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Background: High mobility group box (HMGB) proteins are DNA chaperones involved in
transcription, DNA repair, and genome stability. Extracellular HMIGBs also act as cytokines
to promote inflammatory and immune responses. Accumulating evidence has suggested
that HMGBs are implicated in cancer pathogenesis; however, their prognostic and
immunological values in pan-cancer are not completely clear.

Methods: Multiple tools were applied to analyze the expression, genetic alternations,
and prognostic and clinicopathological relevance of HMGB in pan-cancer.
Correlations between HMGB expression and tumor immune-infiltrating cells
(TNCs), immune checkpoint (ICP) expression, microsatellite instability (MSI), and
tumor mutational burden (TMB) in pan-cancer were investigated to uncover their
interactions with the tumor immune microenvironment (TIME). Gene set enrichment
analysis (GSEA) was conducted for correlated genes of HMGBSs to expound potential
mechanisms.

Results: HMGB expression was significantly elevated in various cancers. Both prognostic
and clinicopathological significance was observed for HMGB1 in ACC; HMGB2 in ACC,
LGG, LIHC, and SKCM; and HMGB3 in ESCA. Prognostic values were also found for
HMGB?2 in KIRP and MESO and HMGBS3 in BRCA, SARC, SKCM, QV, and LAML. The
global alternation of HMGBSs showed prognostic significance in ACC, KIRC, and UCEC.
Furthermore, HMGBs were significantly correlated with TIIC infiltration, ICP expression,
MSI, and TMB in various cancers, indicating their regulations on the TIME. Lastly, results of
GSEA-illuminated genes positively correlated with HMGBs which were similarly
chromosome components participating in DNA activity-associated events.

Conclusion: This study demonstrated that HMGBs might be promising predictive
biomarkers for the prognosis and immunotherapeutic response, also immunotherapy
targets of multiple cancers.
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INTRODUCTION

Immunotherapy has revolutionized the treatment landscape of
patients with advanced cancers, especially immune checkpoint
inhibitors (ICIs). Immune checkpoints (ICPs), such as
programmed death protein 1 (PD-1) and its ligand (PD-L1),
are negative modulatory signaling pathways for activation of
T cells, which in turn facilitate immune tolerance and promote
cancer. ICIs aim to unleash T cells from exhaustion and enhance
anticancer immune activity. However, only 20% of patients
derive the response to ICIs across all malignancies, which
severely limits their clinical benefits (Rameshbabu et al,
2021). Therefore, seeking new immunotherapeutic targets
and predictive biomarkers for immunotherapy efficacy for
patient selection is a hot issue of the current research (Yi
et al., 2018).

The high mobility group box (HMGB) protein family,
consisting of HMGBI1-4, includes non-histone chromatin
components (Rapoport et al., 2020). HMGBI1-3 share over
80% identical sequence and structure, comprising two DNA-
binding domains and an acidic tail. However, HMGB4 lacks
the acidic tail and is not ubiquitously expressed like HMGB1-3
(Taniguchi et al., 2018). This study focused on HMGBI1-3.
HMGBs are predominantly in the nucleus and act as DNA
chaperones, thereby modulating chromosome stabilization,
telomerase maintenance, replication, transcription, and
DNA repair (Cheng et al., 2020). In the cytoplasmic or
extracellular milieu, HMGBs act as chemokines or cytokines
to evoke inflammatory and immune responses (Niu et al.,
2020).

Accumulating evidence had hinted HMGBs’ participation in
cancer pathogenesis. First, effective DNA damage repair is
indispensable for cancer cells to maintain growth. Second,
excessive extracellular HMGBs induce chronic inflammation,
which is a hallmark of cancer (Mukherjee and Vasquez, 2020).
The overexpression and prognostic relevance of HMGBs had
been observed in various cancers, including prostate (Jung et al.,
2021), liver (Zhang et al., 2014), cervix (Cheng et al., 2017; Li T.
et al., 2020), breast (Fu et al., 2018), stomach (Cui et al., 2019),
esophagus (Gao et al.,, 2015), and hematopoietic malignancies
(Yuan et al., 2020). Given the roles of HMGBs in the regulation
of inflammation and immunity, they appear to be candidate
targets for cancer immunotherapy. However, HMGBI is
double-faced in cancers. HMGB1 can maintain genome
stability and interact with tumor suppressor proteins, e.g.,
Rb, to prevent oncogenesis (Mandke and Vasquez, 2019).
Besides, extracellular HMGB1 can stimulate anticancer
immune responses during the process called immunogenic
cell death (ICD) (Fucikova et al., 2020; Rapoport et al,
2020). Beyond the controversy of HMGBI, the roles of
HMGB2/3 in cancers are unclear, especially in the context of
the tumor immune microenvironment (TIME).

In this work, we comprehensively analyzed the expression,
genetic  alternations, clinicopathological and prognostic
relevance, and underlying mechanisms of HMGBs in pan-
cancer. Since biomarkers reflecting TIME, including tumor
immune-infiltrating cells (TIICs) and ICP gene expression,
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and tumor intrinsic features, including microsatellite instability
(MSI) and tumor mutational burden (TMB), may predict
immunotherapy efficacy (Duffy and Crown, 2019), correlations
between HMGB expression and these factors were investigated.
This study may offer novel insights into HMGBSs’ potential values
in cancer immunotherapy.

MATERIALS AND METHODS

Analysis of High Mobility Group Box Genes

Expression in Cancers

The differential mRNA expression of HMGBs between human
cancers and paired normal controls was analyzed using
Oncomine (https://www.oncomine.org) (Rhodes et al, 2007)
and Gene Expression Profiling Interactive Analysis 2
(GEPIA2) (http://gepia2.cancer-pku.cn/) (Tang et al., 2017). In
the GEPIA2 portal, the data of 33 types of cancers were from the
Cancer Genome Atlas (TCGA), and the normal data were
combined TCGA and Genotype Tissue Expression (GTEx).
The screening criteria were limited to |fold change (FC)| > 2
and a p value <0.01 for both portals.

Analysis of the Prognostic Value of High
Mobility Group Box Genes in Cancers

Associations between HMGB expression and overall survival
(OS) and relapse-free survival (RFS) of patients with diverse
TCGA cancers were evaluated by five databases, Kaplan-Meier
(KM) Plotter (http://www.kmplot.com/) (Nagy et al., 2021),
Long-term Outcome and Gene Expression Profiling Database
of pan-cancers (LOGpc, http://bioinfo.henu.edu.cn/DatabaseList.
jsp), SurvExpress (http://bioinformatica.mty.itesm.mx:8080/
Biomatec/SurvivaX.jsp) (Aguirre-Gamboa et al, 2013), Tumor
IMmune Estimation Resource (TIMER) (http://timer.cistrome.
org) (Li Z. et al,, 2020), and GEPIA2. Here, patients were divided
into high- and low-expression groups by median.

Analysis of the Clinicopathological
Relevance of High Mobility Group Box

Genes in Cancers

Associations between HMGB expression and clinicopathological
features, including major stages and tumor grades of patients with
diverse cancers, were explored using TCGA data by UALCAN
(http://ualcan.path.uab.edu) (Chandrashekar et al., 2017).

Identification of Genetic Alternations of
High Mobility Group Box Genes in Cancers

Genetic alternations of HMGBs including mutations, structural
variants, and copy number alterations were analyzed by
cBioPortal (http://www.cbioportal.org) (Cerami et al, 2012;
Gao et al, 2013), using the “TCGA PanCancer Atlas” datasets.
Associations between the global alternation of HMGBs and
patient’s survivals in pan-cancer were also analyzed; here,
samples were split into “altered” and “unaltered” groups.
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Analysis of Correlations Between High
Mobility Group Box Genes Expression and
Immune Infiltrates and Immune Checkpoint

Genes in Cancers

Correlations between HMGB expression and the infiltration of
diverse TIICs, including CD8 T cells, CD4 T cells, helper T (Th) 1
cells, Th2 cells, regulatory T cells (Tregs), natural killer (NK) cells,
global macrophages, M1/M2 macrophages, neutrophils, myeloid
dendritic cells (mDCs), B cells, and myeloid-derived suppressor
cells (MDSCs), were explored using the TIMER portal.
Correlations between HMGB expression and the infiltration of
Th17 were assessed using TISIDB (http://cis.hku.hk/TISIDB) (Ru
et al,, 2019). Forty-three ICP genes were selected incorporating
three review articles (Marin-Acevedo et al,, 2021b) (Marin-
Acevedo et al, 202la) (Marin-Acevedo et al, 2018);
correlations between the expression of HMGBs and these ICP
genes were analyzed using TIMER.

Analysis of Correlations Between High
Mobility Group Box Genes Expression and
Microsatellite Instability and Tumor

Mutational Burden in Cancers

The RNA sequence data of 33 kinds of TCGA cancers were
downloaded from the Genomic Data Commons (GDC) portal
(https://portal.gdc.cancer.gov/). MSI (Bonneville et al.,, 2017) and
TMB (Thorsson et al., 2019) data were derived from two previous
studies, respectively. Correlations between HMGB expression and
MSI and TMB were analyzed using R software version 4.0.3.

Gene Set Enrichment Analysis for the
Correlated Genes of High Mobility

Group Box

Correlated genes of HMGBI in ACC (n = 79), HMGB2 in LGG
(n =516), and HMGB3 in BRAC (1 = 1093) were explored using
the LinkFinder module of the LinkedOmics platform (Vasaikar
et al., 2018). Then, the significantly correlated genes of the
HMGB1/2/3 were respectively sequenced to perform gene set
enrichment analysis (GSEA), using Web-based Gene SeT
Analysis Toolkit (WebGestalt) (Liao et al., 2019). GSEA was
conducted for gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway categories. GO categories
included biological process (BP), cellular component (CC), and
molecular function (MF) aspects. The category size was restricted
between 5 and 2,000, and the number of permutations was
limited up to 1,000. A gene set with a false discovery rate
(FDR) < 0.05 was considered significantly enriched.

Statistical Analysis

A comparison of the mRNA expression was performed using
Student’s t-test (Oncomine and UALCAN) or one-way ANOVA
test (GEPIA2). Survival curves were plotted using the
Kaplan-Meier method, and the log-rank test was performed to
identify differences and calculate p values. Associations between
gene expression and survival were estimated using Cox

HMGBs in Pan-Cancer

proportional regression to generate the hazard ratio (HR) and
95% confidence interval (CI). Spearman’s method was applied to
analyze correlations between gene expression and the infiltration
level of TIICs, MSI, and TMB. Correlations between any two
genes were evaluated using the Pearson test. Correlation strength
was measured by correlation coefficient (r) values: 0.00-0.39,
0.40-0.59, and 0.60-1.0 were weak, moderate, and strong,
respectively. All tests were two-tailed paired, and p values
<0.05 were considered statistically significant.

RESULTS

Expression of High Mobility Group Box

Genes in Cancers

Initially, the results from the Oncomine database showed that
HMGB1/2/3 were significantly highly expressed in a total of 22,
22, and 51 datasets, whereas they were lowly expressed in two,
three, and one datasets of various cancers, respectively, compared
with paired normal controls (Figure 1A). Except for several
datasets of leukemia, lymphoma, and sarcoma, HMGBs were
consistently up-expressed in most human cancers.

In the GEPIA2 database, HMGBI/2/3 were significantly
differentially expressed in a total of 8, 14, and 24 types of
TCGA cancers, respectively, compared with the corresponding
normal controls (Figures 1B-D). In detail, HMGBI/2/3 was
uniformly up-expressed in eight kinds of cancers, including
colon adenocarcinoma (COAD), lymphoid neoplasm diffuse
large B-cell lymphoma (DLBC), glioblastoma multiforme
(GBM), brain lower grade glioma (LGG), pancreatic
adenocarcinoma (PAAD), rectum adenocarcinoma (READ),
stomach adenocarcinoma (STAD), and thymoma (THYM).
HMGB2/3 was highly expressed in four kinds of cancers,
including adrenocortical carcinoma (ACC), bladder urothelial
carcinoma (BLCA), cervical squamous cell carcinoma and
endocervical ~ adenocarcinoma  (CESC), and  uterine
carcinosarcoma (UCS), while they were down-expressed in
acute myeloid leukemia (LAML). Besides, HMGB2 was
upregulated in liver hepatocellular carcinoma (LIHC). HMGB3
was upregulated in 11 other types of cancers, including breast
invasive carcinoma (BRCA), esophageal carcinoma (ESCA), head
and neck squamous cell carcinoma (HNSC), kidney
chromophobe (KICH), kidney renal clear cell carcinoma
(KIRC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV),
prostate adenocarcinoma (PRAD), testicular germ cell tumors
(TGCT), and uterine corpus endometrial carcinoma (UCEC). To
be short, HMGB expression was significantly elevated in most
cancers, except that HMGB2/3 were downregulated in LAML.
Moreover, HMGB3 was the most universally overexpressed
among the HMGB family.

Prognostic Significance of High Mobility

Group Box Genes in Cancers
In the first step, associations between HMGB expression and OS
and RFS of patients with diverse cancers were evaluated
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FIGURE 1 | The differential expression of High Mobility Group Box (HMGBs) between cancers and normal controls. (A) A summary of the datasets in which HMGBs
were significantly up- (red) or down- (blue) expressed in cancers, compared with normal controls (Oncomine). Numbers in cells represent dataset counts. The expression
of (B) HMGB1, (C) HMGB?2, and (D) HMGB3 in TCGA cancers and paired normal controls (GEPIA2). A black font indicates no significant difference; red or green fonts
indicate significant up- or down-expression, respectively, with [fold change (FC)| > 2 and p values <0.01. “'p < 0.001; 4|FC| > 4 and p < 0.01.

integrating LOGpc, KM Plotter, SurvExpres, and TIMER
platforms (Supplementary Table S1). We found that a higher
expression of HMGBI was significantly related with worse OS of
patients with ACC (HR = 2.36, p = 0.043) and KICH (HR =
4.75 p = 0.037), whereas a better OS of patients with THYM was
found (HR=0.11, p = 0.011) (Figure 2A). An elevated expression
of HMGB2 was significantly linked to shorter OS of patients with
ACC (HR = 4.67, p = 0.001), KICH (HR = 6.54, p = 0.004), KIRC
(HR =1.53, p =0.004), KIRP (HR = 2.20, p = 0.011), LGG (HR =
2.19, p = 9.00E-05), LIHC (HR = 1.85, p = 0.001), and MESO (HR
= 2.09, p = 6.72E-06), and a longer OS of patients with SKCM
(HR = 0.71, p = 0.013) and THYM (HR = 0.18, p = 0.018)
(Figure 2B). HMGB3 overexpression implied unfavorable OS of
patients with BRCA (HR = 1.58, p = 0.006), ESCA (HR = 1.64, p =
0.034), KIRC (HR = 1.52, p = 0.006), MESO (HR = 1.66, p =
0.003), SARC (HR = 2.10, p = 2.00E-04), and SKCM (HR = 1.61,
p =0.001), but better OS of patients with LAML (HR = 0.56, p =
0.006), OV (HR = 0.76, p = 0.043), and STAD (HR = 0.71, p =
0.040) (Figure 2C).

Apart from several cancer types with insufficient sample size
that were not analyzed, we further found that HMGBI
upregulation was significantly linked with unfavorable RFS of
ACC, COAD, PAAD, and READ, but better RFS of LGG
(Figure 2D). HMGB2 high expression suggested worse RFS of
KIRP, LGG, LIHC, but better RFS of GBM (Figure 2E). HMGB3
up-expression implied better RES of OV but worse RFS of TGCT
(Figure 2F).

Second step, heat maps exhibiting HMGBs’ prognostic values
were generated by GEPIA (Figures 2G,H). Here, HMGBI high
expression indicated both worse OS and RFS of ACC and
LUAD; worse RFS of CESC, HNSC, and SARC; and better
OS of KIRC. HMGB2 up-expression suggested both worse
OS and RFS of ACC, KIRP, LGG, and LIHC; worse OS of
MESO and PAAD; worse RES of LUAD and PRAD; and better
OS of SKCM. HMGB3 upregulation signified both poorer OS
and RFS of ESCA; worse OS of BRCA, LGG, SARC, and SKCM;
and better OS and RFS of LAML and OV. We took the
intersection of the findings of the two steps of survival
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FIGURE 2 | Prognostic significance of High Mobility Group Box (HMGBS) in cancers. Associations between HMGB expression and (A-C) OS and (D-F) RFS of
patients with various cancers. Heat maps showing relations of HMGB expression with (G) OS and (H) RFS of various cancers (GEPIA2). Results with significance are
framed; red or blue frames indicate high or low survival risk, respectively. OS, overall survival; RFS, relapse-free survival; HR, hazard ratio; Cl, confidence interval.

analyses to improve the robustness, which was provided in the  investigated. We found that HMGBI expression was elevated
discussion section. with the stage progression of ACC and READ. HMGBI
expression was significantly higher in Stage-IV ACC and

L. . . Stage-III READ than in Stage-I/Il ACC and Stage-II READ,
Cllnlcopathologlcal Relevance of ngh respectively (p < 0.05) (Figures 3A,B). HMGB2 expression
Mobility Group Box Genes in Cancers was elevated as stages of ACC, KIRC, and LIHC were
Subsequently, correlations between HMGB expression and  promoted, while stages of SKCM improved. The expression of
clinicopathological characteristics of diverse cancers were ~ HMGB2 was significantly higher in Stage-IV ACC, Stage-IV
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FIGURE 3 | Clinicopathological relevance of High Mobility Group Box (HMGBS) in cancers. Associations of the expression of (A-B) HMGB1, (C-F) HMGB2, and
(G) HMGB3 with pathological stages of several cancers. Associations of the expression of (H-K) HMGB1, (L-N) HMGB2, and (0-Q) HMGBS3 with tumor grades of
several cancers (UALCAN). *p < 0.05, “p < 0.01, "'p < 0.001.

KIRC, and Stage-II/III LIHC than in Stage-I ACC, Stage-I/III
KIRC, and Stage-I LIHC, respectively. In contrast, HMGB2
expression was significantly lower in Stage-II/III SKCM,
compared to that in Stage-I ones (p < 0.05) (Figures 3C-F).

HMGB3 expression was elevated in Stage-II/III ESCA, compared
with that in Stage-I ones (p < 0.05) (Figure 3G).

What is more, tumor grades of HNSC were significantly
increased with the elevation of HMGB expression (Figures
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3I,M,Q), while an opposite trend was observed for HM GBI
expression in KIRC (Figure 3J). Significantly, HMGB1/2
expression was higher in Grade-3 tumors of LIHC than in
Grade-2 (and —1) ones (p < 0.01) (Figures 3K,N). HMGB1/3
expression was higher in Grade-3 tumors of ESCA than in
Grade-2 (and —1) ones (p < 0.05) (Figures 3H,P). HMGB2/3
expression was higher in Grade-3 tumors of LGG than in
Grade-2 ones (p < 0.01) (Figures 3L,0). Collectively,
HMGB up-expression indicated the clinicopathological

advancement of ACC, ESCA, HNSC, LIHC, LGG, and
READ and the alleviation of KIRC and SKCM.

Genetic Alternations of High Mobility Group

Box Genes in Cancers

Overall, genetic alternations of HMGBs were identified in a total
of 529 (4.83%) out of 10,953 samples, including in-frame
mutation, missense mutation, splice mutation, truncating
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FIGURE 5 | Correlations between High Mobility Group Box (HMGBS) expression and (A-C) immune infiltration and (D-F) ICP genes expression in cancers. Th,
helper T cell; Treg, regulatory T cell; NK cell, natural killer cell; mDC, myeloid dendritic cell; MDSC, myeloid-derived suppressor cell.

mutation, structural variant, amplification, and deep deletion
(Figure 4A). Among all the cancers, HMGBs altered the most
frequently in DLBL, with an incidence rate of 14.58%, followed by
STAD (11.14%) and ESCA (9.89%) (Figure 4B). HMGB3 was the
most frequently altered one within HMGBs (221 out of 10950
samples).

The occurrence of HMGB alternations was significantly
related to poorer OS of ACC (Figure 4C) and poorer
disease-specific survival of KIRC (Figure 4D), but a better
progression-free survival of UCEC (p < 0.05) (Figure 4E).

Apart from these, no significant survival relevance was found
for other cancer types.

Correlations Between High Mobility Group
Box Genes Expression and Immune
Infiltrates and Immune Checkpoint Genes in

Cancers
Correlations between HMGB expression and infiltration
levels of TIICs were investigated integrating TIMER and
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FIGURE 6 | Correlations between High Mobility Group Box (HMGBS) expression and the (A-C) MSI and (D-F) TMB of cancers. MSI, microsatellite instability; TMB,
tumor mutational burden.

TISID. Generally, HMGBs were significantly positively
correlated with the infiltration of Th2 cells and MDSCs
and negatively correlated with that of Th17 cells in pan-
cancer (Figures 5A-C). Specifically, HMGBI expression
showed positive correlations with the infiltration of CD8
and CD4 T cells, but negative ones with that of Thl cells
and macrophages in BRCA, KIRC, KIRP, LIHC, PRAD,
SKCM, and THCA. HMGB2 expression was positively or
negatively correlated with the infiltration of diverse TIICs
in BRCA, LGG, LUAD, PCPG, and THCA, without a
consistent pattern. HMGB3 expression exhibited negative
correlations with the infiltration of macrophage lineages in
KIRP, LGG, LUAD, LUSC, OV, SARC, SKCM, TGCT, and
THCA. Notably, strong to very strong correlations were
observed as follows: HMGB expression and the infiltration
of CD8 T cells and (or) Th2 cells in THYM and UVM;
HMGB2 expression and Th2 cell infiltration in ACC,
BLCA, LIHC, and MESO; and HMGB2/3 expression and
MDSC infiltration in UCEC.

Inhibitory and stimulatory ICPs regulate immune escape and
immune efficacy, respectively. Here, we explored correlations
between the expression of HMGBs and 43 ICP genes (21
inhibitory and 22 stimulatory). In general, the relationships
between the expression of HMGBs and inhibitory or
stimulatory ICP genes were isotropic. To highlight, strong
correlations were identified for HMGB expression with many
ICP genes of THYM, with mostly negative relations, as well as

HMGBI1/2 expression with numerous ICP genes of UVM.
Besides, significant positive correlations between the
expression of HMGBs and ICP genes were found in the
following cancers: HMGBI in HNSC, LIHC, PAAD, and
PRAD and HMGB2 in HNSC, KIRC, KIRP, LGG, LIHC,
PRAD, THCA, and SKCM. In contrast, significant negative
correlations were found as follows: HMGBs in GBM and
HMGB3 in KIRP, LGG, LUAD, LUSC, and TGCT.
(Figures 5D-F).

Correlations Between High Mobility Group
Box Genes Expression and Microsatellite
instability and Tumor Mutational Burden in

Cancers

Among 33 kinds of cancers, HMGBI1/2/3 expression was
significantly positively correlated with the MSI of 6 (18.2%),
10 (30.3%), and 10 (30.3%) types of cancers but negatively
correlated with the MSI of 2 (6.0%), 1 (3.0%), and 1 (3.0%)
types of cancers respectively (Figures 6A-C).

As for the TMB, HMGBI1/2/3 expression was significantly
positively correlated with the TMB of 4 (12.1%), 11 (33.3%), and
16 (48.5%) kinds of cancers but negatively correlated with the
TMB of 4 (12.1%), 2 (6.0%), and 2 (6.0%) kinds of cancers,
respectively (Figures 6D-F). Particularly, HMGB expression had
almost strong negative correlations with the TMB of THYM. In
addition, positive relationships with both MSI and TMB were
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identified for HMGBI in STAD; HMGB2 in STAD, BLCA,
UCEC, LUSC, and COAD; and HMGB3 in STAD, LUAD,
PRAD, LUSC, BLCA, SAR, HNSC, and KICH.

Potential Functions of the Correlated Genes
of High Mobility Group Box Genes

To understand the potential mechanisms behind the differential
expression and immunological relevance of HMGBs in different
cancer types, we explored correlated genes of HMGBI1/2/3 in

three representative cancer types and performed GSEA for them,
respectively. A total of 3,452 genes were found significantly
correlated with HMGBI in ACC, and the top 50 of the positively
and negatively correlated ones are shown in Figures 7A,B
respectively. The results of GSEA illuminated that the positively
correlated genes of HMGBI in ACC might comprise the ribosome,
cytosolic part, cell-substrate junction, etc., and partake in RNA
metabolic processes and translation. Signaling pathways of the
ribosome, spliceosome, and purine metabolism were involved.
Nevertheless, the negatively correlated genes of HMGBI might
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comprise coated vesicles and vacuolar membranes and be involved
in cell-cell adhesion via plasma-membrane adhesion molecules and
various transmembrane transports (Figures 7C-F).

A total of 12,967 genes were found significantly correlated
with HMGB2 in LGG (Figures 8A,B). The positively correlated
genes of HMGB2 in LGG might be components of the
chromosome, replication fork, and spindle and be responsible
for BPs and pathways regulating cell cycle checkpoint, DNA
replication, recombination, and damage repair, as well as somatic
diversification immune receptors. In contrast, the negatively
correlated genes of HMGB2 might consist of the synaptic

membrane, axon part, neuron projection terminus, and
transport vesicles and be involved in signaling pathways of
glutamate receptor, neurotransmitter transport, G protein-
coupled receptor, and cAMP (Figures 8C-F).

As for the correlated genes of HMGB3 in BRAC, 14,028 genes
were significantly observed in all (Figures 9A,B). Similarly, the
positively correlated genes of HMGB3 in BRAC were generally
chromosome structures and partake in BPs and pathways related
to replication, DNA repair, and chromatin remodeling.
Additionally, pathways of amino acid biosynthesis, carbon
metabolism, and citrate cycle were also enriched. The
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negatively correlated genes of HMGB3 might consist of
extracellular matrix and transporter complexes, which
contributed to angiogenesis and the negative regulation of
locomotion. Moreover, the signaling pathways of Hedgehog
and focal adhesion were related (Figures 9C-F).

DISCUSSION

This study extracted potential values of HMGBs in various
cancers, especially in the context of immunotherapy.

From the outset, we found that HMGBs were significantly up-
expressed in various TCGA cancers, except that HMGB2/3 were
down-expressed in LAML. Despite that the overexpression of
HMGBI in cancers was the most prevalently reported (Niu et al.,
2020), we found that HMGB3 was highly expressed in the largest
variety of cancers and altered most frequently. Integrating the
results of two steps of survival analyses, high expression of
HMGBs suggested unfavorable prognosis in the following
cancers: HMGBI in ACC; HMGB2 in ACC, KIRP, LGG,
LIHC, MESO; and HMGB3 in BRCA, ESCA, SARC, and
SKCM. In contrast, favorable prognostic indications were
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found for the up-expression of HMGB2 in SKCM, as well as
HMGB3 in OV and LAML. By the way, the global alternation of
HMGBs was linked with worse outcomes of ACC and KIRC, but a
better outcome of UCEC. In addition, elevated HMGB expression
indicated clinicopathological advances in these cancers: HMGBI
in ACC, HNSC, and ESCA; HMGB2 in ACC, HNSC, KIRC, LGG,
and LIHC; and HMGB3 in ESCA and HNSC. Conversely, the up-
expression of HMGBI and HMGB2 suggested clinicopathological
alleviation of KIRC and SKCM, respectively.

The findings of some earlier studies were consistent with ours.
Nguyen et al. reported that HMGB1 was related to the clinical
and pathological characteristics of HNSC (Nguyen et al., 2016).
Kwon et al. stated that HMGB2 overexpression implied the
aggressiveness and worse prognosis of LIHC (Kwon et al,
2010). In an experimental study, HMGB2 was observed to be
highly expressed in melanoma, whose silence impeded cell
proliferation and invasion, yet promoted cell cycle arrest and
apoptosis, leading to melanoma regression, indicating that
HMGB2 contributed to melanoma promotion (Mo et al,
2019). As for HMGB3, several experiments revealed that it
was upregulated by diverse noncoding RNAs, which in turn
fomented malignant behaviors and even immune escape of
breast cancer cells (Gu et al., 2019; Chen et al., 2021; Yu et al.,,
2021). A recent study indicated that hypermethylation of the
promoter of miR-216a upregulated HMGB3, which then
promoted ESCA (Sun et al., 2021). Paradoxically, HMGB3
high expression was shown to facilitate cisplatin resistance of
ovarian cancer cells; however, we found it a favorable prognostic
indicator of OV (Mukherjee et al., 2019).

It is well known that CD8 T cells, NK cells, and Th1 cells exert
anticancer immunity, while TAMs, MDSCs, Tregs, Th2 cells, and
tolerogenic mDCs foster pro-cancer immune escape in the TIME
(Zhang and Zhang, 2020; Saillard et al., 2021). ICIs can unleash
preexisting tumor-infiltrating lymphocytes (TILs) and restore
their lethality to cancer cells. Increased density of TILs,
particularly CD8 T cells, improved the therapeutic responses
and outcomes of patients across various malignancies (Nishino
et al., 2017). However, only patients with high ICP expression
may benefit from ICI therapy; a most adopted predictor is PD-L1
expression (Randrian et al., 2021). In this study, we investigated
correlations between HMGB expression and both immune
infiltration and ICP gene expression, to learn their
involvements in the TIME and predictive capacities for the
response to ICI therapy. Generally, HMGBs were positively or
negatively associated with both immune-stimulative TIICs/ICP
genes and immunosuppressive TIICs/ICP genes in pan-cancer,
suggesting that they might modulate the TIME in both
provocative and inhibitory ways. However, we inferred that
HMGBs were inclined to induce overall immunosuppression
in the TIME, since we found that they had uniformly positive
correlations with the infiltration of Th2 cells and MDSCs in pan-
cancer. Indeed, interactions between HMGBI1 and its receptors
are critical for the differentiation and activation of MDSCs (Jin
et al., 2020) and Tregs (Wild et al., 2012) and the upregulation
PD-L1 in the TIME (Wang et al,, 2019). Besides, it was evident
that HMGB1 could induce a dominance of Th2-type response in
inflammation (Ma et al., 2015).

HMGBs in Pan-Cancer

HMGB expression showed strong correlations with TIICs and
ICP genes in THYM and UVM, signifying their outstanding
positions in the TIME of the two kinds of cancers. For HNSC,
HMGB up-expression suggested increased ICP gene expression
and rising density of immune-suppressive Th2 cells,
macrophages, and MDSCs, which might contribute to the
disease progress. HMGB2 up-expression indicated elevated
infiltration of Th2 cells and MDSCs and (or) ICP gene
expression in ACC, KIRP, LGG, LIHC, and MESO, with
medium to strong correlation strength, which might partly
explain the poor survival of patients with these cancers.
Oppositely, HMGB2 upregulation might benefit SKCM
patients through activating CD8 T cells and stimulatory ICPs.
In fact, an earlier study indicated that HMGB2 participated in the
cytoplasmic chromatin recognition and the subsequent response
to anticancer ICP blockade (Zhao et al., 2020). A high HMGB3
expression was a detrimental prognostic factor for BRCA, ESCA,
SARC, and SKCM, which might blame on its negative
relationships with various stimulatory ICPs and the infiltration
of CD8 T cells but positive interactions with Th2 cells and
MDSCs. In contrast, the beneficial role of HMGB3 in OV
might partially be explained by the scarce immunological
interactions. All the above manifested HMGBs might partake
in the development of these cancers through coordinating TIICs
and ICPs, thus potentially serving as immunotherapy targets.
Seeing from another angle, HMGBs could also be used as
predictive biomarkers for immunotherapeutic response in
some cancers. This is because, for a cancer type in which the
expression of ICPs and HMGBs was positively correlated, a high
HMGB expression might predict a better response to ICI therapy.

Microsatellites are short DNA stretches tandemly repeated
throughout the genome, and MSI occurs when the genome gains
or loses > one repeat(s). TMB represents the total number of
mutations per DNA megabase (Duffy and Crown, 2019). High
MSI is an underlying process contributing to high TMB, and
higher MSI or TMB levels may generate potent neoantigens for
recognition by immune surveillance, thus increasing
immunotherapy responses (Duffy and Crown, 2019; Veigas
et al, 2021). We found that HMGBs were significantly
positively correlated with MSI and (or) TMB in diverse
cancers, suggesting that high HMGB expression might predict
clinical benefits from immunotherapy for patients with these
cancers. Within the HMGB family, HMGB3 expression was
associated with MSI and (or) TMB in most cancer types,
consistent with its highest alternation occurrence rate in pan-
cancer. Integrating the significance of prognosis, TIICs, ICP
genes, and MSI and (or) TMB, we induced that HMGBs
might be promising immunological targets for the following
cancers: HMGBI for ACC and KIRC; HMGB2 for ACC and
LGG; and HMGB3 for BRAC, SARC, SKCM, and OV.

Genes positively correlated with HMGBs might be their
potential  co-expressed genes, which were similarly
chromosome components regulating DNA  replication,
transcription, damage repair, chromatin remodeling, and cell
cycle. These functions of HMGBs favor cancer cells to
maintain their nature of continuous proliferation and protect
them from therapy-caused DNA damages (Camara-Quilez et al.,
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2020). What is more, genes positively correlated with HMGB3 in
BRAC were also enriched in pathways of amino acids and carbon
metabolism, indicating their participation in cancer metabolic
alternations. Beyond intracellular functions, HMGBs, especially
HMGBI, can be actively secreted by cancer cells per s, infiltrating
immune cells, and stromal cells, or passively released from
necrotic cells into extracellular milieu in response to various
stimuli. Upon HMGBs binding to cell-surface receptors or
immune receptors, e.g., receptor for advanced glycation end
product (RAGE) and toll-like receptors (TLRs), inflammatory
and immune responses are amplified via a positive feedback loop
(Kang et al., 2013; Musumeci et al., 2014). The durable chronic
inflammation then activates multiple downstream pathways, e.g.,
nuclear factor kB (NF-kB), mitogen-activated protein kinase
(MAPK), and phosphatidylinositol 3-kinase (PI3K), to
promote cancer through modulating apoptosis, autophagy,
invasion, metastasis, and angiogenesis (Bianchi et al., 2017;
Lee et al.,, 2019; Mukherjee and Vasquez, 2020). High levels of
HMGB1 can recruit MDSCs, macrophages, neutrophils,
immature DCs, and Tregs and increase their T cell inhibitory
properties to establish a highly immunosuppressive TIME

conducive to immune escape (Gorgulho et al, 2019).
Furthermore, HMGBI1 interacts with immunomodulatory
molecules to hinder immune activities, e.g, T-cell

immunoglobulin and mucin domain-containing-3 (TIM-3)
(Kwak et al, 2020). Paradoxically, HMGBI1 also stimulates
TILs and produce anticancer immunity as an immunogenic
signal during ICD, which is a kind of cell death caused by
chemo- or radiotherapies (Apetoh et al., 2007). To summarize,
HMGB up-expression is essential for cancer cells to maintain the
hallmarks of wunlimited proliferation and permanent
inflammation, which made them forceful biomarkers of pan-
cancer. HMGBs are intertwined in extensive signaling pathways
of inflammation and immunity, thus affecting the immune
infiltration and ICP expression in the TIME of cancers.
Differences between diverse cancer types might attribute to
not only the inherent heterogeneity of cancers but also the
inflammation level, cytokines, chemokines, inner receptors,
targeted cells, and redox states of HMGBs in the tumor sites
(Kang et al,, 2013). Despite that knowledge about HMGB2/3 is
very limited, they might have similar regulatory patterns with
HMGBI based on their high identities. That said, there is still a
long way to go to clarify the specific mechanisms.
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