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Abstract: Glioblastoma multiforme is the most lethal intrinsic brain tumor. Even with the exist-
ing treatment regimen of surgery, radiation, and chemotherapy, the median survival time is only
15–23 months. The invasive nature of this tumor makes its complete removal very difficult, leading
to a high recurrence rate of over 90%. Drug delivery to glioblastoma is challenging because of the
molecular and cellular heterogeneity of the tumor, its infiltrative nature, and the blood–brain barrier.
Understanding the critical characteristics that restrict drug delivery to the tumor is necessary to
develop platforms for the enhanced delivery of effective treatments. In this review, we address the
impact of tumor invasion, the molecular and cellular heterogeneity of the tumor, and the blood–brain
barrier on the delivery and distribution of drugs using potential therapeutic delivery options such
as convection-enhanced delivery, controlled release systems, nanomaterial systems, peptide-based
systems, and focused ultrasound.

Keywords: glioblastoma; brain tumor; drug delivery

1. Introduction

Glioblastoma multiforme (GBM) is the most common primary brain malignancy in
adults, accounting for more than 50% of intrinsic brain tumors [1]. According to the World
Health Organization (WHO) classification, GBM is a grade IV glioma, highly invasive with
a five-year survival rate of less than 5% [2,3]. This highly aggressive disease presents a very
poor prognosis. The median survival time from diagnosis of the tumor is approximately
15–23 months. The incidence of GBM is 3.19 per 100,000 persons in the United States with a
median age of 64 years [4–8].

Widely recognized risk factors associated with GBM occurrence are exposure to high-
dose ionizing radiation and certain genetic syndromes, including neurofibromatosis type 1
and Li-Fraumeni syndrome [2,9,10]. The occurrence of GBM is higher in males and among
individuals 50 years of age and older [5].

GBM is characterized by rapid cell proliferation and extensive invasion of tumor cells
into the surrounding brain, making complete removal of the tumor impossible [11]. These
features lead to a high recurrence rate, even with the current treatment regimen of maximum
safe surgical removal, radiation therapy and temozolomide chemotherapy. Intratumoral
molecular heterogeneity, presence of the blood–brain barrier, and tumor immune evasion
via local immunosuppression limits the success of existing therapies [12]. Numerous drug
therapies directed against GBM have shown promising results in in vitro assays, but all
have had limited success in vivo. This is due in part to the diffuse, heterogeneous nature of
the tumor, and the blood–brain barrier that limits the ability of many drugs to enter the
brain parenchyma. Understanding the critical factors that restrict drug delivery to the brain
is necessary to develop platforms for the enhanced delivery of effective drugs.

In this review, we discuss the impact that molecular and cellular tumor heterogene-
ity, tumor dispersion and the blood–brain barrier have on the delivery and distribution
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of pharmacological agents to GBM. The currently available chemotherapeutic delivery
systems designed to overcome these constraints are also discussed (Figure 1). We will
focus on the use of convection-enhanced delivery, controlled release systems, nanomaterial
systems, peptide-based therapeutics and focused ultrasound (FUS) for the treatment of this
aggressive tumor.
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1.1. Molecular Heterogeneity

GBM is characterized by molecular heterogeneity within a single tumor in addition to
inter-patient heterogeneity. Molecular heterogeneity underlies the cellular heterogeneity
in GBM, i.e., the differences between cell types within a tumor [13]. This molecular het-
erogeneity may be responsible for differences in individual patient responses to therapy
and prognosis as well as the failure of targeted therapies [14,15]. Common gene muta-
tions include IDH1/2 mutations, O6-methylguanine DNA methyltransferase (MGMT)
promoter methylation, co-deletion of 1p and 19q, and EGFR amplification/truncation. Pri-
mary GBM frequently exhibits epidermal growth factor receptor (EGFR) over expression,
PTEN (MMC-I) mutation or deletion, CDKN2A (p16) deletion, and MDM2 amplification.
Secondary GBM predominantly has IDH1, ATRX and TP53 mutations [16]. Based on
differences in genetic alterations and the expression of EGFR, NF1, PDGFRA/IDH1, PI3K
and other key genes, primary GBM can be classified into four subtypes: proneural, neural,
classical, and mesenchymal, with each subtype varying in its gene expression signature [17].
Secondary GBMs predominantly have IDH1 (or less commonly IDH2) mutations that have
a proneural gene expression signature and a better prognosis than GBMs with wild-type
IDH1/IDH2.

In addition to the molecular heterogeneity described above, GBM cells are morpholog-
ically and functionally heterogeneous. Single-cell RNA-Seq studies of individual tumor
cells have revealed that GBM tumor cells exist in multiple stages of differentiation [18].
Other studies have shown that astrocyte-like GBM cells can transdifferentiate to become
endothelial-like cells [19,20]. As a result of this extraordinary cellular heterogeneity, in-
dividual GBM cells may be more or less replicative, invasive, or sensitive to radiation or
chemotherapy [21].
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1.2. Blood–Brain Barrier

The blood–brain barrier is composed of a highly specialized circuit of blood vessels
that are lined by brain microvascular endothelial cells (BMEC), the cell–cell junctions be-
tween which restrict the entry of potentially harmful substances (including systemically
administered therapeutics) into the brain. The BMECs are surrounded by pericytes, astro-
cytes and the basal membrane [22,23]. This is indeed a protective layer safeguarding the
brain from damaging agents in the systemic circulation and keeping CNS homeostasis to
allow proper neuronal function [24]. The two major features of the blood–brain barrier
are: (1) the presence of tight junctions limiting paracellular transport, and (2) reduced
fenestrations and transport vesicles limiting transcellular transport. Small molecules need
to be less than 400 Da in size and lipid soluble in order to cross the barrier [25].

Disruption of the blood–brain barrier (BBB) is observed in glioma tumor regions.
Unfortunately, this degree of BBB disruption is not sufficient to allow for the ability of
therapeutics to reach this diffusely infiltrating tumor [26,27]. Biochemical and physical
methods can be used to further increase the permeability of this biological barrier. Ion chan-
nel activators such as ATP-sensitive and calcium-activated potassium channel activators,
phosphodiesterase 5 (PDE5) inhibitors, bradykinin type 2 receptor activators, adenosine
2A receptor (A2AR) agonists, papaverine, and certain microRNAs represent biochemical
approaches to biochemical modulation of the BBB. PDE5 inhibitors decrease cGMP degrada-
tion and increase vesicular transport, thereby increasing BBB permeability within the tumor
region. Potassium channel activators downregulate tight junction protein expression and
increase the formation of pinocytotic vesicles. Bradykinin activators increase transcytosis
and modulate tight junction protein expression and cGMP synthesis. A2AR agonists and pa-
paverine downregulate tight junction protein expression. MicroRNAs such as miR-132-3p
increase blood–brain barrier permeability by increasing transcytosis. Mannitol, an osmotic
agent, is widely used to disrupt the blood–brain barrier by vasodilatation and shrinkage of
endothelial cells [28,29]. Physical strategies for modulating BBB permeability include the
application of electromagnetic pulses, laser-induced thermal therapy, radiotherapy, and
focused ultrasound (FUS). All these methods downregulate the expression of tight junction
proteins. FUS is also involved in increasing transcytosis [22,30].

2. Methods of Drug Delivery to Glioblastoma

In this review, we will discuss the application of controlled release systems, convection-
enhanced delivery, nanomaterial systems, peptide-based therapeutics, and focused ultra-
sound for drug delivery to glioblastoma, overcoming the obstacles posed by GBM molecular
and cellular heterogeneity, GBM cell invasion/dispersal and the blood–brain barrier.

2.1. Controlled-Release Systems

Implantable drug release systems enable the direct delivery of therapeutic agents
to the tumor site, circumventing the need to cross the blood–brain barrier. Drug-loaded
biocompatible materials such as drug-impregnated gels can be designed so that they release
low doses of drugs at the tumor site over a prolonged period of time.

Implantable controlled-release delivery systems can be constructed with degradable or
non-degradable polymers. Between these two options, biodegradable polymers are more
commonly used [31]. One such biodegradable polymer delivery system that has been used
clinically for GBM is the Gliadel® wafer. This is a biodegradable polymer wafer loaded with
the chemotherapeutic drug BCNU. It is the only FDA-approved drug delivery implant for
treating GBM [11]. Gliadel was approved by the FDA in 1996 for recurrent GBM and later
in 2003 for upfront treatment of malignant glioma [31–33]. In another study, biodegradable
wafers were created for the combined delivery of temozolomide and carmustine in a rat
glioma model. This approach increased the median survival of the animals significantly,
with 25% of the animals living long term >120 days [34]. Biodegradable polymer implants
releasing rapamycin were found to increase survival both in the presence and absence
of radiation therapy in a rat malignant glioma model [35]. The rigid structure of these
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systems has limited drug loading capacity and they can be dislodged from the original
site of implantation. In addition, the wafer systems also led to the occurrence of seizures,
intracranial hypertension, meningitis, cerebral edema, and impaired wound healing in
neurosurgical patients [11].

A pH-responsive carboxymethylcellulose biopolymer system was used to deliver the
chemotherapeutic drug, rhodamine B encapsulated in multiple emulsions to glioblastoma
cells in vitro [36]. In a mouse GBM tumor resection model, hydrogel-based co-delivery of
the chemotherapeutic agents paclitaxel and temozolomide enhanced survival [37]. Hy-
drogels can adapt their shape while nevertheless retaining sufficient drug capacity [11].
The use of multiple emulsions and hydrogels avoided the limitations seen with the rigid
structure of wafer implants. However, the intrinsic hydrophilic nature of hydrogels does
not allow for the effective delivery of hydrophobic therapeutic agents [38].

With sustainable release of therapeutic agents over time, implantable controlled-release
systems limit the local GBM recurrence after resection by interacting with the tumor cells
at the resection site. However, these systems are not only limited by a variety of side effects
as listed above, but also by poor drug distribution to distant tumor cells that have migrated
in the normal brain parenchyma. Consequently, these implantable local delivery systems
have limited ability to affect infiltrating GBM cells distant to the site of implantation.

2.2. Convection-Enhanced Delivery

Convection-enhanced delivery (CED) is a catheter-based drug delivery method that
depends on pressure gradients rather than diffusion to deliver therapeutic agents into brain
tumors. This technique involves the stereotactic insertion of one or more catheters into
the tumor. The catheters are connected to a syringe/drug delivery pump that maintains a
positive pressure gradient that promotes the distribution of higher volumes of drug over a
larger area. Ensuring direct intratumoral drug delivery independent of drug concentration
or diffusivity of the infusate, CED allows the use of large volumes of the drug at lower
and less-toxic doses [39]. The ratio between the volume of distribution and the volume of
infusion is a key factor determining the optimum flow rate and success of this technique.

CED of temozolomide, the standard cytostatic drug for the treatment of GBM, com-
bined with subcutaneous immunizations with irradiated cancer cells had a synergistic
effect on tumor growth and overall survival in a mouse-GL261 glioma model. However,
the same protocol did not display synergy in the KR158 mouse glioma model, which
is resistant to radiation and chemotherapy. In the latter model, CED of temozolomide
increased survival [40]. By initiating antitumor immune response, irradiated cells may
help to overcome intratumoral immunosuppression and enhance the antitumor activity of
temozolomide.

In a phase I clinical trial, CED was used to infuse carboplatin to patients with WHO
grade III astrocytomas or grade IV gliomas (GBM). This approach increased median overall
survival without any systemic toxicity [41]. This was the first clinical trial to demonstrate
that CED of carboplatin into the brain is safe. Oral or intravenous administration of
platinated drugs does not produce effective concentrations in the brain and has been
associated with systemic toxicity [42].

MRI-guided CED of iron oxide nanoparticles (IONP) conjugated to epidermal growth
factor receptor deletion mutant III antibody (EGFRVIIIAb) showed significant increase in
survival in a mouse GBM model [43]. Binding of EGFRvIIIAb-IONP conjugate to target
cells was evaluated by changes in the MRI signal. IONP is a theranostic nanoparticle
which has imaging properties as well as anticancer activity. EGFRvIIIAb is a tumor-specific
cell surface protein. The experimental animal groups treated with EGFRvIIIAb-IONP
conjugate as well as EGFRvIIIAb alone had a single survivor after 120 days. This study
demonstrated the feasibility of conjugating biological agents or ligands that bind to tumor-
specific proteins along with concomitant imaging to ensure targeted distribution of the
therapeutic agent.
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Direct delivery of anticancer agents in large volumes and at less toxic doses makes
CED an attractive drug delivery method for GBM. Implantable catheters can be used
to repeat CED at required intervals, but the efficacy of this approach may be limited by
the highly invasive nature of the tumor with GBM cells dispersed to distant sites [44].
Challenges in maintaining the ratio between the volumes of distribution and infusion, flow
rate, formation of air bubbles, infusate reflux along the catheter, and the variability in the
tumor tissue composition can limit the establishment of the required pressure gradient,
thereby limiting the efficacy of CED [45].

2.3. Nanomaterial Systems

Nanomedicine is an emerging candidate for cancer therapy that uses a variety of
different types of nanocarriers such as lipid-based, polymer-based, inorganic, viral, and
drug-conjugated nanoparticles [46]. Small size, high surface-to-volume ratio and other
physico-chemical parameters make nanoparticles unique [47]. Accentuated drug deliv-
ery along with potential applications in diagnosis and imaging makes nanomedicine an
appealing approach to cancer therapeutics [48].

Nanomaterial systems for drug delivery improve GBM tumor targeting mainly by pro-
moting drug diffusion through the blood–brain barrier and by the enhanced permeability
and retention (EPR) effect. The EPR effect is dependent on the highly angiogenic nature
of GBM where leaky vasculature is commonly present [49]. Because of this phenomenon,
nanoparticles can passively modulate the biodistribution of loaded molecules and increase
their accumulation in cancer tissues with leaky vasculature [50–52]. The efficacy of antitu-
mor drug delivery via nanoparticles is also enhanced by several additional mechanisms,
including increased cellular internalization, activation of immune cells, and reactive oxygen
species (ROS) production [53]. Surface functionalization of a nanoparticle with an active
principle, a targeting agent, and a compound for detection will increase the functional
range of the nanomaterial drug delivery targeting biomolecules, thereby enabling both
drug delivery and disease diagnosis [54]. The long half-life and improved cellular uptake
and biodistribution increase the appeal of nanomaterial systems for tumor therapy [49].

The delivery of tumor antigens and adjuvants using nanoparticles as a vehicle has been
shown to increase the efficacy of immune therapy against GBM [55–57]. Different types of
nanomaterials, including polymeric nanoparticles or lipid-based nanoparticles, may also be
used to deliver nucleic acids intended for tumor therapy [49]. A poly(ε-caprolactone) (PCL)-
based nanoparticle system was used to deliver the natural growth modulating tripeptide
GHK (glycyl-L-histidyl-L-lysine) to human GBM cells in vitro, thereby reducing GBM
cell viability to nearly 65%. However, this approach did not show anticancer activity at
concentrations less than 20 mg/mL [58]. GHK is a natural tripeptide with a varied array of
biological activities including anticancer, antioxidant, anti-inflammatory, skin remodeling,
wound healing, etc. [59]. The anti-GBM activity of GHK demonstrated in this study in vitro
requires further validation in vivo.

A nanobubble-based theranostic system consisting of intravenously administered
iron-platinum nanoparticles loaded with doxorubicin and surface-functionalized with
transferrin (to allow for tumor targeting) reduced glioma growth in a mouse model by
almost 70%. The nanobubbles were burst by exposing to high intensity focused ultrasound
(HIFU) to bypass the blood–brain barrier by generating a cavitation effect. This single
nanocomposite, combining nanomaterials, chemotherapeutic agents and MRI contrast
agents all together for the first time, was able to cross the blood–brain barrier, target the
tumor cells and allow imaging of the brain tumor. This multimodal system is an example
of combining several strategies to enhance the success rate of therapy [60].

The physicochemical properties of nanomaterials enable them to deliver therapeutic
agents to the brain via drug encapsulation or by surface modification. The clinical use of the
nanomaterial drug delivery systems is limited by the poorly controlled accumulation and
distribution of particles in and around the specific target site [61,62]. The use of multiple
therapeutic strategies in combination with nanocarriers may improve the success rate of
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targeted tumor therapies. However, the potential toxic effects of nanoparticle systems due
to aggregation upon introduction into biological systems remains poorly understood. The
effect of protein corona formation around nanoparticles and its relevance regarding their
biological activity is also being extensively investigated [63].

2.4. Peptide Based Therapeutics

There are three main types of peptide-based therapeutics—tumor homing peptides,
peptides targeting aberrant cellular signaling pathways and cell-penetrating peptides [64].
GBM cells have increased expression of membrane proteins that are responsible for cellular
function and maintenance, protein synthesis, intercellular signaling, cell movement, and
antigen presentation [8,65]. Tumor homing peptides can bind to specific molecular targets
on the surface of GBM cells and will be taken up by the cells by endocytosis [66]. The
binding process of these peptides is faster than antibodies. These can also be used for
in vivo tumor imaging. Binding of some of these peptides can also enhance or antagonize
signal transduction pathways in cancer cells or tumor tissues. Peptides and their derivatives
targeting aberrant cellular signaling pathways can improve the efficacy of tumor therapy by
increased selectivity in their interaction with the oncogenic pathways [64]. Cell-penetrating
peptides (CPPs) are small, basic, positively charged peptide derivatives that can pass
through the cell membrane [64,67].

Highly selective tumor-targeting peptides obtained using a biopanning phage display
library directed against GBM cells were able to cross the BBB and deliver the oncolytic
virus VSV∆M51 to GBM in a mouse model in vivo [68]. These peptides, when deliv-
ered in combination with gadolinium, also enabled the visualization of the tumors via
MRI. The use of peptides directed against multiple targets provides a mechanism for ad-
dressing the heterogeneity of the tumor while nevertheless allowing for tumor specific
oncolytic virus delivery.

Self-assembled spherical nanoparticles containing a peptide probe (Cy5.5-SAPD-
99mTc) that combines tumor homing ability with mitochondria targeting was found to have
promising theranostic possibilities owing to the enhanced apoptosis in GBM cells coupled
with imaging functionality [69]. Incorporating both tumor-homing and mitochondria-
targeting components helps to increase the specificity of drug delivery.

Peptide derivatives of rabies virus glycoproteins, RVG29 and RVG15-liposome, were
used to deliver anticancer chemotherapeutic docetaxel nanoparticles and paclitaxel-cholesterol
to glioma-bearing ICR mice with a positive effect on animal survival [70,71]. The RVG peptides
target the nicotinic acetylcholine receptor, the increased expression of which is noted in the
hypoxic and ischemic conditions within the tumor microenvironment. Administration of
RVG peptides thus aids in tumor-specific chemotherapeutic delivery.

WSW (also called PhrCACET1) is a tumor-targeting peptide (derived from Clostridium
acetobutylicum) that was fused to paclitaxel nanosuspensions and used to target GBM cell
membranes in a glioma mouse model. The use of WSW induced apoptosis and prolonged
survival of the animals [72]. By combining BBB penetration with tumor targeting, this
biomimetic drug delivery system has enhanced tumor-targeting specificity.

The use of polydopamine (PDA)-coated zein-curcumin nanoparticles functionalized
with the peptide G23 inhibited cell proliferation and migration in glioma cells in vitro [73].
Here, the peptide G23 binds to ganglioside GM-1 and enables crossing of the BBB. The
anti-inflammatory, antimicrobial, and anticancer activities of curcumin have been widely
demonstrated [74–76].

A dual peptide nanocomplex created by combining SynB3 (a cell penetration pep-
tide) with PVGLIG (an MMP-2 sensitive peptide) and paclitaxel inhibited cell migration
and invasion in multiple GBM cell lines, suppressed GBM tumor growth in vivo, and
increased overall survival in a mouse model of GBM [77]. The aberrant expression of
matrix metalloproteinases (MMPs) has been widely reported in tumors, and the addition of
an MMP-sensitive peptide increased the tumor specificity of the drug cargo in this system.
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To enhance the membrane permeability of peptides, membrane receptors such as low-
density lipoprotein receptor, IL-4 receptor, and transferrin receptor which are abundantly
expressed on GBM cells have been used to direct the delivery of tumor-homing peptides
to brain malignancies, utilizing receptor-mediated transcytosis [78–80]. Peptide-mediated
drug delivery is limited by the poor in vivo stability due to the proteolytic degradation of
peptides in the circulation when administered systemically. In addition, the short half-life
of peptides results in limited bioavailability. This can be overcome by chemical modification
or conjugation with macromolecules or nanocarriers with greater target specificity [64].
Identifying additional GBM-targeting peptides is needed to further exploit the benefits of
this mode of drug delivery.

2.5. Focused Ultrasound

Focused ultrasound (FUS) is an image-guided, noninvasive method to transiently
open the blood barrier, thereby enhancing the efficacy of therapeutic delivery to GBM. FUS
can be used to reversibly disrupt the BBB without irreversible tissue damage [81]. The
use of FUS in combination with circulating microbubbles works by creating mechanical
cavitation effects that transiently disrupt the BBB [82]. In addition to the cavitation effects
and thermal ablation, FUS may also work via immunomodulation [83]. Future concurrent
application of noninvasive FUS along with other modes of therapeutic drug delivery to
GBM is promising.

By increasing BBB permeability, FUS can enhance the delivery of varied therapeutic
agents to the tumor. For example, FUS-induced disruption of the BBB enhanced the local
delivery of temozolomide to tumors and increased the overall survival of rats harboring
experimentally induced gliomas [84]. FUS application followed by BCNU administration
resulted in a reduced rate of tumor growth and improved survival in rats [85]. In a mouse
model bearing temozolomide-resistant glioma, low-intensity fluorescent ultrasound (LIFU)
was used to deliver a liposomal O6-(4-bromothenyl)guanine (O6BTG) derivative that inac-
tivates MGMT [86]. Because MGMT enhances DNA repair in tumor cells, MGMT silencing
has been associated with more favorable outcomes after temozolomide treatment [87].

The use of imaging techniques along with FUS increases the rate of drug delivery
to specifically identified tumor tissues. MRI guided FUS (MRgFUS) was used to achieve
a higher tissue delivery of liposome-encapsulated doxorubicin in rats, temozolomide in
mice, and cisplatin-conjugated gold nanoparticles in mice [84,88,89]. In an additional
study, MRgFUS was used to deliver the intravenously administered monoclonal antibody,
trastzumab, to Her2-positive intracranial metastases in breast cancer patients without any
adverse events [90].

Using this noninvasive technique, relatively low systemic doses of therapeutic agents
can be used, thereby reducing systemic toxic effects [91]. Transient application of FUS only
results in a transient opening of the BBB and does not lead to long-term BBB defects [25].
FUS has the potential to enhance therapeutic drug efficacy against GBM because it is nonin-
vasive and provides reproducible enhancements in drug delivery in early investigational
studies. Clinical trials using FUS in GBM are currently underway [81,92,93]. Nevertheless,
FUS is not immune to side effects which include edema, intracerebral hemorrhage, and
uncontrolled thermal injury in brain [94].

3. Conclusions

Molecular and cellular heterogeneity, GBM cell dispersal and the BBB are critical
constraints limiting the efficacy of anti-GBM drug therapy. Applications of CED, controlled-
release systems, nanomaterial systems, peptide-based therapeutics and focused ultrasound
for drug delivery to tumor enhance survival with reduced toxicity in animal studies
(Table 1). Despite currently available treatments, the highly invasive GBM continues to be
a deadly disease without cure in patients. Therefore, clinical trials that combine currently
available therapies with the novel drug delivery approaches discussed here may enhance
the effectiveness of molecular therapeutics in GBM.
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Table 1. Summary of the methods of drug delivery to GBM with the examples discussed in the text.

Method of Drug Delivery Specific Examples

Controlled release systems Gliadel [11,31–33]

Biodegradable wafers for the combined delivery of temozolomide and carmustine [34]

Biodegradable polymer implants releasing rapamycin [35]

Carboxymethylcellulose biopolymer system delivering rhodamine B [36]

Hydrogel based co-delivery of paclitaxel and temozolomide [37]

Convection enhanced delivery Temozolomide [40]

Carboplatin [41]

Iron oxide nanoparticles conjugated to epidermal growth factor receptor deletion mutant III
antibody (EG-FRVIIIAb)/MRI-guided [43]

Nanomaterial Systems Poly(ε-caprolactone) (PCL) based nanoparticle system to deliver the natural growth modulating
tripeptide GHK (glycyl-L-histidyl-L-lysine) [58]

Nanobubble-based theranostic system consisting of intravenously administered iron-platinum
nanoparticles loaded with doxorubicin and surface-functionalized with transferrin [60]

Peptide based therapeutics Tumor targeting peptides delivering deliver the oncolytic virus VSV∆M51, in combination with
gadolinium [68]

Self-assembled spherical nanoparticles containing a peptide probe (Cy5.5-SAPD-99mTc) with
mitochondria targeting [69]

Peptide derivatives of rabies virus glycoproteins, RVG29 and RVG15-liposome, delivering
anticancer chemotherapeutic docetaxel nanoparticles and paclitaxel-cholesterol [70,71]

WSW (also called PhrCACET1) peptide fused to paclitaxel nanosuspensions [72]

Use of polydopamine (PDA)-coated zein-curcumin nanoparticles functionalized with the peptide
G23 [73]

Dual peptide nanocomplex created by combining SynB3 (a cell penetration peptide) with
PVGLIG (an MMP-2 sensitive peptide) and paclitaxel [77]

Focused ultrasound Temozolomide [84]

BCNU [85]

Liposomal O6-(4-bromothenyl)guanine (O6BTG) [86]

Liposome-encapsulated doxorubicin [88]

Cisplatin conjugated gold nanoparticles [89]

Trastzumab [90]
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Abbreviation

GBM Glioblastoma multiforme
WHO World Health Organization
IDH Isocitrate dehydrogenase
EGFR Epidermal growth factor receptor
MGMT O6-methylguanine DNA methyltransferase
PTN Pleiotrophin
CDKN2A Cyclin Dependent Kinase Inhibitor 2A
MDM2 Mouse double minute 2 homolog
NF1 Neurofibromatosis type 1
PDGFRA Platelet Derived Growth Factor Receptor Alpha
GSC Glioblastoma stem cells
NSC Neural stem cell
BEMC Brain microvascular endothelial cells
ATP Adenosine triphosphate
PDE5 Phosphodiesterase 5
FUS Focused ultrasound
CED Convection enhanced delivery
EPR Enhanced permeability and retention
ROS Reactive oxygen species
PCL Poly(ε-caprolactone)
GHK glycyl-L-histidyl-L-lysine
CPP Cell penetrating peptide
PDA Polydopamine
MMP Matrix Metalloproteinase
MRI Magnetic resonance imaging
MRgFUS Magnetic resonance guided focused ultrasound
LIFU Low intensity fluorescent ultrasound
HIFU High intensity fluorescent ultrasound
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