
1ScientiFic RepoRtS |  (2018) 8:6808  | DOI:10.1038/s41598-018-25020-8

www.nature.com/scientificreports

Improved strategy for the curation 
and classification of kinases, 
with broad applicability to other 
eukaryotic protein groups
Andreas J. Stroehlein  , Neil D. Young & Robin B. Gasser

Despite the substantial amount of genomic and transcriptomic data available for a wide range of 
eukaryotic organisms, most genomes are still in a draft state and can have inaccurate gene predictions. 
To gain a sound understanding of the biology of an organism, it is crucial that inferred protein sequences 
are accurately identified and annotated. However, this can be challenging to achieve, particularly for 
organisms such as parasitic worms (helminths), as most gene prediction approaches do not account 
for substantial phylogenetic divergence from model organisms, such as Caenorhabditis elegans and 
Drosophila melanogaster, whose genomes are well-curated. In this paper, we describe a bioinformatic 
strategy for the curation of gene families and subsequent annotation of encoded proteins. This 
strategy relies on pairwise gene curation between at least two closely related species using genomic 
and transcriptomic data sets, and is built on recent work on kinase complements of parasitic worms. 
Here, we discuss salient technical aspects of this strategy and its implications for the curation of protein 
families more generally.

In the last decade, the number of available nucleotide data sets has increased substantially, enabled by major 
advances in sequencing technologies1–5. For these data to be useful biologically, they need to be represented by 
high-quality genomes and transcriptomes, which need to be annotated. Accurate annotation requires a relia-
ble and, preferably, automated procedure for the identification of genes and classification of inferred protein 
sequences. Although many software packages and tools have been developed for this purpose6, accurate anno-
tation remains a challenge, particularly for most eukaryotes7. Nevertheless, algorithms allow automatic searches 
and comparisons of biological sequences, as well as the identification of conserved patterns and/or domains8. 
Such algorithms have substantially increased the ability to infer the relatedness of sequences and predict their 
biological functions9,10.

Historically, the prediction of protein function and/or the classification of proteins have relied on sequence 
similarity searches against protein sequence databases using the Basic Local Alignment Search Tool (BLAST)11,12. 
In this context, sequences are often compared with those of model organisms (such as Caenorhabditis elegans and 
Drosophila melanogaster), for which experimental evidence of protein function is available. However, for organ-
isms that are genetically very distinct from model organisms, such comparisons often result in limited sequence 
similarity and inaccurate annotations13,14.

To address this limitation, stochastic models, such as hidden Markov models (HMMs) and position-specific 
scoring matrices (PSSMs), have been developed15–17. These models allow sensitive and specific searches for con-
served functional domains and have been implemented in many tools, including those employed to identify 
protein kinases18,19. HMMs are statistical descriptors of sequence similarity inferred from multiple sequence 
alignments (MSAs), and have been shown to be more sensitive and specific than local alignment-based methods 
for sequence searches and/or comparisons, such as BLAST20. However, most HMMs have been constructed using 
‘seed’ MSAs that poorly represent non-model organisms and, thus, might not be sensitive enough to detect diver-
gent but related sequences.
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In addition to challenges in identifying and annotating protein sequences, some gene prediction approaches 
can inaccurately infer gene models due to, for example, incomplete or fragmented genome assemblies21 or genes 
being located close to each other in the genome22,23. Incorrect predictions can have a substantial impact on sub-
sequent analyses. For example, the identification of a protein that is represented by an incorrect combination of 
two adjacent gene models (‘fusion’; Fig. 1) might fail, because the stochastic model (i.e. HMM or PSSM) built to 
detect a characteristic protein domain yields a low-confidence score. Similarly, for a sequence correctly identified 
based on a conserved domain, incorrectly predicted N- or C-terminal regions might lead to a misclassification, or 
preclude a classification based on sequence similarity. Importantly, inaccurate nucleotide and/or protein sequence 
data can lead to errors in the annotation of biological pathways24 and in analyses of differential expression25.

To assess the accuracies of gene predictions and functional annotation of protein sequences achieved by 
‘best-practice’ bioinformatic pipelines6, we recently investigated the protein kinase complements (kinomes) of 
a range of parasitic worms (helminths, including flatworms and roundworms)26–29 for which genomes and tran-
scriptomes are available. Despite the expansion of such data sets for parasitic worms30 and the importance of pro-
tein kinases in a plethora of key biochemical signalling pathways31–33, very little is known about protein kinases 
encoded in these genomes and their functions. Fortunately, protein kinases contain a well-conserved catalytic 
domain whose sequence and biochemical mechanisms have been studied extensively in most model organisms, 
such as Saccharomyces cerevisiae34, Homo sapiens35, C. elegans and D. melanogaster31. The wealth of curated liter-
ature and data on kinases can be harnessed to curate respective genes, and to characterise kinomes of parasites.

Elucidating kinomes of parasites will provide new insights into the biology of these unique organisms. In this 
context, the biological and phylogenetic differences between parasitic eukaryotic organisms and well-studied 
free-living model eukaryotes can provide clues regarding the evolution of parasitism. In addition, protein kinases 
have also been extensively investigated as drug targets for human diseases, such as cancers, and are amenable to 
targeting by small molecule drugs36–38, providing promising avenues for the control of parasitic worms39–41. Taken 
together, there is a need to establish an approach for the accurate annotation of protein kinases of parasitic worms.

Several tools and resources for the identification and classification of protein kinases are available, including the 
programs Kinomer18 and Kinannote19. These tools rely on a set of kinase-specific HMMs, PSSMs and/or BLAST 
searches against curated kinase databases. For instance, Kinannote takes approximately five minutes to run on a 
protein data set of 10,000–15,000 sequences and is fully automated. Furthermore, it produces a draft kinome and 
comparative statistics of the analysed kinome, and is the only tool that automatically classifies protein kinases 
(including some atypical kinases) using the currently recognised classification scheme for these enzymes42.

However, there are challenges associated with the use of such tools. Firstly, automated protein identification and 
classification rely on the use of evidence from either protein domain annotation or sequence comparison; decisions 
based on such evidence are sometimes made in a ‘black box’, without the user being able to assess intermediate 
results or adapt the workflow to individual requirements (e.g., cut-off scores or the use of specialised models/data-
bases). Secondly, the models employed to identify and classify sequences often do not include or consider divergent 
sequences (e.g., those of helminth species), thus hampering reliable detection. Additionally, most protein identi-
fication/classification tools accept protein sequence data as input, but do not permit the use of RNA-sequencing 
(RNA-Seq) evidence or genomic data, which could aid in the curation process. Inaccurate in silico gene predictions 
from draft genomes will preclude the accurate identification and classification of protein kinase sequences.

Thus, none of presently available tools achieves a comprehensive curation of a kinome. Furthermore, cur-
rent tools do not adequately consider the fragmentation of draft genomes and the substantial kinome diversity 
between, for instance, the well-curated model organism C. elegans43 and other, distantly related worms - this rep-
resents a challenge, both for the identification and the classification of protein kinase sequences in these genomes. 
Moreover, none of the currently available tools provides outputs that allow for the detailed, semi- or fully auto-
mated curation of nucleotide/amino acid sequences inferred from draft genomes. These limitations show that 
these tools are not universally applicable to kinomes of eukaryotes.

Figure 1. A protein sequence that was incorrectly inferred from an erroneous gene prediction (M514_09783) 
in the draft gene set of the Trichuris suis genome (adult female; PRJNA208416). (A) Amino acid domain 
architecture (based on InterProScan46) of the inferred “protein kinase/CAP” fusion protein, containing 
domains typical of protein kinases (“SH2 domain”; blue; IPR000980 and “protein kinase domain”; orange-
brown; IPR000719) and a CAP domain (light brown; IPR014044). (B) Original gene model for M514_09783 
on scaffold71 (accession number: KL367486) of the genome assembly of T. suis (top); exons are displayed as 
thick blue boxes, introns as blue lines and the 5′ untranslated region as a thin blue box. Eight transcripts (de 
novo-assembled from publicly available RNA-Seq data) are mapped to scaffold71 in this region (below), refuting 
the original gene prediction and providing evidence for two independent gene models. The longest transcript 
isoforms represent the curated gene models and are indicated by asterisks.



www.nature.com/scientificreports/

3ScientiFic RepoRtS |  (2018) 8:6808  | DOI:10.1038/s41598-018-25020-8

Here, we describe a strategy for the curation of gene models and subsequent annotation of inferred pro-
tein sequences for protein families of non-model organisms, based on recent studies of kinase genes of parasitic 
organisms. This strategy is continually being improved to tackle some of the inherent challenges in analysing 
different genomic and transcriptomic data sets.

Curation and annotation strategy
Defining and curating gene families. The gene curation strategy integrates draft genomic and/or tran-
scriptomic data from two or more species, and is divided into five distinct steps (Fig. 2):

Identification of candidate sequences based on characteristic functional domains. First, all amino acid sequences 
(encoded within a draft genome) that contain one or more conserved functional domains characteristic of a 
particular protein (super-)family (e.g., the catalytic domain representing protein kinases), are identified employ-
ing information from domain matches against the databases Pfam v.27.0 (ref.20), PANTHER v.9.0 (ref.44) and 
SUPERFAMILY v.1.75 (ref.45) within the program InterProScan v.5.15.54 (ref.46). As this first step identifies can-
didate sequences, stringent cut-off values (e.g., E-value of ≤10−5) are not applied to not miss related but divergent 
sequences. Importantly, accessory domains that are commonly found in this protein family are also considered 
as candidate sequences. For example, in the case of protein kinases, sequences that lack a conserved kinase cata-
lytic domain but contain one or more SH2 domains (accessory domain/s commonly present in tyrosine kinases) 
might represent fragments of a protein kinase sequence. Such fragments can be highly informative and essential 

Figure 2. A strategy for pairwise gene curation, kinase identification, classification and functional annotation. 
Orange boxes represent input data, green boxes represent output data and grey boxes specify individual 
steps, with employed programs and references given in brackets for each step. Essential steps in this workflow 
are marked with an asterisk (left); the five individual gene curation steps (1 to 5). Following this workflow, 
the output data can be employed as input for subsequent analyses such as pathway annotation, drug target 
prediction/prioritisation and/or the analysis of transcription profiles of kinase genes.
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for curating a final gene model. Accordingly, every sequence identified that contains at least one characteristic 
conserved domain represents a ‘seed’ that can be extended N- and C-terminally in subsequent steps, thus com-
plementing the underlying draft gene model. Additionally, to provide a reference data set, sequences in databases 
representing the investigated protein family are interrogated in the same way. For studies of kinases, we use all 
domain combinations present in curated protein kinase complements (i.e. those deposited in the KinBase data-
base; http://www.kinase.com/kinbase/) and new domain architectures as they become available. We also include 
subsets of the identified domains as candidates, reasoning that they might represent sequence fragments that can 
be joined into a complete gene model during the curation process.

Mapping and reassembly of ‘seed’ transcripts. If de novo-assembled transcripts (i.e. assembled using RNA-Seq 
reads, independent of a reference genome) are available, all transcripts are mapped to genomic scaffolds using 
the program BLAT v.34 × 12 (ref.47). Then, all mapped transcripts overlapping with a region to which at least 
one candidate ‘seed’ transcript has been mapped are reassembled using CAP3 (build 15 Oct 2007)48. The longest, 
reassembled transcript sequence containing an open reading frame (ORF) is then selected for the subsequent 
re-prediction of its gene model.

Mapping transcripts to related genome sequences and defining pairwise orthologs. Both transcripts identified 
from existing gene sets and extended, reassembled transcripts are mapped to a genome sequence of a phylogenet-
ically closely related species. In this context, it is important to carefully select the related species, and ensure that 
high-quality genomic and transcriptomic data are available. On one hand, the selection of two, phylogenetically 
divergent species might lead to a lack of comparative genomic and transcriptomic evidence needed for curation. 
On the other hand, two closely related species might not add any complementary information to the re-prediction 
process. Based on this mapping step, the most closely related ortholog in the related species can be identified, 
forming pairs of sequences for subsequent curation. The pairwise orthology is then confirmed using tools such as 
OrthoMCL v.2.0.4 (ref.49) or an all-against-all pairwise global alignment (e.g., EMBOSS Needle v.6.3.1)50.

Reciprocal re-prediction of gene models. The “coding2genome” model in the program Exonerate v.2.2.0 (ref.51) 
is used to define gene structures (i.e. intron-exon boundaries) based on mapped transcripts encoding candidate 
proteins. This step is then reciprocally iterated between the two genomes, being compared until an optimal gene 
prediction is achieved for pairs of orthologs in both genomes (i.e. the prediction converges).

Quality assessment and output. Curated gene models are assessed for an ORF using the program getorf (within 
the EMBOSS package v.6.4.0.0)50. Additionally, mapped transcriptomic reads can be used to confirm that 
intron-exon boundaries have been correctly identified for the curated gene models (e.g., using Sashimi plots; 
Fig. 3). Next, candidates with insufficient or inconclusive domain evidence are discarded. A length cut-off can be 
applied, if a particular gene/protein family is known to have a minimum length. For example, for protein kinases 
we choose a minimum length cut-off of 200 amino acids. Sequences that do not fulfil these criteria can either be 
excluded from further analyses or labelled as fragments. Then, the final curated gene sets and their genomic loci 
are reported in a “general feature format” (GFF) file for each investigated genome data set.

Classification and functional annotation. For protein kinase classification, we employ a sequence sim-
ilarity (BLAST) search against KinBase within Kinannote. Additionally, for sequences not (fully) classified by 
Kinannote, we use OrthoMCL (BLAST E-value of ≤10−5; sequence similarity of ≥80%) to cluster sequences from 
the species being studied, C. elegans and H. sapiens, and subsequently infer classification based on the annota-
tion of the curated sequences in the latter two species27,28. Sequences that cannot be categorised using these two 
approaches are classified based on the presence and order of functional domains and/or signatures (“domain 
architecture”) as determined by InterProScan. However, the family/subfamily-specific HMMs within the Pfam, 
PANTHER and/or SUPERFAMILY databases employed for this task are not always representative of the diversity 
across the Tree of Life52, being built based on a relatively small number of well-characterised sequences. Thus, we 
employ specialised models built specifically for the classification of particular protein families26,53,54, which are 
more sensitive for selected taxa than related models in established databases.

In addition to sequence-based classification, we employ three-dimensional structural modelling of unclas-
sified sequences using solved crystal structures deposited in the Protein Data Bank (PDB; http://www.rcsb.
org/pdb/), and by employing the program I-TASSER v.4.4 (ref.55) for de novo predictions. Stringent cut-offs are 

Figure 3. Example of a Sashimi plot (red). Depicted are the coverage of mapped RNA-Seq reads and the 
number of paired-end reads supporting intron-exon boundaries for a gene model (blue).

http://www.kinase.com/kinbase/
http://www.rcsb.org/pdb/
http://www.rcsb.org/pdb/
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applied (similar to an E-value cut-off for sequence similarity-based annotation approaches) to ensure high confi-
dence structural predictions and associated classifications. For example, for kinase classification, we only consider 
the structurally most similar entry in the PDB and apply cut-offs for template modelling (TM) scores (≥0.75), 
confidence (C) scores (>0) and root-mean-square deviation (RMSD) values (<3 Å).

Following classification, functional annotation is achieved by assigning domain identifiers and gene ontology 
(GO) terms to sequences and by linking them to biochemical pathways based on similarity (employing pro-
tein BLAST v.2.2.28+; E-value of ≤10−5; ref.12) to sequences in the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database56. The predicted subcellular localisation of proteins is inferred using the program MultiLoc2 
(ref.57), applying a conservative cut-off of ≥0.8 for the confidence score. Additionally, transcription analysis in 
particular developmental stages or different tissues can aid functional annotation. However, as the present article 
focuses on sequence- and structure-based annotation, we refer the reader to two recent publications27,29 for more 
information on transcription analysis as a tool for annotation.

Confirming classification and pairwise orthology. The inferred classification and pairwise orthology 
of sequences from different species are confirmed by phylogenetic analysis28 employing the program Mr. Bayes 
v.3.2.2 (ref.58). In this context, it is important to carefully select the part of the sequences that should be used for 
the construction of MSAs underlying the phylogenetic trees. For example, to achieve robust trees (i.e. with high 
nodal support values), in kinase studies, we only use the catalytic domains of protein kinases and analyse all nine 
recognised kinase groups independently.

Discussion of experiences made while establishing the curation strategy
Improved and automated gene family curation. The applicability, robustness and usefulness of the 
established curation strategy described here is exemplified by several recent studies that have curated the gene 
models encoding protein kinases in the genomes of some key parasitic worms (including species of Haemonchus, 
Trichinella, Trichuris and Schistosoma), and classified and functionally annotated the kinomes of these worms26–29.

Some published tools/strategies follow similar approaches. For example, a recent study25 also employed a 
reciprocal re-annotation approach of genes using Exonerate to improve gene models for subsequent differen-
tial expression analysis. The tool OrthoFiller59 employs HMMs, built from clusters of orthologous proteins, to 
improve gene predictions in draft genomes. Additionally, the program GeneValidator60 automatically identifies 
erroneous gene models in existing draft genomes and tags them for subsequent manual curation. Similarly, the 
database MisPred61 utilises deviations in domain size and architecture and a range of other sequence character-
istics to detect incorrect gene models and infers proteins in public databases for 19 metazoan ‘model’ organisms. 
Subsequently, the FixPred pipeline62 attempts to correct sequences identified by MisPred via database searches, 
reassembly of fragments/RNA sequences or de novo re-prediction of a gene model. Other approaches improve de 
novo63 and reference-guided64 transcriptome assemblies by combining the outputs of multiple different assembly 
approaches, thus achieving improved assembly metrics and reducing the number of fragmented and/or incor-
rectly fused transcripts sequences.

We have introduced several additional steps to achieve improved gene prediction. For example, the use of 
extensive transcriptomic data sets allowed for the application of an improved gene re-prediction approach. 
Additionally, the automated re-assembly of de novo-assembled transcripts mapped to the genomic scaffolds 
(using CAP3) and subsequent inference of ORFs accelerated the detection and correction of erroneous gene 
predictions, and the confirmation of correct ones. However, this approach relied on the availability of exten-
sive RNA-Seq data. In cases where such data were not available or were of insufficient quality/quantity, the 
re-prediction of gene models was achieved by transferring re-assembled, high-confidence gene models from one 
species to a closely related one27.

In addition to re-predicting gene models based on re-assembly of transcriptomic data, the location of genes 
on genomic scaffolds allowed the inference of a range of other key features that were used in the curation and/
or annotation process. For example, information about intergenic distances and the completeness of protein 
domains encoded by adjacent genes was employed to complement fragmented genes and curate incorrect splice 
sites that were introduced during gene prediction and/or scaffold assembly. Furthermore, analysing predicted 
functional domains and comparing them with known architectures of functional domains in multiple organisms 
helped to identify and curate fragmented and/or incorrectly assembled genes.

Employing this approach for the curation of worm kinomes, the considered selection of two species for pair-
wise curation and the use of additional, independent data sets (e.g., those created employing distinct methodolo-
gies) allowed ‘consensus’ gene models to be created from all data sets. Using this strategy, we have overcome some 
of the challenges inherent to draft genome assemblies and inferred high-confidence gene models.

Manual curation. In addition to advances in the automated re-prediction of gene models, manual and/or 
semi-automated curation of the associated genomic and transcriptomic data was carried out to confirm correct 
gene predictions. To this end, a genomic viewer such as the Integrative Genomics Viewer (IGV)65 was an indis-
pensable tool for the simultaneous display of gene models, genomic locations and complementary data, including 
functional domains, RNA-Seq support and de novo-assembled transcripts (Fig. 4).

In our experience, manual curation helped identify ‘hotspots’ of potentially incorrect predictions, such as 
mis-assembled genes. For example, the gene prediction software originally employed in the genome projects 
(MAKER2; ref.66) tended to splice two or more genes with short intergenic distances to each other, to produce 
a single gene model, when, in fact, they represented separate genes (Fig. 1). This phenomenon might have been 
caused by the compactness of worm genomes, which contain small intergenic regions and overlapping genes67–69. 
In our experience, the use of IGV, de novo-assembled transcripts and mapped paired-end RNA-Seq reads could 
refute or support such gene predictions (Figs 1,3 and 4)27,28; gene models were suggestive of being incorrect if no 
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de novo-assembled transcript spanned the entire length of the predicted gene and if mapped paired-end reads 
did not support (i.e. span) intronic regions. In contrast, most other gene models were automatically confirmed 
either using transcriptomic evidence for the same species or, employing our automated curation strategy, based 
on transcripts assembled for closely related species.

Curated gene models enable enhanced classification and functional annotation. Gene curation 
represents a critical component of any annotation workflow, because all subsequent identification, classification 
and annotation steps rely on the quality of the underlying gene prediction. To achieve reliable protein annotation 
at the primary sequence and structural levels, a gene needs to have transcriptomic support, an accurate genomic 
location and an ORF. The curation strategy presented here provides the basis for high-confidence protein anno-
tation, which, in our studies, was achieved using Kinannote and an orthology-/phylogeny-based approach26–28.

The pairwise comparison approach applied for gene-level (i.e. protein-coding sequence) curation allowed 
an iterative refinement of protein classification and functional annotation through cross-validation of genomic 
and transcriptomic data with the inferred protein sequences. For every prediction, a consensus was based on the 
evidence from RNA-Seq data, de novo-assembled transcriptomes, predicted protein domains and their archi-
tecture, genomic assemblies and gene predictions from published gene sets. These data were collated for two 
relatively closely related species and, in some cases, for multiple data sets representing the same species27 to add 
additional confidence to predictions. Importantly, the semi-automated analysis of domain architectures helped 
identify putative fusions (i.e. co-occurrence in the same protein sequence) of domains that do not occur together 
in other kinase sequences within the InterPro database27,28. Such ‘fusions’ were indicative of an erroneously 
assembled gene sequence, and required critical assessment at the genomic and transcriptomic sequence level to 
either support (based on RNA-Seq evidence) or refute the predicted model. This proved useful for the correction 
and complementation of erroneous gene predictions. Taken together, the integration of the different data types 
resulted in consensus gene predictions that enabled the inference and classification of protein sequences with 
high confidence.

For kinase sequences from species that were not accurately represented by the HMMs available in public data-
bases, we built sensitive, taxon-specific kinase HMMs to account for sequence diversity among species26. However, 
such an approach might ‘overfit’ the stochastic model to a particular organism, thus losing general specificity for 
a wide range of protein kinases from other species. Accordingly, curated kinase sequences of worms should be 
added to the protein kinase HMMs in Pfam, thus building improved models that are more sensitive to phylogenetic 
distant kinase sequences, while retaining specificity. In this context, it might also be useful to integrate a recently 
established BLAST-based taxon sampling approach to identify more distantly related (‘hidden’) orthologs52.

In previous studies27,28, we identified kinase sequences that were phylogenetically distinct from those in 
recognised families or subfamilies by grouping the predicted catalytic domains of unclassified kinases into ort-
hologous clusters and subsequently constructing phylogenetic trees. Such analyses elucidated the phylogenetic 
relationship between recognised families and novel, species-specific families that were not detected by tools such 
as Kinannote. A comparison between the annotation by Kinannote and that of the orthology/phylogeny-based 
approach revealed kinase sequences that were specific to a phylogenetic branch or even a single genus/species. 

Figure 4. A typical window in the Integrative Genomics Viewer (IGV) software65. Displayed are a 2784 base 
pair (bp) section of scaffold7 of the Trichuris suis genome (adult female; PRJNA208416), an original gene 
prediction (M514_01298), a mapped de novo-assembled transcript representing the curated gene model 
(feature_scaffold7_4), mapped functional domain annotations (PTHR10593, SSF46785, SSF56112, PF09202, 
PF01163) inferred using InterProScan46, and mapped paired-end RNA-Seq reads.
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This approach provided important information about the evolution of protein kinase families/subfamilies 
and about the potential function of novel kinases. By using a combination of a controlled vocabulary and an 
orthology-/phylogeny-based approach, most sequences that have diverged from their non-helminth orthologs 
were automatically assigned to the recognised groups, families and subfamilies.

In addition, the classification of sequences based on functional domain architectures enabled (sub-)grouping 
of kinases based on the presence and order of functional domains. To date, this approach has been applied solely 
to the classification of protein kinases. To extend the use of this approach to any protein family, the entire InterPro 
database would have to be processed in a similar manner. The online version of InterProScan IDA tool allows 
searches for single architectures but does not permit batch queries for entire proteomes. Furthermore, a locally 
installed, stand-alone version of the IDA tool is currently not available or planned (InterProScan staff, personal 
communication). Such a tool would allow searching for sequences with the same or similar domain architec-
ture in a high-throughput manner, thus facilitating the exploration of gains or losses of functional domains in 
sequences across different phylogenetic taxa.

Lastly, the integration of three-dimensional modelling data enriched the annotation of protein sequences, 
beyond what would have been possible using primary sequence- and sequence domain-based approaches. For 
example, in two recent kinome studies27,28, this approach facilitated the reliable annotation and classification of a 
previously uncharacterised kinase in four species of roundworm (phylum Nematoda) within the class Enoplea.

Taken together, the combination of a pairwise reciprocal curation approach, Kinannote, an orthology-/
phylogeny-based classification, a domain-based curation and annotation strategy and three-dimensional mod-
elling underpins our improved strategy for the characterisation of kinases and addresses salient limitations of 
other tools presently available (e.g., Kinomer18 and Kinannote19). Importantly, although applied to kinases, our 
practical and transparent strategy should be broadly applicable to the comprehensive annotation of most other 
protein families.

Implications of improved gene curation strategies and updated biological sequence data-
bases. The improvement or correction of gene predictions represents an important component of any genome 
project, and has a substantial impact on subsequent analyses of genomic and transcriptomic data sets. Without 
iterative cycles of curation of existing genomic and transcriptomic resources, incomplete or incorrect gene pre-
dictions for a genome deposited in public repositories will most likely be perpetuated, as data will be utilised as 
protein evidence (e.g., in the MAKER2 pipeline7,66) for de novo gene predictions (i.e., those lacking RNA-Seq sup-
port) in genome projects of related species. This issue emphasises the need for improved gene prediction software 
(e.g., the recently released MAKER3 pipeline; v. 3.00.0-beta; http://www.yandell-lab.org/software/maker.html), 
for the comprehensive curation of erroneous gene predictions (either by individual curators or through research 
community efforts70,71) and importantly, for the integration of curated data into existing repositories.

To enable the integration of data produced using the present strategy, we have provided coding sequences, 
amino acid sequences and genome locations for all curated kinome data sets. In addition, we have automatically 
created output files in GFF format; this format can be read by most genomic viewers/editors, such as IGV65 or 
Web Apollo72, and allows gene-level annotations to be interactively viewed and edited, and published draft gene 
sets to be updated in online repositories. The use of an established, generic output format, such as GFF, represents 
a major advantage over other tools for protein family identification and classification.

The use of a genomic viewer has also facilitated the iterative improvement of the present strategy. Once a new 
method or functionality was implemented, its performance needed to be assessed by simulating common ‘use 
cases’ or ‘edge cases’ (i.e. cases that occur rarely but when they occur, are likely to cause the program/algorithm 
to fail or not perform satisfactorily). This systematic evaluation was aided by manual confirmation of represent-
ative gene/transcript features (‘spot checking’) via a genomic viewer, and helped confirm the satisfactory perfor-
mance of the implementation. Such assessments of newly implemented, automated methods identified aspects 
that might be improved and/or further automated in the future.

For example, the prediction/correction of gene models based on transcript data employing CAP3 and 
Exonerate51 was established in an earlier investigation28 and then automated and further improved in a subse-
quent study27. This improvement included an automated, global analysis of donor and acceptor sites of introns, 
which was then integrated into the gene prediction process in Exonerate, thus improving the accuracy of 
intron-exon boundary predictions. Although we employed Exonerate to re-predict gene models initially26, we 
carried out multiple individual runs of single genes that needed to be complemented based on manual inspection. 
These examples show how the curation and annotation strategy was successively adapted to tackle the technical 
challenges of multiple, distinct data sets, particularly with respect to the quality and amount of data available. The 
continuous growth of publicly available data sets and data repositories should enable the integration of additional 
data in the future, and highlights the need for reliable and reproducible gene prediction/annotation workflows 
that are able to process and analyse such data sets.

Taken together, manual curation and systematic assessment of gene models informed the automation process. 
In this context, it is important to carefully consider the benefit gained from automating a particular step versus 
the time spent implementing the automation, and the accuracy and speed of the automated method versus that 
achieved by manual curation. It is also important to consider the size of the data set that is to be curated. For 
example, protein kinases represent a relatively small and well-defined data set (~200–500 sequences) compared 
with other assemblages of proteins (e.g., all proteins that play a role in metabolic pathways; likely thousands), 
which allowed for the application of additional, manual curation efforts. Generally, automated steps should 
only be included in the next iteration of a tool or pipeline if they can be achieved without a loss of accuracy. 
Importantly, our focus has been to automate steps that, although being algorithmically less challenging (e.g., file 
format conversions or output-input transformations), often represent steps in a workflow that are most prone 
to human error. In contrast, other steps proved harder to automate and were more reliable if implemented in 

http://www.yandell-lab.org/software/maker.html
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a semi-automated manner, with guidance/intervention by an expert. This approach did not affect the ability to 
process the input in a computer-readable format and allowed decisions to be made and stored for future analyses, 
achieving a near-optimal or optimal solution after multiple iterations.

Future focus and improvements of the established strategy. The integration of new types of data 
sets created using new technologies should allow improvements and expansions to the curation and annota-
tion approach established. For example, recent advances in long-read sequencing technologies73,74 should resolve 
genomic regions that could not be assembled previously using short-read technologies, thus significantly reduc-
ing the need for sequence curation. More contiguous assemblies would allow for improved identification, classi-
fication and functional annotation of inferred protein sequences.

Other improvements in functional annotation could also be achieved by employing a systems biology 
approach, integrating transcriptomic, proteomic and metabolomic data into the annotation process. For instance, 
information on pathways, essentiality and excretory/secretory (ES) proteins inferred from proteomic and metab-
olomic data sets could be integrated into the workflow, to add further experimental evidence to the computational 
predictions. However, the new, diverse and large data sets produced would need to be integrated into the existing 
data. Thus, experimental investigations should be followed by technical improvements and extensions. The estab-
lishment of a flexible, user-friendly and expandable platform that would facilitate the integration of such data sets 
would be desirable. Clearly, the present strategy provides a solid framework for further technical developments 
in this direction.

Other possible expansions include improvements of the speed, accuracy and/or efficiency of currently applied 
methods. For example, the functionality of the kinase-specific InterPro Domain Architecture (IDA) search tool, 
which has been established and employed in recent studies27,28 (Fig. 2), could be expanded to include all domain 
architectures represented in the InterPro database.

Furthermore, for all steps that employ HMM searches against sequence databases (including those carried out 
in InterProScan and specialised classification tools), there is also potential to increase search speed, sensitivity 
and accuracy by replacing the current search strategy with “HMM versus HMM” alignments (as implemented in 
the program HHblits75). However, such an expansion would require an adaptation of all third-party tools and the 
construction of customised databases of query sequence data sets (e.g., parasite proteomes) for use with HHblits. 
Given that “sequence versus HMM” searches perform very well for protein kinase catalytic domains, an upgrade 
to a “HMM versus HMM” alignment-based method might be considered when applying the present strategy to 
other protein families in the future.

In contrast, the structural prediction using I-TASSER could be readily automated and scaled to allow 
high-throughput analyses. The challenge here would be the requirement for substantial computing infrastructure 
and time. For example, computations of inferred kinase structures were run on an IBM iDataplex x86 system 
containing 67 nodes with 256 GB RAM and 16 cores per node (https://www.melbournebioinformatics.org.au/
capabilities/), which led to a restriction of this approach to a subset of kinases27,28.

Taken together, our current strategy employs third-party tools including InterProScan, OrthoMCL, BLAT, 
CAP3, Exonerate, hmmalign76, MrBayes, Kinannote and I-TASSER (Fig. 2) and scripts developed by us (written in 
the programming languages Perl, bash and R; available from https://github.com/vetscience/kinase-gene-curation) 
that must be run in succession by the user, which requires relatively advanced bioinformatic skills. The major 
advantage of a workflow that is separated into multiple well-defined steps, is that it provides flexibility that could 
not easily be achieved using a more restrictive (i.e. allowing for less interaction and decision-making by the user), 
stand-alone version. Given that genomic and transcriptomic data sets of parasitic organisms are often highly 
diverse and that each project requires a careful assessment of data and subsequent selection of analysis strategies, 
an interactive, stepwise workflow represents a considerable advantage. To retain this flexibility and simultane-
ously create a more user-friendly application, a framework that allows the modularisation of individual steps 
into compatible and interchangeable components could be developed in the future. For instance, the module for 
kinase annotation could then simply be replaced with a module designed for a different protein group or family.

This extension might readily be achieved for well-defined enzyme classes such as phosphatases77; other less 
well-understood and studied classes might be more challenging. For instance, proteins of the cysteine-rich secre-
tory proteins/antigen 5/pathogenesis-related 1 (CAP) superfamily (also called SCP/TAPS proteins)78,79 form an 
assembly of very diverse proteins with different domain architectures, which bears challenges regarding the func-
tional annotation and classification of members of this superfamily79. For such a complex group of proteins, a 
library of subfamily-specific HMMs could be built based on functional domain architectures, as employed pre-
viously for atypical protein kinase families and subfamilies27,28. A module representing such a library could then 
be integrated into the established strategy. Taken together, we believe that the approach that we have established 
should be broadly applicable to a wide range of protein families.

Conclusions
The bioinformatic strategy described and discussed here achieves comprehensive curation of kinase gene families 
and reliable annotation of the proteins that they encode, providing a powerful platform to explore the fundamen-
tal kinase biology of eukaryotic organisms and evolutionary relationships. Establishing a modular, robust and 
reproducible workflow that is generally applicable to the analysis of a wide range of protein families, from any 
organism, will likely be a useful tool to support systems biological investigations.

Data availability. All computer code and data associated with this work is available from https://github.com/
vetscience/kinase-gene-curation.

https://www.melbournebioinformatics.org.au/capabilities/
https://www.melbournebioinformatics.org.au/capabilities/
https://github.com/vetscience/kinase-gene-curation
https://github.com/vetscience/kinase-gene-curation
https://github.com/vetscience/kinase-gene-curation
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