu(i9) populations evolved through ex planta cycles (see

Figure 3A). Nodule bacteria were counted 21 days after

inoculation. Values are from three independent competition

experiments. *Indicates significant differences between imu+ and

Dimu ancestors/populations for each competition experiment.

Horizontal bars represent means. (D) Percentage of imuA2B2C2+

strains in Jensen medium with Mimosa following co-inoculation

with pairs of An-imu+(i) and An-Dimu(i) ancestors or with each

pair of Ev-imu+(i) and Ev-Dimu(i) populations evolved through ex
planta-in planta cycles (see Figure 3A). Bacteria recovered from

the Jensen medium were counted 7 days after inoculation of

Gibson tubes containing Mimosa plants. Values are from three

independent competition experiments. *Indicates significant

differences between imu+ and Dimu ancestors/populations for

each competition experiment. Horizontal bars represent means.

Raw data are provided in Data S3.

(EPS)

Figure S6 Phylogenetic tree of the ImuBC cassette.
Maximum-likelihood phylogenetic tree of the concatenated

ImuBC amino-acid sequences. Sequences were chosen among

completely sequenced strains, with a focus on a- and b-rhizobia.

Numbers at the nodes indicate bootstraps (1,000 experiments).

Frankia sp. Eu1c was used to root the tree. When appropriate,

names of the plasmids carrying an ImuBC copy are indicated in

brackets. Plasmid cassettes are in green and rhizobia are

underscored. Asterisks indicate symbiotic plasmids. Clades con-

taining rhizobia are shaded in grey. Note the position of the C.
taiwanensis and C. necator plasmid cassettes that are more closely

related to Burkholderia sp. cassettes than to Cupriavidus sp.

chromosomal cassettes. Abbreviations: Ac., Acidovorax; Ag.,

Agrobacterium; Bo., Bordetella; Br., Brucella; Bu., Burkholderia;

Ca., Caulobacter; Cu., Cupriavidus; Fr., Frankia; Me., Mesorhi-
zobium; Mt., Methylobacterium; P., Pseudomonas; Ra., Ralstonia;

Ro., Rhodobacter; Rh., Rhizobium; S., Sinorhizobium; V., Vibrio;

X., Xanthomonas. Alignments are provided in Data S8.

(EPS)

Table S1 Number of point mutations detected in pools
of clones. The clones were randomly isolated 21 days after

inoculation of a founder strain in a Gibson tube filled with Jensen

medium and containing or not M. pudica plantlets. Each pool

contains equimolar concentration of DNA from 19 (J4) or 20

(others) clones from a same compartment. aThese three nodules

were collected from the same plant individual. All other pools were

independent experiments. bIn these pools the 20th clone was

CBM212, which served as control. cTubes were inoculated with

CBM124 (pool J5) or CBM63 (poolJM3), two clones obtained

from independent transfer of pRalta to GMI1000, or with a GenR

derivative of CBM124 (pools J1–J4, JM1, JM2). dThe 20 clones of

this pool were individually sequenced (RCM252 to RCM271).
eMutations were randomly chosen for Sanger validation. fNumber

of different mutations. G, GA2X; H, HiSeq2000; na, non

applicable. Details are provided in Table S4.

(XLSX)

Table S2 Type of selection acting on evolved clones and
pools of clones. *Ratio of the number of non-synonymous

substitutions per non-synonymous site to the number of synony-

mous substitutions per synonymous site. **Ratio of the number of

intergenic substitutions per intergenic site to the number of

synonymous substitutions per synonymous site.

(DOCX)

Table S3 Distribution of nodABC and imuBC genes in a-
and b-proteobacteria. Y and N indicate presence and absence,

respectively. Numbers in brackets indicate the number of

chromosomic or plasmid imuBC cassettes. Genera that contain

rhizobial species with plasmid nodABC genes are highlighted in

grey. *Note that Agrobacterium and Ochrobactrum contain

rhizobia [66,67] yet no rhizobial strain has been sequenced within

these genera. Agrobacterium and Rhizobium genera do not form

two separate clades and have been proposed to be amalgamated

[68]. #imuBC genes present on the symbiotic plasmid.

(XLSX)

Table S4 Mutations detected in pools of clones. Sheet 1:

Ralstonia pools; sheet 2: Ralstonia clones of JM3 pools; sheet 3: C.
taiwanensis pools. a, position on the replicon; b, position on the

CDS. c, for intergenic mutations; d, mutations are validated by

Sanger sequencing of PCR fragments from individual clones (A),

sub-pools of five clones (B) or ten clones (C). Information is:

nucleotide change/SNP, INSertion or DELetion/transition (ts) or

transversion (tv)/codon change/aa change/nonsynonymous or

synonymous mutation/score/allele ratio/sequencing technology/

single end (se) or paired end (pe)/automatic.

(XLSX)

Table S5 Strains and plasmids used in this study.
*Carries tra and mob genes [69].

(DOCX)

Table S6 Primers used in this study.

(DOCX)

Data S1 Raw data for Figure 1.

(XLSX)
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Data S2 Raw data for Figure 2.
(XLSX)

Data S3 Raw data for Figures 3 and S5.
(XLSX)

Data S4 Raw data for Figure S1.
(XLSX)

Data S5 Raw data for Figure S2.
(XLSX)

Data S6 Raw data for Figure S3.
(XLSX)

Data S7 Raw data for Figure S4.
(XLSX)

Data S8 Alignment of imuBC genes (Figure S6).
(TXT)
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