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Abstract

Complex age-associated phenotypes are caused, in part, by an interaction between an indi-

vidual’s genotype and age. The mechanisms governing such interactions are however not

entirely understood. Here, we provide a novel transcriptional mechanism-based frame-

work–SNiPage, to investigate such interactions, whereby a transcription factor (TF) whose

expression changes with age (age-associated TF), binds to a polymorphic regulatory ele-

ment in an allele-dependent fashion, rendering the target gene’s expression dependent on

both, the age and the genotype. Applying SNiPage to GTEx, we detected ~637 significant

TF-SNP-Gene triplets on average across 25 tissues, where the TF binds to a regulatory

SNP in the gene’s promoter or putative enhancer and potentially regulates its expression in

an age- and allele-dependent fashion. The detected SNPs are enriched for epigenomic

marks indicative of regulatory activity, exhibit allele-specific chromatin accessibility, and

spatial proximity to their putative gene targets. Furthermore, the TF-SNP interaction-depen-

dent target genes have established links to aging and to age-associated diseases. In six

hypertension-implicated tissues, detected interactions significantly inform hypertension

state of an individual. Lastly, the age-interacting SNPs exhibit a greater proximity to the

reported phenotype/diseases-associated SNPs than eSNPs identified in an interaction-

independent fashion. Overall, we present a novel mechanism-based model, and a novel

framework SNiPage, to identify functionally relevant SNP-age interactions in transcriptional

control and illustrate their potential utility in understanding complex age-associated

phenotypes.

Author summary

Numerous traits, such as cardiovascular diseases and cancer, are associated with age.

However, these associations vary across races and ethnicities, suggesting an interplay

between age and the genetic background in determining the trait. Although previously

studies have attempted to detect Age-Genotype interactions based on statistical models,

they are mostly devoid of mechanism, thus limiting their efficacy and scope in informing
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therapeutic strategies. Here, we propose a novel framework to investigate such interac-

tions, by incorporating a specific transcription-based mechanism in the model. More

specifically, our model is based on the mechanistic scenario that an age-associated tran-

scription factor (TF) binds to a regulatory polymorphism (SNP) in an allele-specific man-

ner to regulate the transcription of the downstream gene in an Age- and Genotype-

specific fashion. By analyzing 25 tissues in the GTEx consortium, we detected tissue spe-

cific SNP-TF-Gene interaction triplets and functionally validated the detected SNP based

on epigenomic and functional data. What’s more, multiple lines of evidence link detected

interactions to aging and to age-associated diseases. We expect our new methodological

framework and the detected functionally relevant interactions will enhance understanding

of the underlying mechanism of SNP-Age interaction and its contribution to age-associ-

ated diseases.

Introduction

Normal aging is a critical “environmental” risk factor for complex diseases such as hyperten-

sion, cardiovascular defects, macular degeneration, Parkinson’s disease, and cancers [1,2]. For

instance, in 2011–2014, the prevalence of hypertension among people older than 60 years was

65% compared to only 7.3% for people between 18 and 39 years old [3]. Numerous crucial bio-

logical functions such as immune response, wound healing, DNA repair, metabolism, and

mitochondria function also significantly decline with aging [1,2,4], further underscoring aging

as a major risk factor for complex diseases. Even though the underlying mechanisms linking

aging with complex diseases are far from clear, profound transcriptomic changes associated

with both aging and complex diseases have been identified [5–7] and may provide mechanistic

insights.

In addition to aging, genomic variations also significantly contribute to complex diseases

[8–11], including cancer [12–14]. It is also widely accepted that genomic variations affect com-

plex phenotypes, in substantial part, through transcriptomic variability. This is exemplified by

numerous demonstrations that SNPs identified by eQTL studies [15–18] are enriched in regu-

latory regions of the genome and for SNPs associated with complex traits, and these links have

the potential to help identify key driver genes and mechanisms [19].

It is likely that aging and genome variations jointly contribute to complex diseases. That is,

systemic molecular changes through aging may affect complex phenotypes in a genotype-

dependent manner. Indeed, such genotype-environment (‘Age’ being an environmental factor

in this scenario) interactions have been previously investigated. For instance, by incorporating

a SNP-age term in a regression model, Yao et al identified 10 age-dependent eQTL SNPs

(eSNPs) in Whole Blood [20]. In a meta-analysis, Simino et al detected 9 SNPs which have

age-dependent association with blood pressure [21]. Work by Dongen et al showed that the

methylome in whole blood could be affected by the interactions between SNPs and age [22].

However, these previous studies have not investigated specific molecular mechanisms underly-

ing the SNP-age interactions in determining a phenotype, which limits biological insights they

provide and, as will be made clear below, limits their statistical power as well.

Here, based on established transcriptional mechanisms, we present a model and a pipeline,

that we term “SNiPage”, to identify SNP-Age interactions in determining target gene expres-

sion. Our model is based on the hypothesis that age-associated transcription factors (TF)

exhibiting allele-specific binding at a regulatory SNP will lead to age-associated expression

changes in the target gene in an allele-specific manner (Fig 1). Thus, our model uses the
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expression level of an age-associated TF as a proxy for age and identifies TF-SNP-Gene triplets

where the target gene’s expression is determined by an interaction between the TF’s expression

level (equivalently, host age) and the SNP genotype. Our model thus facilitates exploration of

SNP-age interactions across TFs and across tissues, substantially extending the scope and sta-

tistical power of previous explorations.

Application of SNiPage to 25 human tissues revealed ~637 significant TF-SNP-Gene triplets

on average in each tissue. Multiple biological evidence, including chromatin marks indicative

of active regulation, allelic imbalance, and SNP-Gene spatial proximity, suggest that our

detected SNP-Gene pairs are highly likely to be functional. Functional enrichment analyses

link the detected target genes regulated by SNP-age interactions to the aging process and com-

plex diseases. Interestingly, aggregated SNP-age interactions significantly inform an individu-

al’s hypertension state in six known hypertension-related tissues. Likewise, for several other

phenotypes, including cancers, the age-interacting SNPs exhibit a significantly higher linkage

to the reported phenotype-associated SNPs than the SNPs detected using standard interac-

tion-independent model. Finally, the detected SNPs exhibit relatively higher derived allele fre-

quencies in human, suggestive of their potential role in adaptive evolution.

In summary, we have reported a novel framework, exploiting established transcriptional

mechanisms, to identify SNP-age interactions driving gene expression, and the detected

TF-SNP-Gene triplets may provide further insights into the mechanisms linking genotype and

aging with complex age-related phenotypes.

Results

SNiPage overview

The SNiPage pipeline is illustrated in Fig 2 and described in Methods. We obtained the

imputed SNP genotypes and transcriptome from ~570 individuals across 54 tissues from the

GTEx consortium [23] (sample details shown in S1 Table). We retained those SNPs within

open chromatin regions (using tissue-specific DNase hypersensitivity (DHS) [24]) which were

within 1Mbp of gene promoters [25–27]. Our analysis is thus limited to those 25 tissues for

which DHS profiles are available (S1 Table and S6–S8 Figs). We detected age-associated TFs

based on their gene expression (Methods), controlling for genetic background and hidden

Fig 1. Hypothesized mechanism of SNP-Age interactions. (A) A TF binds to allele A to regulate the target gene. (B)

With aging, the TF expression decreases and consequently so does the target gene’s expression for ‘A’ allele but has no

effect on the ‘T’ allele (C).

https://doi.org/10.1371/journal.pgen.1009427.g001
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variables [6,28,29]. For age-associated TFs, based on published DNA-binding motifs, we iden-

tified their putative allele-specific binding at all retained SNPs (Methods). For each SNP, all

genes within 1Mbp of the SNP are considered as its potential cis-regulatory targets, which

include other TFs. For each candidate TF-SNP -gene triplet, based on a linear model, we iden-

tified significant TF-SNP interactions associated with the target gene’s expression. Finally, as a

further consistency filter, we selected only those TF-SNP-gene triplets that exhibited a TF-

gene correlation only for the SNP allele promoting TF binding, and not for the other allele.

SNiPage robustly detects numerous TF-SNP-Gene interactions across 25 tissues

We tested a total of 2,997,407 TF-SNP -gene triplets involving 125 TFs, 8,377 SNPs, and 4,661

genes on average across each of the 25 tissues and identified ~637 significant TF-SNP-Gene

triplets (parameters at various steps of the pipeline are mentioned in Methods) on average in

each tissue; details in Tables 1 and S3. As a technical control, when we randomly shuffle gene

expression across samples (permuting sample ids while preserving gene-gene covariance), far

fewer triplets (~110 per tissue; S2 Table) are detected (p-value for paired Wilcoxon test for 25

tissues = 4.2e-07). We detected the largest number of interactions in whole blood, Brain-Cor-

tex, and Colon-Transverse tissues. Interestingly, on average, only ~18% of the SNPs involved

in a detected triplet were previously detected as eSNPs [23]. This potentially implies that

numerous functional SNPs may escape detection based on standard interaction-independent

eQTL studies due to interactions with environmental factors. On average only half (~53%) of

the target genes involved in interactions are themselves significantly associated with age

(enriched over the background control; Fisher test p-value = 5e-3), consistent with a regulatory

role of age-associated TFs in driving age-associated expression of the target gene.

Fig 2. SNiPage pipeline. We identify age-associated TFs, and then identify genome-wide (imputed) SNPs at which

those age-associated TFs are predicted to have allele-specific binding, based on their known DNA-binding motifs. The

resulting SNPs are filtered to retain only those in open chromatin region, based on tissue-specific DNase-Seq data.

Then we test the interaction significance using a linear model, which measures the association between the interaction

and target gene expression. Finally, we further select the potential functional interactions based on consistency with

allele-specific binding predictions and the TF-target gene expression correlations.

https://doi.org/10.1371/journal.pgen.1009427.g002
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A specific example of a detected TF-SNP-Gene interaction is illustrated in Fig 3A: TF MAX
binds at SNP rs2295079 to regulate the expression of MTOR in Whole Blood. Adjusted expres-

sion of TF MAX significantly decreases with age (Fig 3B); note that here we use TF’s adjusted

expression value, after regressing out various confounding factors as well as hidden genetic

and transcriptomic factors. Notably, SNP rs2295079 was not captured by the GTEx eQTL

study, even though its potential functional role is supported by DNase HS, H3K4me3, and

H3K27ac peaks in K562, GM12878, and A549 cell lines [30]. In addition, the MAX ChIP-Seq

peak also appears in the same region in these cell lines, further supporting rs2295079’s func-

tional role. Based on our putative allele-specific binding prediction for MAX at rs2295079, we

expect it to differentially bind to the ‘G’ allele. Accordingly, we observed genotype-specific cor-

relation between MAX and MTOR; as shown in Fig 3C–3E, MTOR expression is significantly

negatively correlated (Spearman correlation = -0.24, p-value = 5.8e-3 for only one G allele;

Spearman correlation = -0.3, p-value = 4e-4 for two G alleles) with MAX expression when the

individuals have at least one G allele, while for ‘C’ allele homozygotes, there is no correlation

between MAX and MTOR (Spearman Correlation = -0.03, p-value = 0.79).

To assess the statistical robustness of the detected Age-associated TFs as well as the interac-

tions, we estimated their replication rate in random down-sampled (90%, 80%, 70%) datasets

in four tissues (adipose, whole blood, muscle and lung) with relatively large sample size. In

addition, we also estimated the replication rate in the background dataset (randomly shuffled

target gene expression profile) as control. S1 Fig shows the results. For the Age-associated TFs,

all under-sampled datasets across four tested tissues exhibit substantial replication rate. At

Table 1. The number of detected interaction triplets across 25 tissues.

Tissues Number of triplets Number of target genes Number of TFs Number of SNPs

Whole Blood 2279 1220 212 1830

Adipose-Subcutaneous 165 149 81 160

Muscle-Skeletal 83 78 50 83

Artery-Coronary 50 48 13 49

Heart-Atrial Appendage 465 389 107 426

Adipose-Visceral 1403 1056 175 1244

Ovary 329 294 82 322

Breast-Mammary 536 458 143 504

Brain-Cortex 2080 1557 161 1827

Adrenal Gland 15 15 9 15

Lung 507 412 191 467

Esophagus-Muscularis 146 136 42 144

Esophagus-Mucosa 152 137 84 147

Esophagus-Gastroesophageal Junction 210 185 81 197

Stomach 169 158 47 168

Colon-Sigmoid 430 370 139 411

Colon-Transverse 2275 1475 128 1864

Heart-Left Ventricle 419 355 116 375

Brain-Cerebellum 20 19 6 20

Artery-Aorta 392 366 132 380

Brain-Hippocampus 932 777 60 862

Brain-Frontal Cortex 837 710 57 775

Brain-Cerebellar Hemisphere 1100 895 92 1014

Brain-Caudate 54 49 8 50

Brain-Hypothalamus 883 708 75 825

https://doi.org/10.1371/journal.pgen.1009427.t001
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90%, 80%, and 70% under-sampling, average replication rates across the four tissues are

86.3%, 75% and 72.4% respectively, compared to 0% replication for background control. For

the triplet detection, all under-sampled datasets on average across four tested tissues exhibit

replication rate of 68%, 56%, 49% respectively for 90%, 80%, 70% sampling in contrast to 0%

replication rate for the background datasets. The decreasing trend of replication rates for 90%,

80%, 70% samples is consistent with the fact that sample size determine the statistical power.

We did not explicitly use race and ethnicity as covariates in our model because the GTEx

data is biased (>80% of the samples) towards White race, and the annotation of ethnicity is

sparse. However, we have included SNP-derived hidden variables as confounding factors in

our model, which is expected to account for race and ethnicity. We have further assessed the

effect of including race in our models as follows. We included race in our age-associated TF

detection model in the three tissues (blood, adipose, and muscle) with large sample sizes, and

observed that a very large fraction (99.6%, 97.6%, and 97.1% respectively in the three tissues)

of age-associated TFs detected by the original model were also detected by the race-controlled

Fig 3. An example interacting TF-SNP-Gene triplet. (A) TF MAX binds to MTOR promoter region supported by

DNase, H3K4me3, H3K27ac and MAX CHIP-Seq independently across several cell lines from ENCODE (K562,

GM12878, and A549), and the binding is predicted to be specific to ‘G’ allele. (B) MAX gene is age-associated. (C)-(E)

The correlations between adjusted MAX and MTOR expression across the three genotypes.

https://doi.org/10.1371/journal.pgen.1009427.g003
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model. Additionally, in the three tissues we randomly selected 1% of candidate triplets

(359070, 139624, and 132188 SNP-TF-gene candidates respectively) and again, a very large

fraction (92%, 95%, and 89% respectively in the three tissues) of the triplets detected by the

original model were also detected by the race-controlled model.

Overall, our analyses suggest that our detected Age-associated TFs and the interactions are

not likely to be false positives and are statistically robust.

Identified interacting SNPs are likely to be functional

In view of our hypothesis that age-associated TFs bind to a SNP locus and regulate target gene

expression, the detected SNP loci are expected to be in cis-regulatory elements such as enhancers

and promoters. We therefore checked whether the detected SNP loci are enriched for open chro-

matin signals (DHS) and other histone marks (H3K27ac, H3K4me1 and H3K4me3) characteriz-

ing regulatory regions. Even though DHS peaks were used as an inclusion criterion for the SNPs,

we tested whether the 200 bps flanks of the detected interacting SNPs exhibit higher DHS inten-

sity compared to other tested SNPs which, notably, also qualified under the initial DHS filter.

Each of the 4 epigenomic marks was analyzed for the tissues in which the relevant data was avail-

able and there were at least 200 foreground SNP loci. As shown in Fig 4A, the foreground (SNP

loci involved in the detected interactions) DHS intensities are significantly higher than the back-

ground (SNP loci that passed the initial DHS filter and were tested for interactions) in seven out

of eight tissues analyzed. This was also broadly true for H3K27ac and H3K4me3 (Fig 4C and 4D).

However, we observed a significant difference between the foreground and the background SNPs

for H3K4me1 in six of the fifteen tissues analyzed in Fig 4B. Note that while H3K27ac and

H3K4me1 are marker for active enhancers [31–33], H3K4me1 could also be related to poised

enhancers [31]. H3K4me3 is associated with gene promoters. Overall, these results strongly sug-

gest that the SNPs involved in the detected interactions are likely to play a regulatory role.

Next, we checked whether our detected SNPs are under evolutionary selection by compar-

ing their conservation (PhastCons scores derived from 100 species multiple alignment) with

those for three backgrounds: randomly selected SNPs, randomly selected SNPs after DNase fil-

tration, and eSNPs. As shown in S2 Fig, our detected SNPs are significantly more conserved

than random SNPs (in 15 tissues out of 25), but in fewer tissues relative to the latter two con-

trols (in 3 and 11 tissues out of 25; S3 and S4 Figs). However, interestingly, our detected SNPs

exhibit significantly higher derived allele frequency (DAF; see methods) [34] compared to

eSNPs in 21 of the 23 tissues (Fig 5A). These results suggest that SNPs that interact with age

are likely to be in functional regions of the genome and are likely to be under positive or

relaxed purifying selection during human evolution.

To further assess functionality of our detected SNPs, we estimated allelic imbalance in

DNA accessibility in five tissues (blood, brain, heart, lung, stomach). More specifically, for

each tissue we obtained DNase-seq reads from ENCODE/RoadMap [24] and then performed

variant calling (for detected age-interacting SNPs) to extract heterozygous sites for allele

imbalance estimation (see Methods). The background was generated based on a binomial

model with matched reads depth and equal probability of 0.5 for either allele. As shown in Fig

5B, in 4 out of 5 tissues significantly higher-than-expected allelic imbalance were observed in

our detected SNPs. Lack of clear signal in lung may be due to insufficient read depths in those

specific DNase-seq samples.

Finally, we tested the tendency of detected SNP locus and the target gene locus to spatially

co-localize in the nucleus, which would further attest to transcriptional regulation of the gene

by the SNP locus. Since tissue-specific ChIA-PET data are relatively rare and of low resolution,

we therefore followed [15] and used ChIA-PET data merged from 4 cell lines K562, Hela, Nb4
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and MCF7) from ENCODE, after which we quantified (Methods) and compared the spatial

interaction of the detected SNP-Gene pairs with a background composed of interacting SNPs

paired with randomly selected genes with the same distance distribution as the foreground. As

Fig 4. Detected SNPs are enriched for epigenomic markers of regulatory regions. (A)-(D) Epigenomic signal comparison between the foreground and control SNPs

for open chromatin (DNase), H3K4me1, H3K4me3, and H3k27ac respectively. The foreground is 200 bps windows around the detected SNPs (blue) and the control is

200bps windows around the control SNPs (red).

https://doi.org/10.1371/journal.pgen.1009427.g004
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Fig 5. Detected SNPs exhibit allelic imbalance for open chromatin states, spatial proximity to target genes and higher derived allele frequency. (A) Detected

SNPs (green) exhibit significantly higher derived allele frequency compared to eSNPs (pink) across 21 tissues out of 23. (B) Detected SNPs exhibit significant allelic

imbalance for open chromatin states. The foreground is the imbalance distribution of detected SNPs (green), the control is the imbalance distribution generated from

a null binomial model (pink; see Methods). (C) Detected SNP-Gene pairs exhibit spatial proximity quantified by ChIA-PET data (pooled cell lines K562, Hela, Nb4,

and MCF7). The foreground is detected SNP-Gene pairs (green) and the control is random SNP-gene pairs within 1M bps, controlled to match the distance

distribution of the foreground (pink). The y-axis is the enrichment scores.

https://doi.org/10.1371/journal.pgen.1009427.g005
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shown in Fig 5C, in three tissues (blood, breast, colon), the detected SNP regions exhibit signif-

icantly higher spatial proximity to their detected target genes than to the background (Wil-

coxon test p-value = 4.7e-2, 1.8e-15, 9.3e-5). Overall, our results support, via several lines of

evidence, potential functionality of the detected age-interacting SNPs and SNP-Gene pairs.

Functional analyses of detected target genes and SNPs suggest links to age-

related processes and complex diseases

The genes involved in our detected TF-SNP-Gene triplets are expected to exhibit age-associated

expression in an allele-specific manner, which may have implication on ageing and age-associ-

ated complex diseases. To explore this further, first we performed functional enrichment analysis

over target genes in a tissue-specific manner (see Methods); we however note that functional

enrichment analysis is limited, because with few exceptions, context-specificity of biological pro-

cesses are not known and difficult to ascertain. S5 Fig shows a comprehensive TreeMap view of

enriched GO terms across tissues (FDR� 0.05; Methods) including GO terms that are signifi-

cant enriched in at least 3 tissues. Enriched biological functions fall into twenty categories (S5

Fig). Among them, metabolic process (including molecular metabolism), cell death, DNA meth-

ylation, organelle organization (including cellular component assembly and telomere organiza-

tion etc.), and negative regulation of biological process (including stress response, regulation of

cell-cell communications etc.), have well-established links to aging [35] and several age-associ-

ated complex diseases including hypertension, diabetes, neurodegeneration, and even cancer

[2,36,37]. Metabolic process is crucial for the maintenance of homeostasis, which systematically

deteriorates with aging [38]. Programmed cell death is an important mechanism to maintain cel-

lular hemostasis and eliminate pathological cells [39], which are both critical for aging process.

DNA methylation is the most potent ageing biomarker and potentially could be related to

tumorigenesis [40]. In addition, cellular stress response is a crucial biological process which mod-

ulates the damage to cells by activating repair signaling pathways. With aging, both cellular stress

response and repair pathways decline, which could be a trigger for age-associated pathology.

Next, using Hypertension as an exemplar age-associated complex disease, we assessed the asso-

ciation of detected TF-SNP interactions with Hypertension in eight tissues (Adipose-Subcutane-

ous, Whole Blood, Artery—Aorta, Lung, Adipose-Visceral, Heart-Left Ventricle, Heart-Atrial

Appendage, Artery-Coronary) that are implicated in hypertension. For these tissues, we used all

samples that were annotated with hypertension status unambiguously. The number of samples in

each tissue are provided in S1 Table. In each tissue independently, using log-likelihood-ratio

(LLR) tests, we assessed whether aggregated TF-SNP interactions contribute to hypertension sta-

tus in an individual (see Methods). As shown in Fig 6, in 6 of the 8 tissues, aggregated interactions

significantly (FDR� 0.05) contribute to hypertension. However, the links we discover between

our detected TF-SNP interactions and Hypertension is statistical and does not imply causality.

Previous studies have shown that tissue-specific eQTL SNPs (eSNP) exhibit significant

overlap with those associated with various phenotypes. For instance, Higgins et al reported

that eSNP rs43555985 (linked to gene GFRA2), which is shared with many other species, is

associated with residual feed intake in beef cattle [41]. Luo et al reported that gene ZNF323

transcriptionally associated with GWAS SNPs rs1150711 and res2859365 is a potential schizo-

phrenia causal candidate [42]. We assessed whether the SNiPage-detected SNPs exhibit a simi-

lar, or greater, overlap with phenotype-associated SNPs. However, as an alternative to overlap

statistics, we quantified and compared the distance of SNiPage-detected SNPs (as well as previ-

ously identified eSNPs as control) to phenotype-associated SNPs with the rationale that proxi-

mal SNPs are likely to be linked. We obtained GWAS signals for 8 diseases along with

established corresponding tissue [11,43,44]. For each SNP (our detected SNPs as well as
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eSNPs), we measure its distance to the closest phenotype-associated SNP and compared the

distances for the foreground (S4 Table) and the eSNPs, using Wilcoxon test (see Methods). As

shown in Fig 7A, our detected SNPs are significantly closer to GWAS signals for breast cancer,

cardiovascular diseases, colorectal cancer, and immune response disease. Even though it is not

statistically significant for all the 8 diseases, the trend is still consistent in all cases.

Additionally, we assessed whether our detected SNPs segregate with ethnicity. Interestingly,

our detected SNPs, pooled across all tissues, exhibit greater genomic proximity to 299 ethnic-

ity-associated SNPs [45] (Fig 7B), suggesting that SNP-age interactions may partly explain the

observed ethnicity-specific differences in age-associated diseases.

Taken together, our results suggest that target genes regulated by SNP-age interactions are

potentially linked to crucial aging-related biological processes, aggregated interactions could

potentially contribute to age-associated diseases such as hypertension, and relative to eSNPs,

which are detected in an interaction-independent manner, SNiPage-detected SNPs are more

likely to be causally linked to complex age-associated phenotypes.

Discussion

We have reported a novel framework and a pipeline SNiPage, which incorporates a specific

interaction mechanism to test the association between SNP-Age interactions and phenotypes

(gene expression/diseases). We hypothesized that age-related TFs might preferentially bind to

one of the alleles at a SNP, forming the basis for the interplay between the SNP and Age. We

robustly detected numerous TF-SNP-Gene interaction triplets (average ~637) across 25 tis-

sues. The detected SNP loci were enriched for epigenetic signals related to regulatory elements,

exhibit allelic imbalance for chromatin accessibility, and exhibited spatial proximity to the

putative target gene promoters, strongly supporting their functionality. Although our detected

SNPs are under evolutionary conservation in human to the same extent as eSNPs, DAF analy-

sis points to their evolution under positive (or relaxed purifying) selection during more recent

Fig 6. Detected TF-SNP interactions are potentially associated with Hypertension. Log likelihood ratio test was

performed to assess the contribution of aggregated interactions to hypertension state of an individual in 8 tissues

known to be etiologically linked to hypertension. The y axis is -log (FDR of the log likelihood ratio test).

https://doi.org/10.1371/journal.pgen.1009427.g006
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human evolution, while at the same time, based on GO term enrichment and previously

reported phenotype-associated SNPs, they are linked to aging and age-associated disease. This

paradoxical result is, in fact, consistent with the “antagonistic pleiotropy” model of aging [46],

which posits that the dysfunction during aging may be a byproduct of allelic variants that are

functionally adaptive during developmental and reproductive stages.

As noted above, although multiple previous studies incorporating intuitive SNP-Age terms

in a regression framework have reported potential interactions [20,21], they suffer from both

the detection power and insights about explicit interaction mechanisms, which are addressed

by our approach. The numbers of SNiPage-detected TF-SNP interactions are orders of magni-

tude greater than the previously reported numbers of age-SNP interactions (~20). Using the

age-associated TFs’ expression as proxy for age, and genome-wide gene expression values as

molecular phenotype, allowed for detection of unprecedented numbers of significant SNP-Age

interactions in multiple tissues. Furthermore, in contrast to previous studies, which identified

interactions in a tissue-independent manner, our study identifies TF-SNP interactions inde-

pendently in 25 tissues, enabling analysis of tissue-specific TF-SNP interaction effects on vari-

ous phenotypes. It is worth noting that our ability to detect age-associated TFs depends on the

age distribution among the samples used, which, in currently available databases such as

GTEx, does not perfectly represent the population in terms of both age distribution and race

composition, and furthermore, varies across tissues. Likewise, by necessity, our study is limited

to relatively well studied TFs having a DNA binding motif available.

As an “environmental” risk factor, aging is likely to affect various age-associated phenotypes

via gene regulation, which could be complex and diverse. Age-associated TFs represent just

one specific agent of aging, and additional factors could be involved. For instance, age-associ-

ated splicing factor or epigenetic modification enzymes, both of which play essential roles in

Fig 7. Detected SNPs are more likely to be associated with diseases and may reflect ethnicity structure. (A)

Distribution of genomic distances of our detected interaction SNPs (iSNP in green) and eSNPs (pink) as control to the

closest phenotype-associated SNPs. X-axis shows the phenotype. (B) Same as ‘A’ for known ethnicity-linked SNPs.

https://doi.org/10.1371/journal.pgen.1009427.g007
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gene regulation and are linked to complex diseases, are potential agents of aging. We have previ-

ously observed age-associated splicing factor expression changes across tissues [28]. Analogous

to our current study, age-associated splicing factors can bind to polymorphic RNA motifs and

form the basis for interaction between SNPs and aging. As for DNA methylation, Horvath et al.

have shown methylation to be a robust biomarker of Age [40] and moreover, it is well known

that methylation usually blocks TF binding [47–49]. Thus, it is reasonable to expect that age-

associated methylation changes could affect TF binding landscape across aging, in which case,

age factor would interact with allele-specific binding sites to regulate gene expression. It is espe-

cially exciting to note that DNA methylation has also been identified as a robust biomarker for

various cancers [50]. Combination of genotype, age-associated molecular changes including

regulatory proteins and methylation, taken together, may provide novel insights into cancer.

Tissue-specificity of gene regulation complicates our understanding of complex diseases.

We expect that our analysis across 25 tissues would shed light on molecular basis underlying

tissue-specific genetic regulation. In fact, we specifically observed a greater number of interac-

tions in tissues such as whole blood, Brain–Cortex and Colon—Transverse, which might

imply that the genotype-associated functional diversity of those tissues may be more age-

dependent. What’s more, our data can be used to draw links between tissues and complex dis-

eases, as has been suggested based on eQTL studies [16,17]. For instance, we found that in

multiple known hypertension-related tissues our detected TF-SNP interactions significantly

contribute, from statistical standpoint, to hypertension state of an individual.

Our results can inform the annotation and interpretation of GWAS and eQTL signals. In

recent years, large scale GWAS and eQTL signals have been reported, however, it is still diffi-

cult to decode the observed associations into explicit pathways and mechanisms. Alignment of

our detected interaction with reported associations by GWAS could suggest potential explicit

links between environment, genetics, and phenotypes.

Our main goal here was to explore SNP-Age interactions and thus our model first identifies

Age-associated TFs with allele-specific binding and then assesses the allele-specificity of the

target gene’s expression association with Age. However, our overall strategy can be easily

adapted for other contexts, for instance, all TFs regardless of their association with Age, to

explore general allele-specific regulatory effects of TFs, or to assess allele-specific effects of TFs

whose activity are perturbed in a disease, such as cancer.

Materials and methods

Transcriptome and epigenomic data

We obtained the processed transcriptome data across 25 tissues from Genotype-Tissue Expres-

sion (GTEx) database version 6 [23]. Corresponding tissue-specific DNase-seq, broad peaks

data for H3K27ac, H3K4me1 and H3K4me3 were downloaded from Roadmap consortium

[24]. In addition, top three principal components generated over SNP profile and PEER factors

generated over gene expression profile were also obtained from GTEx database. GENCODE

genome annotation version 19 (hg19) [51] was used in this study.

Detecting age-associated TFs

We used the linear regression model from previous studies [5,29] to detect significant age-

associated genes as follows:

gij ¼ ai þ b
1

i AGEj þ b
2

i SEXj þ
X3

l¼1
b
lþ2

i Slj þ
Xn

k¼1
b
kþ5

i PEERðCFk
j Þ þ εij ð1Þ
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Where gij is the expression of target gene i in jth sample and αi is the basal expression and

the intercept on y axis for gene i. βi is the coefficient for covariates in the ith gene model. AGEj
and SEXj are the age and sex for jth sample respectively. Sj is the covariate derived from SNPs

for jth sample. The SNP-derived covariates are expected to control for the hidden race and eth-

nicity confounders, which we did not directly include in the model due to biases and sparsity

of such information in the GTEx database. PEERðCFk
j Þ is the kth PEER factor (hidden vari-

able) derived over gene expression profile for jth sample. εij denotes the error term.

We removed PEER factors, which significantly correlate with age (Pearson correlation p-

value� 0.05) [28,52]. We selected all 518 transcription factors from TRANSFAC 2011 having a

Positional Weight Matrix. TF genes for which the coefficient of age b
1

i significantly deviated

from zero (FDR� 0.1) were considered age associated. In all downstream analyses where TF

expression is used, we use the adjusted TF expression as the residual after removing all compo-

nents except for the Age component from the TF expression in Eq (1) above.

Putative allele-specific binding site prediction

We generated allele-specific sequence (~100 bps) around all the SNP loci and scanned the

sequences for age-associated TFs’ binding sites based on published binding motifs in form of

Positional Weight Matrix (PWM), using PWM-scan tool [53]. Allele-specific binding is said to

occur at a SNP when the putative TF binding predictions are significant (at least one

PWM-SCAN hit with the default cutoff setting using stage 2, which covers that SNP loci) in

exactly one of the two alleles. SNPs having allele-specific binding were additionally filtered

using tissue-specific DNase-seq broad peaks data (corresponding cell types from Roadmap

Epigenomics Project are listed in S5 Table) to retain only the accessible loci to test for TF-SNP

interactions.

Significant interaction detection

We modeled the association between the interaction (TF-SNP) and potential target gene

expression (within 1 Mb) as follows:

NULL model : gij

¼ ai þ b
1

i AGEj þ b
2

i SEXj þ b
3

i SNPj þ b
4

i
~TFj þ

X3

l¼1
b
lþ5

i Slj þ
Xn

k¼1
b
kþ8

i PEERðCFk
j Þ ð2Þ

Alternative Interaction model: gij

¼ ai þ b
1

i AGEj þ b
2

i SEXj þ b
3

i SNPj þ b
4

i
~TFj þ b

5

i SNPj �
~TFj þ

X3

l¼1
b
lþ5

i Slj

þ
Xn

k¼1
b
kþ8

i PEERðCFk
j Þ ð3Þ

Eq (2) is the null model, and Eq (3) is the alternative interaction model which includes the

additional interaction term between SNP and TF. Log-likelihood-ratio tests were performed to

evaluate the significance of interaction’s contribution to target gene expression. gij is the

expression of gene i in ith sample, αi is the basal expression and the intercept on y axis for gene

i. βi is the coefficient for covariates in the ith gene model. AGEj and SEXj are the age and sex

respectively for jth sample. SNPj is allele frequency for ith sample. ~TFj is adjusted concentra-

tion of TF which only includes age component (residuals after controlled for sex, covariates

derived from SNP profile and PEER factors that are not correlated with age) for jth sample.

The interaction term is denoted as SNPj �
~TFj. Sj is the covariate derived from SNPs for jth
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sample and PEERðCFk
j Þ is the kth PEER factor (hidden variable) derived over gene expression

profile for jth sample.

To select interactions consistent with our hypothesis and allele-specific TF binding predic-

tion, we performed further filtering: we divided individuals into three categories: heterozygous

(one binding and one non-binding allele), homozygous for binding allele, homozygous for

non-binding allele. We retained the interactions only if the correlations between TF expression

and target gene expression are significant for heterozygous and ‘homozygous for binding

allele’ groups, but not for ‘homozygous for non-binding allele’ group. In addition, we require a

greater correlation in ‘homozygous for binding allele group’ than for heterozygous group.

Gene functional analysis

We performed functional analysis on target genes involved in significant interaction across 25

tissues using R package “GoStats” [54]. Then a TreeMap view is generated using Revigo pack-

age [55] for the GO terms that were enriched (FDR� 0.05) in at least 3 tissues.

Enrichment test for epigenomic signals

We extracted ~200 bps windows centered at SNP loci and mapped raw DNase-seq, ChIP-seq

signals for H3K27ac, H3K4me1, and H3K4me3 (corresponding cell types from Roadmap Epi-

genomics Project are listed in S5 Table) to those windows using “bedtools”. The average score

across all the base pairs within the window is taken as the signal score. One tailed Wilcoxon

test is performed to compare the signal score distributions between significant SNPs and other

tested SNPs.

Robustness test

We randomly under-sampled datasets (70%, 80%, 90%) to estimate the replication rate for

detected interactions and age-associated TF from the original dataset. The replicate rates were

compared with that from the background dataset.

DNase allelic imbalance test

We obtained 2–3 DNase-Seq samples (bam files after alignment listed in S6 Table) for each tis-

sue and performed variant calling for our detected SNPs using “samtools” [56]. We specifically

select heterozygous SNPs with at least 10 mapped reads. Then allelic imbalance score is esti-

mated as jlog2 number of reads from allele 1þ1e� 6

number of reads from allele 2þ1e� 6

� �
j. The background was sampled from a binomial dis-

tribution, which has the same read depth as the foreground and probabilities for observing

either allele is 0.5. We estimated the allele imbalance for both foreground and background,

then performed one tail Wilcoxon test to compare the two distributions.

Hypertension association analysis

We model the association between interactions and hypertension as follows:

The NULL model: Hypertension status ~ TF + SNP + confounding factors;

The interaction model: Hypertension status ~ TF + SNP + SNP×TF + confounding factors;

The confounding factors used here are the same as ones in the interaction detection step.

Log likelihood ratio test was performed to test whether detected SNP-TFs significantly contrib-

ute to hypertension. To reduce feature dimensionality, we performed PCA and took top 30

components to represent the information.
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CHIA-PET analysis

We obtained CHIA-Pet data from [15], which merged the CHIA-Pet data from 4 cell lines

(K562, Hela, Nb4 and MCF7). Then we quantified the support for spatial proximity for a

SNP-Gene pair using”bedtools”. To test the significance, we generate a background by select-

ing a random pair of SNP and target gene within 1M bp distance while controlling for the dis-

tance to match those for the foreground SNP-Gene pairs; for each pair of detected SNP and

target gene, we selected a random pair of SNP and gene with approximate distance (within

10% difference) as corresponding background). We then applied one-sided wilcoxon test to

compare the signal difference bwteen the foreground and the background.

Conservation analysis

We obtained PhastCons scores derived from multiple alignment across 100 species from

UCSC browser [57]. “bedtools” was used to calculate the mean PhastCons score across ~200

bps centered around detected SNPs or background. We used three different background sets:

random genome-wide SNPs, random SNPs that had passed DNase filtration, and tissue-spe-

cific eSNPs obtained from GTEx [23]. Wilcoxon test was used to compare the difference

between foreground and background.

Derived allele frequency

The variant calling files (VCF file) were obtained from 1000 genome consortium [34], then we

calculated the DAF (derived allele frequency) for both our detected SNPs and tissue specific

eSNPs from GTEx. Wilcoxon test was used to compare the difference.

Phenotype association analysis for detected SNPs

We obtained 299 race-specific SNPs [45] and GWAS-identified SNPs for 8 diseases (Alzhei-

mer’s diseases, breast cancer, colorectal cancer, lung cancer, cardiovascular diseases, coronary

disease, Immune response disease, Parkinson’s disease) [11,43].

We obtained a comprehensive published disease-tissue map to select potential causal tissues

for all the diseases involved in our study [44]. For each detected SNP in each corresponding tis-

sue, we calculated its distance to the closest phenotype-associated SNP. As a control, we applied

the same procedure to eSNPs (SNPs detected by eQTL models) previously reported by GTEx

[23]. One-sided Wilcoxon test was performed to compare the two distance distributions.

Supporting information

S1 Fig. Replication rates for under-sampling (70%, 80%, 90%) across 4 tissues (Robustness

analysis) for interactions and age-associated TFs. (A) bar plot depicting the replication rates

of interactions across 4 tissues. (B) bar plot depicting the replication rates of age-associated

TFs across 4 tissues. The y-axis represents the replicate rate (%) relative to the original data,

while x-axis denotes the tissues. The bars in four colors respectively represent the performance

for the 70%, 80%, 90% down sampling and randomly shuffled background data.

(TIF)

S2 Fig. Average conservation score for detected SNPs and random SNPs (without passing

DNase filtration) across tissues. The y-axis denotes the conservation score, while the x-axis

represents tissues. The green denotes the detection interaction relevant SNPs and the red

denotes random SNPs without passing DNase filtration.

(TIF)
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S3 Fig. Average conservation score for detected SNPs and random SNPs (after passing

DNase filtration) across tissues. The y-axis denotes the conservation score, while the x-axis

represents tissues. The green bar denotes the detection interaction relevant SNPs and the red

bar denotes random SNPs which passed DNase filtration.

(TIF)

S4 Fig. Average conservation score for detected SNPs and eSNPs across tissues. The y-axis

denotes the conservation score, while the x-axis represents tissues. The green bar denotes the

detection interaction relevant SNPs and the red bar denotes eSNPs.

(TIF)

S5 Fig. Enriched functions among the detected target genes. Enrichment analysis was done

independently in each tissue, and the tree-map view shows the GO terms that were enriched

(FDR� 5%) in at least three tissues.

(TIF)

S6 Fig. Age distribution across tissues. (A-Y) histograms depicting the age distribution in

each of the 25 tissues.

(TIF)

S7 Fig. Sex distribution across tissues. (A-Y) histograms depicting the sex distribution in

each of the 25 tissues.

(TIF)

S8 Fig. Race distribution across tissues. (A-Y) histograms depicting the race distribution in

each of the 25 tissues. For race, “1”: Asian, “2”: African American, “3”: white, “4”: American

Indian, “98”: Not Reported, “99”: Unknown.

(TIF)

S1 Table. The number of samples in each tissue.

(XLSX)

S2 Table. The number of detected SNP-TF interactions in the background.

(XLSX)

S3 Table. SNP-TF-Gene interaction triplets in each tissue.

(XLSX)

S4 Table. Minimum distance from our interaction SNPs (iSNP) to reported traits for the

eight diseases.

(XLSX)

S5 Table. The corresponding cell types in Roadmap Epigenomics Project for each of the 25

tissues.

(XLSX)

S6 Table. The DNase-seq bam files in ENCODE used for allelic imbalance test.

(XLSX)
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