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ABSTRACT: An approach based on ab initio statistical mechanics
is demonstrated for autoconstructing complex reaction networks.
Ab initio molecular dynamics combined with Markov state models
are employed to study relevant transitions and corresponding
thermodynamic and kinetic properties of a reaction. To explore the
capability and flexibility of this approach, we present a study of
oxygen activation on Ag4 as a model reaction. Specifically, with the
same sampled trajectories, it is possible to study the structural
effects and the reaction rate of the cited reaction. The results show
that this approach is suitable for automatized construction of
reaction networks, especially for non-well-studied reactions, which
can benefit from this ab initio molecular dynamics based approach
to construct comprehensive reaction networks with Markov state models without prior knowledge about the potential energy
landscape.

1. INTRODUCTION

The chemical industry is transitioning to the so-called green
chemistry, which relies on renewable reactants that produce
minimal hazardous waste. Therefore, a sustainable industrial
practice hinges on controlling and tailoring chemical reactions,
which is the main focus of catalysis. Interestingly enough, even
fundamental catalytic processes involve a complex reaction
network depending on various reaction conditions. Therefore,
a proper theoretical approach to the thermodynamics and
kinetics of catalysis is required.1−4 The catalytic reaction
network constructed based on microkinetic modeling can
bridge atomic-scale properties with macroscopic observables of
the reactions.5−7 Indeed, microkinetic models can be well
established on top of elementary step properties, e.g., rate
constants, obtained from first-principles calculations.8,9 Fur-
thermore, the recent combination of machine-learning
algorithms and first-principles calculations extends the range
of applicability of the microkinetic modeling to more complex
reaction networks.10

Traditionally, a theoretical framework treating catalytic
reactions relies on identifying the reaction pathways by looking
at the elementary steps toward the final product states. In
particular, the reaction pathway is found through the minimum
energy path (MEP) once transition states are identified. Then,
the reaction rates can be calculated based on the transition
state theory (TST)11 and microkinetic modeling, elucidating
the reaction mechanisms.12−15 However, the success of this
method depends on the ability to search for stationary

geometries (e.g., intermediates and transition states) along
the reaction pathway, which is a challenging and demanding
task. Therefore, such an approach is hardly generalizable, and it
becomes computationally prohibitive for complex systems.
Furthermore, free energy calculations in a reaction network
within the TST framework depend on the harmonic oscillator
(HO) approximation,16 which is inaccurate at high temper-
atures because it neglects the translational and rotational
motions of weak interactions between molecules and
substrates.17−19 In the meantime, at high temperatures, the
reaction pathway will most probably not follow the MEP,
based on the transition state (active complex) hypothesis. On
the other hand, there is a decent amount of work on using
molecular dynamics methods in catalysis and surface
reactions,17,20−27 providing more accurate descriptions of the
free energy and reaction pathways at finite temperatures than
HO-TST methods.
In this work, we demonstrate an approach from the active

field of protein folding combined with ab initio molecular
dynamics (AIMD) to construct reaction networks relevant to
catalytic reactions. More specifically, AIMD with the replica

Received: April 17, 2021
Revised: June 9, 2021
Published: June 16, 2021

Articlepubs.acs.org/JPCA

© 2021 The Authors. Published by
American Chemical Society

5670
https://doi.org/10.1021/acs.jpca.1c03454
J. Phys. Chem. A 2021, 125, 5670−5680

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Weiqi+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiangyue+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jesu%CC%81s+Pe%CC%81rez-Ri%CC%81os"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpca.1c03454&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c03454?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c03454?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c03454?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c03454?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c03454?fig=agr1&ref=pdf
https://pubs.acs.org/toc/jpcafh/125/25?ref=pdf
https://pubs.acs.org/toc/jpcafh/125/25?ref=pdf
https://pubs.acs.org/toc/jpcafh/125/25?ref=pdf
https://pubs.acs.org/toc/jpcafh/125/25?ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpca.1c03454?rel=cite-as&ref=PDF&jav=VoR
https://pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org/JPCA?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


exchange enhanced sampling method (REMD)28 is employed
to sample the chemical space efficiently. Then, we build
Markov state models (MSMs)29,30 by estimating the transition
matrix between discrete states. The reaction network can
therefore be automatically constructed from this approach in
which all the relevant transitions between configurations can
be included. Finally, we employ the transition path theory
(TPT)30,31 method to calculate reaction rates between
different configurations without requiring prior knowledge of
the potential energy landscape.
Replica exchange enhanced sampling methods28,32 do not

require preset reaction coordinates since the sampling is
accelerated only by the temperature based on the equipartition
theorem. In principle, REMD is not as efficient as explicit
reaction coordinate methods (e.g., meta-dynamics,33 umbrella
sampling34,35) when the reaction pathway is known for a
specific reaction. However, a temperature-based enhanced
sampling method, such as integrated tempering sampling36,37

and REMD, can comprehensively explore all the possible
degrees of freedom for an unknown reaction. Therefore, its
generalization to unknown reactions is superior to explicit
reaction coordinate methods, which are not suitable to
construct reaction networks automatically.
Usually, MD-based methods suffer from high computational

cost.7 Therefore, in the present approach, we do not try to
identify all the elementary steps in the reaction network but
instead construct in one shot a comprehensive reaction
network from the MD-sampled results. The memoryless
properties of MSMs allow the study of long-term chemical
kinetics in relatively short time trajectories. Therefore, massive
parallelization of AIMD trajectories can be possible.

Generally, a reaction network consists of transitions going
from reactants to products via intermediates. However, the
definitions of reactants and products are not necessary for a
reaction network since we focus on the transitions in the whole
system between different configurations, which do not have to
be stationary points on the potential energy surface. Based on
the transition matrix, which can be considered as the transition
probability between any pair of configurations in the phase
space, MSMs can describe the stabilities and the transitions.
Therefore, the reaction network from a specific reactant to a
specific product is included naturally in the MSMs.
To obtain the reaction rate and reaction pathways for a

specific reaction, the TPT is employed to analyze the MSMs.
TPT is derived from transition path sampling (TPS)38,39 and is
adequate for MSMs. In other words, explicit reaction
coordinates and transition states are not required in the
calculation of reaction rate by TPT. These features avoid the
shortcomings in choosing the order parameters for the reaction
coordinates and the approximation of rate constant calculation
within the TST approach. TPT works as a statistical method
on the transitions between Markov states to calculate any
reaction network transition rate. Indeed, the reaction rate of a
specific reaction and its corresponding weighted reaction
pathways are readily obtained for a given reaction network.
To illustrate the current approach, we study a model

catalytic reaction: oxygen activation on Ag4 clusters at finite
temperatures. Silver is a commonly used catalyst for catalytic
oxidation in many industrial chemical processes, for example,
in ethylene epoxidation.40 In realistic reaction processes at
finite temperatures, the formation of coexisting isomers,
including transient metastable structures, may promote the

Figure 1. Scheme of the methodologies employed in this work. The configurational space is sampled by ab initio REMD and represented by HCN.
Then the sampled configurations in HCN are either projected to two-dimensional space via sketch-map to construct detailed reaction networks
about the transitions between different configurations or coarse-grained by typical structures to analyze the role of the Ag4 structure in promoting
O2 activation.
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activation of the ligand molecule on silver catalysts.25,26,41 In
the meantime, the dynamically changing structure of a
catalyst−ligand complex under operating conditions introduces
additional complexity to the reaction network, which can be
unforeseeable by human intuition. Using the ab initio REMD-
based MSMs, we study the dynamically changing structures of
Ag4 and their roles in promoting oxygen activation. In addition,
using TPT analysis, we obtain the transitions which we are
interested in to obtain the corresponding reaction rates and
pathways. Finally, the dependency of the reaction rate on
temperature is also studied.

2. THEORY AND METHODOLOGY
The present approach relies on a proper sampling of the
chemical space, which is done in this work by ab initio
molecular dynamics. After an adequate representation of the
chemical space is identified, different geometries are linked via
the Markov state theory, and finally, the reaction rate is
calculated within the transition path theory framework. Figure
1 shows the scheme of the methodology presented in this
work. In this section, we present the three fundamental pillars
of this theoretical approach.
2.1. Replica Exchange Ab Initio Molecular Dynamics

(REMD). Ab initio molecular dynamics is employed to sample
the available chemical space efficiently. The motion of
electrons and nuclei are separated under the Born−
Oppenheimer approximation. The interactions between
atoms are calculated on-the-fly by electronic structure methods
(e.g., density functional theory). The dynamics of the atoms
are given by Newton’s equation of motion. In particular, we
work within the REMD framework28,32 in a canonical (NVT)
ensemble. In this formalism, several trajectories at given
temperatures are launched and exchanged during the time
evolution following the Boltzmann probability satisfying the
detailed balance condition, i.e.,

X T X X X T X X( ) ( ) ( ) ( )π π→ ′ = ′ ′ → (1)

Here, π(X) is the stationary distribution probability for the
state X, and the transition probability T(X → X′) is calculated
following the Metropolis criterion as

l
moo
n
ooT X X( )

1, for 0

exp( ), for 0
→ ′ =

Δ ≤

−Δ Δ > (2)

where

E X E X( ( ) ( ))n mβ βΔ ≡ [ − ] ′ − (3)

i k T
1

iB
β = with kB denoting the Boltzmann constant, and Ti

stands for the temperature of the ith trajectory. E(X)
represents the energy of the trajectory associated with the
state X. It is worth noticing that high-temperature replica helps
the fast convergence of low-temperature ones for rare events.
Therefore, REMD is a robust, efficient, and appropriate
method to calculate the dynamics of many-body systems
involving chemical reactions.
2.2. Representation. The configurations sampled by

REMD are generally represented by high-dimensional
Cartesian coordinates. In general, it is necessary to find an
invariant, unique, continuous, and general map from the
Cartesian coordinates of the constituent atoms onto a Hilbert
space.42 In recent years, various representations have been
developed and successfully applied in chemistry and materials

science.42−46 The choice of representations of molecules
depends on the system at hand. For Ag4 clusters, the histogram
of coordination number (HCN)47 is an appropriate method
that can present different configurations in unique vectors.
For a system with N atoms, HCN gives the accumulated

number of atoms, hi, for a specific coordination environment
with coordination number CN as

h
N

K c c
1

( CN )di
j
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∫∑= −

= −

+

(4)

where cj is the coordination number of the jth atom obtained
from the pairwise distances between atoms. K(c) is a function
that specifies the fraction of the jth atom associated with the
coordination number CN. For more details, we recommend
the reader to look into eqs 6−9 of ref 47 and the references
therein.

2.3. Free Energy Calculations. To calculate the free
energy, the sampled configurations of a system need to be
converted into thermodynamic states. Considering that the
configurations are represented by high-dimensional vectors, it
is convenient to employ a dimension reduction algorithm so
that the resultant free energy surfaces can be easily understood.
Sketch-map48 is a dimension reduction algorithm based on
multidimensional metric scaling specially designed for dealing
with molecular dynamics scenarios, e.g., the thermal fluctuation
in the vicinity of the energetic basins or the poor sampling at
the transition states.47 In sketch-map, a set of projections {di}
is generated from a set of high-dimensional landmark points
{Di} by minimizing the stress function:

R r

R D D

r d d

i j
ij ij

ij i j

ij i j

2 2∑χ = [ − ]

= || − ||

= || − ||

≠

(5)

where Rij is a measure of the dissimilarity in the high-
dimensional space, and rij is the Euclidean distance between
their projections. Di and di are the representations of
configuration i in high-dimensional and low-dimensional
space, respectively. The use of MD leads to short length
scales due to the thermal fluctuations around local minima,
which complicates the characterization of different config-
urations. To avoid this, sketch-map employs sigmoid filter
functions F(R) and f(r) defined as

F R R

f r r

( ) 1 (1 (2 1)( / ) )

( ) 1 (1 (2 1)( / ) )

A B a B A

a b a b a

/ /

/ /

σ

σ
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−
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that suppress short length scales. The parameter σ defines the
length scales to divide local minima. A and a control the decay
in the short-range, while B and b control the decay in the long-
range. These parameters should be given before the projection.
As a result, the stress function reads as

F R f r( ) ( )
i j

ij ij
2 2∑χ = [ − ]

≠ (7)

Finally, we use the multistate Bennett acceptance ratio
(MBAR)49 approach to calculate free energies associated with
each of the thermodynamic states. The basic idea of MBAR is
to calculate the ratio between the partition functions of
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thermodynamic states obtained from different REMD replicas.
Then, the dimensionless free energy reads as

f
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which can be solved self-consistently. In this equation, K is the
number of thermodynamic states, and Nk is the number of
configurations in the thermodynamic state k. The Boltzmann
factors are calculated by uj, which is the product of the inverse
temperature and the potential energy of the configuration i
with coordinate xkn. In practice, only the differences between
free energies Δfîj = fĵ − fî are physically meaningful.
2.4. Reaction Rate Calculations. 2.4.1. Markov State

Models. In a catalysis system, molecules or materials evolve
continuously in its phase space, divided into reactant,
transition state, intermediate, and product regions. The
reactant region, intermediate region, and product region are
the basins around the local minimum in which the system
prefers to thermofluctuate in the potential energy (hyper)-
surface. However, the transition state region is less frequently
visited by the system since transition states are saddle points in
the potential energy (hyper)surface. Generally, transition states
are studied to obtain information on the reaction rate from
reactants to products. Therefore, the evolution of the system
can be described by a set of trajectories in which the transitions
from the reactants to the products can be extracted and
analyzed.
MSMs are widely used in protein folding and in the study of

macromolecules dynamics, both involving long time scales.
Markov state models provide a framework to link the data of
microscopic dynamics with macroscopic observations. In
particular, Markov state models are inherently statistical
methods;29,30 thus, relevant observables can be calculated as
expectation values of the corresponding operators. Meanwhile,
the memoryless nature of MSMs makes it possible to simulate
many short-time trajectories instead of a long-time trajectory,
so that the trajectories can be calculated in parallel.
Furthermore, the evolution of the system over time can be
retained in MSMs.
To map a catalysis system into Markov states, a proper

clustering or discretization algorithm should be used. In this
work, we use the regular-space clustering50 method, which
forces the Markov states to be uniformly distributed in the
reduced or phase space. Based on the Markov states obtained
by the clustering method, the transition matrices can be
calculated to describe the transitions between Markov states i
and j in a thermodynamic equilibrium system via

c
TM ( )

( )
ij

ij

i

corr

τ
τ

π
=

(9)

Here πi is the stationary probability of state i, cij
corr(τ) is the

normalized time correlation function, and τ is the lag time.
2.4.2. Transition Path Theory. TPT30,31 interprets the

reactive paths statistically and calculates the relevant chemical
observables (e.g., reaction rate) in terms of committor
functions and transition probabilities. Based on the MSMs,
reaction networks can be constructed on top of transition
probabilities between Markov states. When the reaction
networks are constructed, TPT calculates the flux of all
possible transition pathways connecting the required reactant
and the desired product through committors, which indicate

the probabilities of transitions from a Markov state to the
product or reactant. Based on the reaction networks, properties
regarding the transition, such as the total flux, the mean first-
passage time (MFPT), and reaction rate from the reactant to
the product, can then be calculated.

3. COMPUTATIONAL DETAILS
In this work, electronic structure calculations of silver clusters
with oxygen molecules are performed by an all-electron full-
potential numerical atomic orbital basis set code, FHI-aims,51

with density functional theory (DFT) under the generalized
gradient approximation (GGA) of the Perdew, Burke, and
Ernzerhof (PBE)52 functional. “Tight” settings for the basis set
and numerical integration grid are employed.51 Scalar-
relativistic corrections have been applied,51,53 and vdWTS54

dispersion interactions are included by means of a C6[n]/r
6 tail

correction to the PBE energy, where the C6[n] coefficients are
derived from the self-consistent electron density.
The AIMD simulations are performed in the NVT ensemble

using a Bussi−Donadio−Parrinello thermostat55 with a time
step of 0.002 ps. The REMD with 10 temperature replicas is
performed to sample the configurations of silver clusters in the
phase space. The temperatures of the replica are 200, 240, 280,
340, 405, 480, 570, 680, 815, and 970 K, while they exchange
the temperatures every 10 MD steps. For each replica at the
corresponding temperature, 125 000 configurations are
sampled.
Ag4 clusters are represented by HCN which is sufficient to

identify the configurations. Then, the sketch-map method is
used to reduce the four-dimensional HCN vectors into a two-
dimensional sketch-map space with 1000 samples chosen as so-
called “landmarks”. The cutoff function defining the short,
medium, and long pairs is given by setting the parameters as
follows: σ = 0.25, A = 15, B = 1.5, a = 15, and b = 1.5. To
calculate the free energies in two-dimensional sketch-map
space, pymbar (a python implementation of MBAR) is
employed to reweight the stationary distribution probabilities
between temperature replicas of REMD. At last, the estimation
of MSMs is performed by using PyEMMA packages56 with τ =
10 for this work.

4. RESULTS
In this work, we address the most relevant physicochemical
properties of oxygen activation on silver clusters by means of
ab inito statistical mechanics based on the Markov state model
presented above. In particular, our work focuses on answering
two main questions:

• How does the structure of the silver cluster affect the
oxygen activation?

• What are the oxygen activation rates along pathways at
certain temperatures?

The electronic ground state of O2 is a triplet,
3Σg

−, while the
adsorbed O2 is in its singlet spin state 1Δg. However, since we
focus on the evolution of the Ag4O2 system after the
chemisorption of O2 molecules, we assume that the O2
molecules are in the 1Δg electronic state in the simulations.
As O2 adsorbs on silver, it experiences an elongation of the
bond length due to a charge transfer between the molecule and
the catalyst. In this process, the O−O bond is weakened from
an O−O double bond to an O−O single bond in the Lewis
picture of the molecular bond; i.e., the O2 is “activated” after
adsorption on the silver clusters. To identify the activated
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species, it is necessary to define a criterion, and in this case, we
use the O−O bond length. In particular, the configurations of
Ag4O2 with O−O bond length longer than the one in H2O2 are
identified as the activated states based on comparisons with
peroxy compounds. The dissociated species are not discussed
in this study since they are not observed, as shown in the
distribution of O−O bond lengths as a function of temperature
in panel (a) of Figure 2. Similarly, the distribution of Ag−O

bond lengths is displayed in panel (b) of Figure 2, where we
notice that 2.2 Å is the most probable Ag−O bond length in a
wide range of temperatures. As a result, both O atoms of O2
prefer to bond with the Ag4 cluster, until one of the O atoms
breaks the bond with the Ag4 cluster at higher temperatures.
After REMD simulations, the structures of Ag4 substrates in

the Ag4O2 system are identified and represented by HCN
vectors. To analyze the probability of activating O2 on Ag4
clusters with different structures, the sampled configurations
are coarse-grained into 11 types of isomers based on the
structure of the Ag4 substrates. The probabilities of activated
O2 on these Ag4 isomers can then be calculated. With the aid
of MBAR, the stationary distribution of different Ag4 substrate
configurations is used to identify their actual contributions in
activating O2 at a given temperature. To investigate the oxygen
activation rates along different transitions, MSMs are built

from the REMD results after dimension reduction by sketch-
map. Based on these MSMs, TPT is employed to calculate the
transition rates between a required reactant and a product
visualized in sketch-map space.

4.1. Representation of Ag4O2 and Dimension Reduc-
tion. Ag4 clusters are usually represented with 12-dimensional
Cartesian coordinates. However, as introduced above,
Cartesian coordinates are not invariant upon rotation and
translation, and they are not size intensive. In this work, we use
four-dimensional HCN to represent the structures of Ag4
substrates in the Ag4O2 system. As shown in Figure 3, 11

typical isormers of Ag4 are represented in HCN vectors,
according to which the MD-sampled configurations can be
coarse-grained to 11 groups based on the structural similarities.
For the analysis of the oxygen activation rates along different

transitions, the dimensionality reduction algorithm sketch-map
is fed with the HCN vectors so that the Euclidean distances
between different configurations in HCN are calculated. One
thousand samples of Ag4 substrates are chosen as so-called
“landmarks” by the minmax algorithm to ensure that they
distribute in phase space uniformly. These landmarks are
nonlinearly projected into a two-dimensional space afterward.
The two-dimensional sketch-map space and the landmarks are
shown in Figure 4, where 11 typical isomers of Ag4 substrates
are labeled with their structures. By looking at the conversion
of the colors, which express the average coordination number
of the Ag atom in Ag4 substrates, we notice that the nonlinear
projection from four-dimensional space to two-dimensional
space is smooth and reasonable.

4.2. The Role of the Configurations of the Ag4
Substrate in Oxygen Activation. In this section, we try
to address how the structures of the Ag4 substrate affect the
activation of molecular oxygen. On one hand, O2 activation is
related to the charge transfer from the substrate to the
antibonding orbitals of O2 to weaken or even break the O−O
bond. On the other hand, the Ag4 substrate shows various
chemical activities with different structures due to the local
environments of Ag atoms. Thus, the probability of O2
activation on the Ag4 cluster depends on the temperature.

4.2.1. The Stability of Ag4O2 Configurations with Different
Ag4 Substrates. At finite temperatures, various structural
configurations of Ag4O2 will form an equilibrium ensemble,
consisting of both stable and metastable states having different
abilities to activate molecular oxygen. Using the representation
exposed in the previous section based on 11 isomers, one can

Figure 2. Histogram of bond length at different temperatures for O−
O (a) and Ag−O (b) regarding oxygen adsorption on silver clusters.
The PBE-optimized equilibrium O−O bond lengths in gas-phase O2
and H2O2 are 1.22 and 1.46 Å, respectively, shown in (a) as vertical
dash lines.

Figure 3. Eleven typical isomers of Ag4 and their HCN vectors.
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identify the temperature-dependent stability of Ag4O2 isomers
with the corresponding Ag4 substrates, depending on the Ag4
characteristic structures. Indeed, the free energies and the
stationary distribution probabilities of these 11 coarse-grained
isomers show different temperature dependencies, as shown in
Figure 5. More specifically, the relative stabilities of isomers

strongly depend on the temperature. Panels (a) and (b) of
Figure 5 show the free energies and stationary distribution
probabilities of Ag4 clusters in the gas phase, while panels (c)
and (d) are the results after the O2 adsorption. Indeed, we
observe significant differences of Ag4 clusters’ relative stabilities
before and after O2 adsorption. For example, the “4 atoms”
structure is absent in the Ag4O2 system but observed in the Ag4
system. Without the adsorption of O2, 4 atoms is always the
most unstable state at all temperatures. At low temperatures,
the diamond state is the stablest isomer, while the Y state is the
stablest isomer when the temperature becomes higher, and the
zigzag state is the stablest isomer at the highest temperatures
studied. We also notice that the stability of “2 dimers” quickly
becomes higher with increasing temperature. These differences
suggest that the O2 molecule can stabilize the Ag4 cluster in a
configuration with a medium coordination number at the same
time that the molecule is activated. However, after O2 is
adsorbed on Ag4 clusters, the relative stabilities of A4 clusters
become very different. From low to high temperatures, the Y
structure is always the stablest state. As the temperature
increases, the Y, diamond, and tetrahedron structures become
less stable, and other structures become more stable. The
dissociated state “2 atoms” is the most unstable state at low
temperatures, while tetrahedron is the most unstable state at
high temperatures.

4.2.2. The Probability of O2 Activation on Different Ag4
Substrates. The distribution of configurations of silver clusters
depends on the temperature, and the catalytic activities depend
on the configurations. Consequently, the probability of O2 to
be activated depends on the temperature. Therefore, it is
important to study the activation probability of O2 at finite
temperatures. Here, we take the Ag4O2 system at 570 K as an

Figure 4. One thousand landmarks of Ag4 substrates mapped into a
two-dimensional sketch-map space. Each dot in the plot indicates a
configuration, while the color shows the average coordination number
per atom of the configuration. In this reduced two-dimensional space,
abscissas and ordinates of points are nonlinearly projected from a
given high-dimensional space. The distances between configurations
reveal their similarity. The arrows indicate the positions of relevant
Ag4 structures in the two-dimensional space.

Figure 5. (a) Temperature dependency of the configurational free energies of Ag4 coarse-grained isomers without O2 in the gas phase. (b)
Temperature dependency of the stationary distribution probability of Ag4 coarse-grained isomers without O2 in the gas phase. (c) Trends of the
free energies of coarse-grained Ag4O2 isomers characterized by the Ag4 substrates changing with the temperature. (d) Trends of the stationary
distributions probability of coarse-grained Ag4O2 isomers changing with the temperature.
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example to illustrate how the distribution of different
configurations plays a role in oxygen activation and how to
analyze their contribution by the present approach.
Adsorption of O2 on Ag4 clusters is mediated by electron

transfer from Ag4 to the antibonding π orbitals of O2. It is
expected that some isomers of the silver cluster are more
prominent to the electron transfer reaction than others, and, as
a consequence, the O2 activation probability on Ag4 clusters
with different configurations can be very different. To illustrate
such dependency we display in Figure 6 the probability of O2

activation on the most relevant Ag4 isomers. As a result,
tetrahedron, acute angle, and square isomers show the highest
inherent O2 activation activity, whereas 2 dimers, Y, and zigzag
activities are the lowest. In addition, we notice that the high-
activity configurations are not necessarily the configurations
with low Ag coordination numbers. For example, the
coordination number of Ag in tetrahedron is higher than in
the low-activity structures diamond and Y. This suggests that
the activity of the Ag4 clusters can not be surmised by the
coordination numbers of Ag atoms. For oxygen activation, the
Ag4 configurations which can promote more electron transfer
to the oxygen molecule will be more active. Ag atoms with
more dangling bonds are usually more electronegative and can
resist the processes of electron transfer. Additionally, the Ag4
clusters may stretch the O−O bond at finite temperatures due
to their dynamically changing structures. Therefore, an
unstable configuration with a larger range of structure
distortion can also promote oxygen activation.
At first glance, tetrahedron, acute angle, and square

contribute the most in activating O2. However, when the
stability of the Ag4 isomers is taken into account, a new
scenario emerges, as shown in Figure 7, where the normalized
O2 activation probability on the isomers is shown. The
numbers shown on the colored nodes correspond to the
normalized activation probability of O2 molecules on each
isomer, calculated by the ratio of the number of activated O2
molecules with respect to the total number of O2 molecules
sampled at 570 K. At this temperature, owing to the high
stationary distribution probabilities of zigzag, Y, and diamond
configurations, these configurations contribute the most to O2
activation, despite the fact that the inherent O2 activation

probabilities on these three isomers are relatively low. In
particular, the normalized O2 activation probabilities on
diamond, Y, and zigzag isomers are 0.57%, 1.03%, and
0.24%, respectively. On the contrary, even though tetradedron,
acute angle, and square have very high inherent O2 activation
activity, the normalized O2 activation probabilities on these
isomers are only 0.07%, 0.2%, and 0.1%, respectively.
In realistic processes, the reactants, such as ethylene

molecules, may react only with O2 activated on Ag4 isomers
with particular configurations. In the meantime, the system is
in a nonequilibrium state where Ag4 isomers with particular
configurations are constantly consumed. As a result, the
transition probabilities from other configurations to the
consumed configurations promote the reaction. In Figure 7,
the transition probabilities from one configuration to another
are shown as the numbers above the arrows, while the widths
of the arrows are proportional to the transition probabilities. At
570 K, we observe significant transitions between diamond, Y,
zigzag, and square, triangle star, and atom and acute angle. As
discussed above, square, triangle star, and atom and acute angle
have the highest O2 inherent activation activity, but their
normalized activation probability is lower than that of
diamond, Y, and zigzag, which are the stablest isomers at
570 K. The high transition probabilities between these
configurations can promote the reaction toward the product,
leading to higher apparent activities of the consumed
configurations.

4.3. The Kinetics of O2 Activation on Ag4. Considering
the complexity of a reaction with dynamically changing
structures, the MFPTs, weights, and temperature-dependency
of reaction pathways are crucial to the understanding of a
reaction. In this section, we first take 570 K as an example and
study the free energy surface and the reaction network of O2
activation on Ag4. Then, we investigate the behavior of a given
transition with temperature to elucidate the impact of the
temperature of O2 activation on Ag4.

4.3.1. The Reaction Networks at 570 K. At finite
temperatures, transitions between different stable and meta-
stable structures can be massive, and the characterization of
these transitions requires detailed knowledge about the free

Figure 6. Transition probabilities between configurations shown as
the arrows in the plot for the Ag4O2 system. The sizes of the nodes
indicate the probability of O2 activation on relevant Ag4 structures.

Figure 7. Normalized activation probability on the isomers of Ag4.
The orange nodes label the isomers, and the numbers on them
indicate the probability of O2 activation on Ag4. The arrows connect
these isomers during the reaction with a transition probability given
by the arrows’ numbers.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c03454
J. Phys. Chem. A 2021, 125, 5670−5680

5676

https://pubs.acs.org/doi/10.1021/acs.jpca.1c03454?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c03454?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c03454?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c03454?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c03454?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c03454?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c03454?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c03454?fig=fig7&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c03454?rel=cite-as&ref=PDF&jav=VoR


energy surface beyond the coarse-grained free energy study
shown above. To this end, before exploring the free energy
surface, we employ sketch-map to map the high-dimensional
representations into a two-dimensional space based on the
HCN of different Ag4 configurations. The resultant two-
dimensional free energy surface of the Ag4−O2 system is
shown in panel (a) of Figure 8, where it is noticed that

diamond and Y isomers have the lowest free energy, which
agrees with the coarse-grained results discussed in the previous
section. There is a relatively stable area with low free energies
between diamond and Y, suggesting massive transitions
between these two configurations. However, looking at the
heatmap of O−O bond length (projected into the same two-
dimensional sketch map as the free energy) displayed in panel
(b) of Figure 8, the O2 activation ability of this area is low. As
discussed before, the transitions between configurations can be
important to promote the activation of O2. Indeed, to activate
O2, it is crucial to visit high-activity configurations such as
triangle star and tetrahedron.

To identify these transitions, we construct the MSMs shown
in Figure 9 by uniformly partitioning the configurations up to

100 Markov states in the free energy surface. Since the sketch-
map algorithm reduces the dimension of configurations based
on structural similarity, configurations with similar structures
are clustered into the same Markov states. Our results show
that transitions between Markov states located around
diamond and Y contribute the most to the transitions at this
temperature. Although O2 can not be efficiently activated in
the area around diamond and Y, we observe transitions
between the low free energy states (around diamond and Y
states) and the high free energy states (around acute angle,
triangle star, and tetrahedron) with high activities.
To further investigate the transitions, we identify three low-

activity states as the initial states and three high-activity states
as the final states. The reaction rates of these nine transitions
are calculated by TPT. The three initial states are labeled as 0,
1, and 2 in Figures 9 and 10, with Ag4 substrates having
structures between diamond and Y. The three final states are
labeled as 28, 56, and 60 in Figures 9 and 10. The structures of
Ag4 substrates of state 28 and 56 are close to tetrahedron and
triangle star, respectively, while the Ag4 substrate in state 60 is
an intermediate structure around Y, zigzag, and atom and
acute-angle triangle, on which the probability of activating the
O−O bond is relatively high. The MFPT given by the inverse
reaction rate of a transition from an initial state to a final state
is summarized in Table 1. In this table, it is noticed that the
reaction rates of these transitions depend mainly on the final
states, and the reactions to state 28 are the fastest ones. Indeed,
we have studied different transition pathways from state 0 to
state 28 by calculating the reaction flux, as summarized in
Table 2. The pathways “0→ 2→ 28” (23% flux) and “0→ 28”

Figure 8. (a) Free energy surface of Ag4O2 at 570 K in the two-
dimensional sketch-map space based on the structures of their Ag4
substrates. (b) The heat map of O−O bond lengths in the same two-
dimensional space.

Figure 9. Transitions between different Markov states. The states are
labeled with numbers, the size of cyan nodes shows the corresponding
stationary distribution probabilities, and the heat map shows the O−
O bond length. Both the transition network and the heat map are
mapped into the sketch-map space of the Ag4 substrate. Although, in
principle, transitions exist between all Markov states, only the ones
with transition probability larger than 0.5% are shown.
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(16% flux) dominate the transition from state 0 to state 28.
Therefore, for the transition from state 0 to state 28, the rate of
O2 activation is mainly dominated by transitions with fewer
intermediate states in their transition pathways.
4.3.2. The Temperature Dependency of O2 Activation on

Ag4. In general, the reaction rate depends on the temperature,

and for the case of a complex reaction, such dependency may
be complicated. An example of this is displayed in Figure 11,

where we show the MFPT of O2 activation on Ag4 from state 0
to state 28 as a function of temperature. This figure shows that
the reaction rate reaches a maximum at a temperature ∼500 K
and diminishes for higher or lower temperatures. However, the
reaction rate toward lower temperatures shows a steeper trend
than the one for higher ones. This behavior is related to the
fact that the system is affected by both its thermodynamic and
dynamic properties. At relatively low temperatures, a small rise
in temperature dynamically increases the probability of
overcoming the reaction barriers, leading to a higher apparent
reaction rate. However, thermodynamically the probability of a
high-activity species, which is the tetrahedron state in this case,
becomes lower at very high temperatures, leading to a
reduction of the apparent reaction rate.

5. CONCLUSIONS
In this work, we demonstrate an approach based on ab initio
statistical mechanics to autoconstruct complex reaction
networks in three steps: (1) REMD is used to sample the
phase space efficiently. (2) A representation of the system
should be flexible, depending on the study of the reaction at
hand. (3) MSMs are constructed from which the reaction
networks can be analyzed. Since the ab initio molecular
dynamics can automatically search the phase space, prior
knowledge about the energy landscape is not required. Almost
all relevant transitions of the reaction can be preferentially
sampled because AIMD simulates the reaction at operational
conditions. Meanwhile, the thermodynamic and kinetic
properties of the transitions between relevant configurations
are also obtained.
To illustrate the capabilities and flexibility of this approach,

we present a case study of a model system: O2 activation on
Ag4 clusters. We discuss this system from two aspects,
including the effect of the Ag4 structures on O2 activation
and the kinetics of O2 activation. As a result, we find that the
activation probability of O2 is determined not only by the
inherent activity of Ag4 substrates but also by the
thermodynamic stability of configurations, based on the
stationary distribution probability of coarse-grained states at
certain temperatures. The MFPTs of nine chosen transitions
between selected reactants and products are calculated to
investigate the reaction rate of the O2 activation. For one of

Figure 10. Transitions between three selected initial states (labeled as
0, 1, and 2) with low O2 activation probabilities and three final states
(labeled as 28, 56, and 60) with high O2 activation probabilities. The
size of the magenta nodes stands for the O2 activation probability.
The corresponding MFPT of the transitions are summarized in Table
1. The transition pathways between state 0 and state 28 are
summarized in Table 2.

Table 1. Summary of the Transitions between Three
Selected Initial States (Reactant, Labeled as 0, 1, and 2 in
Figure 9 and Figure 10) and Three Final States (Products,
Labeled as 28, 56, and 60 in Figure 9 and Figure 10)

reactant product MFPT (ps)

0 28 11.14
0 56 36.23
0 60 42.76
1 28 11.15
1 56 36.24
1 60 42.76
2 28 11.14
2 56 36.23
2 60 42.78

Table 2. Transition Pathways with Corresponding Weights
in the Total Reaction Flux from State 0 to State 28 Shown in
Figure 10

transition pathways weight

0 → 2 → 28 23%
0 → 28 16%

0 → 23 → 28 5%
0 → 5 → 28 4%
0 → 1 → 28 2%

0 → 5 → 2 → 12 → 28 2%
0 → 3 → 28 2%
0 → 17 → 28 2%
0 → 15 → 28 2%

Figure 11. MFPT from O2 nonactivated state 0 to activated state 28
as a function of temperature.
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these reaction pathways, we discuss in detail about the
dominant transitions that contribute to the reaction flux and
the temperature dependency of the reaction rate.
Compared with the HO-TST-based microkinetic modeling,

in this approach, the screening of kinetic processes and the
calculations of corresponding thermodynamic properties are
simulated by Newtonian dynamics in phase space through first-
principle calculations. The complex reaction network is
constructed by MSMs automatically instead of microkinetic
modeling. The advantages of using AIMD-based MSMs
include the following: (1) AIMD can naturally take lateral
interactions, anharmonic effects, and dynamic relaxation of
structures into account, and (2) MSMs do not require rate-
determining steps approximation and steady-state approxima-
tion. Although AIMD is the cost bottleneck, employing the
enhanced sampling, reweighting method, or machine-learning
potentials57,58 can reduce the workload of the simulation and
extend the simulation to multiple operational conditions.
Therefore, this approach is suitable for constructing complex
reaction networks relevant to reactions automatically.
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