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Abstract: Surface electromyogram (EMG) is a noninvasive measure of muscle electrical activity and
has been widely used in a variety of applications. When recorded from the trunk, surface EMG can
be contaminated by the cardiac electrical activity, i.e., the electrocardiogram (ECG). ECG may distort
the desired EMG signal, complicating the extraction of reliable information from the trunk EMG.
Several methods are available for ECG removal from the trunk EMG, but a comparative assessment of
the performance of these methods is lacking, limiting the possibility of selecting a suitable method for
specific applications. The aim of the present study is therefore to review and compare the performance
of different ECG removal methods from the trunk EMG. To this end, a synthetic dataset was generated
by combining in vivo EMG signals recorded on the biceps brachii and healthy or dysrhythmia
ECG data from the Physionet database with a predefined signal-to-noise ratio. Gating, high-pass
filtering, template subtraction, wavelet transform, adaptive filtering, and blind source separation
were implemented for ECG removal. A robust measure of Kurtosis, i.e., KR2 and two EMG features,
the average rectified value (ARV), and mean frequency (MF), were then calculated from the processed
EMG signals and compared with the EMG before mixing. Our results indicate template subtraction
to produce the lowest root mean square error in both ARV and MF, providing useful insight for the
selection of a suitable ECG removal method.

Keywords: trunk electromyography; electrocardiography interference; template subtraction;
adaptive filter; wavelet; blind source separation

1. Introduction

Surface electromyogram (EMG) is a noninvasive measure of the biopotential produced on the
skin by motor unit action potentials. It is measured by placing electrodes on the skin above the muscle
and has been widely used in a variety of applications. Key applications of surface EMG include the
investigation of the neuromuscular system [1]; the estimation of joint loading and muscle forces [2,3];
prosthesis control [4–6]; and monitoring of, e.g., stress, breathing, and epilepsy [7–9]. In some of these
applications, surface EMG is recorded from trunk muscles, e.g., diaphragm and pectoralis, and can
therefore be contaminated by the electrocardiogram (ECG) [7,8,10].

In general, the EMG frequency band is between 10 and 500 Hz. An ECG signal has power
up to 100 Hz [11,12], while its peak amplitude can be larger than trunk EMG [13]. Consequently,
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the ECG signal can distort the amplitude of the desired EMG and increase the power in the lower
band of the EMG spectrum, complicating the extraction of reliable information from the trunk EMG.
For instance, studies have reported that the presence of ECG interference introduces an overestimation
of the absolute EMG levels and compromises the prosthesis control command [13]. The ECG should
therefore be removed prior to the extraction of useful EMG features for further applications.

Several methods have been proposed for ECG removal from the trunk EMG, including gating
(GT) [14], high-pass filtering (HP) [15], template subtraction (TS)[14,16], wavelet transform (WT) [10,17],
adaptive filtering (AF) [18], and blind source separation (BSS) [19]. Unfortunately, each method has its
own limitation. For instance, GT inevitably results in a loss of useful EMG data. TS is based on the
assumption that the EMG is Gaussian-distributed with zero mean, which may be not fully satisfied in
some conditions. HP cannot remove all the ECG spectrum while canceling the low-frequency EMG
components. In addition, the determination of the optimal cutoff frequency is challenging. For AF,
an additional sensor measuring a clean ECG reference is usually required [18]. For both WT and BSS,
automatic identification of the noise components is difficult.

Considering the limitations of the available ECG removal methods, a complete comparison
of the performance of different methods may provide useful insight for the selection of the most
appropriate ECG removal method in a specific application. Indeed, several studies have compared
the performance of different ECG removal methods [10,20,21]. However, the comparison in these
studies is incomplete, including only a subset of the available methods. For instance, only TS and HP
were employed in [20]. Zhou et al. investigated the performance of TS, WT, and AF for prosthesis
control [10], and Willigenburg et al. compared the performance of HP, AF, and independent component
analysis (ICA) on ECG interference removal [21].

It is clear that the available methods for ECG removal from the trunk EMG have limitations, and a
complete comparison of the performance of these methods using the same dataset is missing. The aim
of the present study is therefore to review the available ECG removal methods from the trunk EMG
and compare their performance using the same dataset. To this end, in vivo EMG signals recorded on
the biceps brachii are employed to mimic the trunk EMG, and ECG data from the Physionet database
are used to mimic the ECG interference. A synthesis dataset is then generated by combining these two
signals. By use of the realized synthetic dataset, the ground truth EMG and ECG signals are available,
which enable us to accurately benchmark different algorithms for ECG removal.

For performance evaluation, a robust measure of Kurtosis, i.e., KR2, and two EMG features—the
average rectified value (ARV) and mean frequency (MF)—are calculated from the EMG signals obtained
by different ECG removal methods and then compared with that derived from the EMG before mixing.
Kurtosis is a fourth-order statistics indicating the non-Gaussianity, and it is used to measure the
peakedness of a distribution. KR2 is a robust measure of Kurtosis and has been suggested as a good
indicator of ECG interference in an EMG signal [22]; a higher KR2 indicates more ECG interference [22].
ARV is a measure of the EMG amplitude and is widely used for myoelectric prosthesis control [10].
MF is calculated as the first statistical moment of the EMG amplitude spectrum and is usually used
as an indicator of myoelectric fatigue [23]. Both ARV and MF are common EMG features and are
therefore considered as performance measures for different ECG removal methods, in line with the
work in [20].

2. Methods

2.1. Data Collection and Preprocessing

2.1.1. EMG Data Collection

Surface EMG was recorded on the biceps brachii from ten right-handed healthy college students
(9 males and 1 female; age: 23–28 years), who were asked to sign a written informed consent prior to
participation in the study. The test procedures were approved by the ethical committee of the Máxima
Medical Center (MMC, Veldhoven, The Netherlands).
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The experimental set-up described in [24] was employed to generate a constant force pulling
down a rope connected to the subject’s dominant arm through a handle. The subject was instructed to
pull against the rope in order to perform isometric arm exercise with the back straight and the elbow
angle equal to 90 degrees. The applied force was 50% of his/her maximum voluntary contraction
(MVC), which was measured prior to the exercise by a load-cell embedded in the experimental setup
following the protocol described in [25]. The entire experiment took 60 s, including two 15 s isometric
contractions and three 10 s rest periods, as shown in Figure 1a.
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Figure 1. (a) Scheme of the measurement protocol. (b) Six subsets of electrodes employed to generate
six electromyogram (EMG) signals.

2.1.2. ECG Interference

Sixty-second surface EMG was recorded on the biceps by an 8× 8 high-density electrode grid
aligned along the muscle fiber direction. The diameter of each electrode is 4 mm and the interelectrode
distance is 8 mm. A circular (1 cm diameter) Ag/AgCl electrode was placed on the subject’s right
clavicle as ground. A Refa amplifier (TMS International, Enschede, The Netherlands) was adopted to
amplify and digitize the recorded signal at a sampling frequency of 2048 Hz.

Twenty ECG datasets were randomly selected from the PhysioNet PTB Diagnostic ECG Database,
including ten healthy ECG signals ( s0467_re, s0468_re, s0471_re, s0472_re, s0473_re, s0474_re, s0478_re,
s0479_re, s0481_re, and s0490_re) and ten dysrhythmia ECG signals ( s0207_re, s0349lre, s0018lre,
s0393lre, s0391lre, s0338lre, s0366lre, s0440_re, s0494_re, and s0546_re). Goldberger, A.L., et al [26].
These pathological ECG signals consist of different heart diseases, such as congenital complete AV
block, atrial fibrillation, coronary artery disease, palpitation, and WPW syndrome. Each dataset
contained 15 simultaneously measured signals, including the conventional 12 leads (I, II, III, aVR, aVL,
aVF, and V1–V6) and the 3 Frank lead ECGs (VX, VY, and VZ). The length of each recording was 60
seconds and the sampling frequency 1000 Hz. The six precordial leads (V1–V6) were measured on
the chest with respect to the Wilson’s central terminal, and were therefore adopted to mimic ECG
interference in trunk EMG measurements.

2.1.3. Synthetic Trunk EMG and Preprocessing

Six EMG signals, in line with the number of ECG channels, were extracted from the 8 × 8
high-density electrode grid for each subject. Each EMG signal was generated by taking the average
of a subset of four channels, as shown in Figure 1b. The extracted EMG signals were resampled at
1000 Hz in order to obtain the same sampling frequency as the ECG signals.

In general, a frequency band between 10 and 500 Hz is considered for a EMG signal [11].
Therefore, the first step for analysing a trunk EMG in real practice is bandpass filtering. Consequently,
part of the ECG interference in the trunk EMG is also filtered. In the present study when generating
the data, the bandpassing filtering (10–500 Hz) was considered before mixing, which has the same
effects as applied to the mixture but provides benchmark to evaluate the performance of different ECG
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removal methods. Furthermore, as all signals were resampled at 1000 Hz, only a 10 Hz high-pass filter
was implemented by a third-order Butterworth filter.

A second-order infinite impulse response filter was applied to both signals in order to remove
possible power-line interference. Beyond, a third-order Butterworth filter with cutoff of 200 Hz was
applied to the ECG signals in order to remove high-frequency instrumentation noise, avoiding unrealistic
noise crosstalk between the EMG and ECG signals.

Next, the EMG signals were rescaled in order to obtain a realistic EMG-ECG signal-to-noise ratio
(SNR), i.e., −10 dB, realistic for trunk EMG [10]. Finally, the preprocessed EMG and ECG signals
were added together, producing six mixtures for each subject mimicking six channels with trunk EMG
contaminated by ECG interference, as given by

x(k) = m(k) + c(k), (1)

x(k) = [x1(k), x2(k), ..., x6(k)]T , (2)

m(k) = [m1(k), m2(k), ..., m6(k)]T , (3)

c(k) = [c1(k), c2(k), ..., c6(k)]T , (4)

where k is the discrete time and x(k), m(k), and c(k) represent the EMG-ECG mixture, the EMG after
preprocessing, and the ECG after preprocessing, respectively. An example of these three signals is
shown in Figure 2. Ten healthy ECG signals and ten dysrhythmia ECG signals were considered in the
present study, generating two categories of mixtures, EMG contaminated by healthy ECG and EMG
contaminated by dysrhythmia ECG, respectively.
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(c) The ECG-EMG mixture

Figure 2. An example of the EMG (a), ECG (b), and their mixture (c).

2.2. ECG Interference Removal

2.2.1. Gating

The gating method implemented in the present study was the one described in [14]. The idea was
to set samples to zero in the QRS time interval, which is normally about 0.1 s, to zero. To this end,
for each channel j (j = 1, 2, ..., 6), the position of the ith R-peak, tji, was detected by a low complexity
algorithm described in [27]. Considering that the duration of the ECG waveform may be influenced by
variations in the R-R interval, tRR, of different subjects, the QRS time interval of the ith R-peak was
determined as [(tji − 0.05tRR) (tji + 0.05tRR)]. Finally, the samples in the identified QRS interval were
set to zero.
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2.2.2. High-Pass Filtering

In previous studies, a finite impulse response (FIR) filter with a 820-coefficient Hamming window
was employed to realize a high-pass filter for ECG removal [15]. A recent study suggested a 4th-order
Butterworth filter to perform better than a FIR filter [20]. Consequently, the Butterworth filter adopted
in was implemented in the present study. As the performance of high-pass filtering methods can be
influenced by the cutoff frequency, five cutoff frequencies: 20, 30, 40, 50, and 60 Hz, were separately
implemented and tested in the present study, in line with the work in [20].

The two EMG features, i.e., ARV and MF, used for performance evaluation (Section 2.3) were
calculated from the reconstructed EMG and the EMG before mixing. The root mean square error (RMSE)
in these two EMG features was then calculated as a criterion to identify the optimal cutoff frequency.

2.2.3. Template Subtraction

The ECG template subtraction method takes advantage of the quasi-periodic characteristics of the
ECG signal, and is based on the assumption that the EMG has a zero mean Gaussian distribution [10,16].
Similar to gating, the first step in template subtraction was to detect the position of the R peaks in
each channel. The full ECG waveform, including the P wave, QRS, and T wave, was then considered
in order to build an ECG template. In general, the P wave, QRS complex, and T wave durations are
approximately 0.20 s, 0.1 s, and 0.40 s, respectively [28].

By taking the R–R interval into consideration, the full ECG waveform of the ith R-peak in channel
j, ECGji, was then determined as the samples in the interval [(tji − 0.25tRR) (tji + 0.45tRR)],

ECGji = xj[(tji − 0.25tRR) (tji + 0.45tRR)]. (5)

An ECG template for the ith R-peak, T̂Pji, was then estimated by taking the average of
11 neighboring ECG waveforms, as given by

T̂Pji =



1
11

11

∑
y=1

ECGjy, i ≤ 5

1
11

i+5

∑
y=i−5

ECGjy, 5 < i ≤ Y− 5

1
11

N

∑
y=N−10

ECGjy, i > Y− 5

(6)

where Y is the number of the detected R peaks. The generated template T̂Pji was scaled by a factor µji
and subtracted from ECGji. The scaling factor µji was determined such that the mean square error

(MSE) ECGji − µji · T̂P
2
ji is minimized.

2.2.4. Wavelet Transform

Wavelet transform has been suggested for ECG interference removal by previous studies [10,17],
and was therefore investigated in the present study. The wavelet decomposition was calculated using
Mallat pyramid algorithm [29]. For each channel j, the EMG–ECG mixture xj was decomposed into
Z levels of detail coefficients, cD1, cD2, ..., cDZ, and one approximation coefficient, cAZ, as shown in
Figure 3a. The approximation coefficient at each decomposition level, cAz (z = 1, 2, ..., Z), was obtained
by convolving the approximation coefficient of the previous level, cAz−1 (cA0 = xj), with a low-pass
decomposition filter, Lo D, followed by a factor-2 downsampling. The detail coefficients cDz

were obtained by convolving cAz−1 with a high-pass decomposition filter Hi D followed by the
downsampling, as shown in Figure 3b. The high-pass and low-pass decomposition filters were derived
from a mother wavelet function and designed to form quadrature mirror filters. The db4 mother
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wavelet was reported to produce the best performance for ECG interference removal in diaphragm
EMG, and was therefore adopted as the basic wavelet function in the present study [17].
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Figure 3. Schematic of wavelet decomposition. j = 0, ..., J − 1 indicates the decomposition level and
cA0 = xj. (a) Structure of the J level decomposition tree; (b) operation in each level to decompose the
signal; (c) operation in each level to reconstruct the signal.

Seven-level wavelet decomposition was implemented, in line with [10]. A nonlinear thresholding
process as described in [10] was applied to the high-scale low-frequency components: cA7, cD7, cD6,
and cD5, in order to remove the ECG interference, as suggested in [10]. The nonlinear thresholding
process was implemented such that the samples in the coefficients higher than a certain threshold were
set to zero. The threshold was dynamically calculated by multiplying a gain G with the average value
of neighboring samples.

The inverse wavelet transform was then performed using the coefficients after thresholding in
order to obtain the EMG signal with most of the ECG interference removed. As shown in Figure 3c,
starting from the highest level, the approximation and detail coefficients, cA′z and cD′z, were upsampled
by a factor of 2, and then filtered with the reconstruction low-pass and high-pass filters, Lo R and
Hi R, respectively. The reconstruction filter pair was derived from the db4 wavelet function, the same
as the decomposition filter pair. The outputs of the reconstruction filters were then added together in
order to obtain the approximation coefficient for the next lower level, cA′z−1. By recursively applying
the procedure until reaching the lowest level, the inverse wavelet transform was obtained, producing
a reconstruction of the EMG signal free of ECG interference, m̂j(k).

2.2.5. Adaptive Filtering

Adaptive filtering has been widely used for noise reduction in biomedical applications [30–33].
In general, an adaptive filter estimates the transfer function between a noise reference signal and the
actual noise affecting the signal; any noise correlated to the reference signal is then removed from
the raw signal [34]. The reference signal that is correlated with the noise contaminating the signal of
interest is, therefore, of key importance for an adaptive filter.

The structure of the adaptive filter implemented in the present study is shown in Figure 4,
where xj(k) is the mixture, cl(k) is a reference containing only ECG signal, T−1 stands for a delay of
one sample, and O is the filter order. The reference signal cl(k) was weighted by the coefficients of
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the adaptive filter, w1 to wO, and then subtracted from the EMG-ECG mixture. The coefficients of the
adaptive filter can be obtained by minimizing the squared residual

m̂j(k)2 = xj(k)− cl(k)W(k)2, (7)

where cl(k) was a vector [cl(k) cl(k− 1) ... cl(k−O + 1)] and W(k) was [w1 w2 ... wO]
T . A normalized

least mean square (NLMS) algorithm was implemented to calculate W(k) [32], given as

W(k + 1) = W(k) + µ · cl
T(k) · m̂j(k)/σ2, (8)

σ2 = cl(k) · cl
T(k)/O + ε, (9)

where µ was the step size controlling the stability and the convergence rate to the optimal solution and
ε a small constant to avoid σ to be zero.

In real applications, the performance of the adaptive filter may be affected by the position of the
electrode recording the reference ECG as well as the filter order. Therefore, for each EMG–ECG mixture,
the nine ECG leads in the PTB database that were not used for mixing were separately implemented
as a reference in the present study. Besides, 10 filter orders, i.e., from 1 to 20 in steps of 2, were also
implemented. A robust measure of Kurtosis, i.e., KR2, which has been suggested as a good indicator of
ECG interference in an EMG signal [22], was calculated from the adaptively filtered signals. For each
ECG–EMG mixture, the reference-order combination that produced the lowest KR2 was adopted for
the comparison with other ECG removal algorithms.

1T − 1T − 1T −

1w 2w Ow

( ) ( ) ( )j j jx k m k c k= +

( )lc k

( )jm k

Figure 4. Structure of the adaptive filter. xj(k) is the EMG–ECG mixture in the jth channel, cl(k) is
one of the nine ECG leads in the same dataset as cj(k) but was not used for mixing, T−1 indicates a
one-sample delay, and O is the filter order.

2.2.6. Blind Source Separation

Blind source separation, particularly ICA, is a powerful tool to extract signal from noise
measurements and has been employed for ECG interference removal from trunk EMG by previous
studies [19,35]. By assuming the EMG and ECG signals to be independent, the ICA approach can be
formulated as

x = As, (10)

where x is the observed six-channel EMG-ECG mixtures; s is a m-dimensional random vector with its
components representing different independent sources, e.g., EMG, ECG, and other noise; and A is the
6×m mixing matrix. The number of independent sources m is assumed to be less than the number of
channels. The objective of ICA is to estimate the mixing matrix A and thus reconstruct the independent
sources by

s = A−1x. (11)
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In the present study, the fixed-point fast ICA described in [36] was implemented in order to
estimate the mixing matrix A and thus decompose the EMG-ECG mixtures into different sources.
The ICA components representing ECG signals were then identified. To this end, a third-order
Butterworth low-pass filter with cutoff at 30 Hz was applied to one of the six EMG-ECG mixtures,
xj, producing an approximate estimate of the ECG interference. The correlation coefficient between
each ICA component and the approximate ECG estimate was then calculated. The two ICA components
with the highest correlation coefficients were considered as ECG source and set to zeros. The modified
ICA components were then multiplied by the mixing matrix A in order to reconstruct six-channel
EMG with most ECG interference removed.

2.3. Evaluation

To compare the performance of different algorithms, a statistical metric, KR2, which is a robust
measure of Kurtosis, was first calculated as a measure of ECG interference in the EMG signals, as given
by [22]

KR2 =
F−1(0.975)− F−1(0.025)

F−1(0.75)− F−1(0.25)
− 2.91, (12)

where F−1 is the inverse cumulative distribution function of the data. If the data is normally distributed,
we obtain F−1(0.975)− F−1(0.025) = 1.96 and F−1(0.75)− F−1(0.25) = 0.6745. Thus, KR2 is zero if
the data have standard Gaussian distribution.

In addition, two most frequently used EMG features—ARV and MF—were also calculated for
performance assessment. ARV was defined as

ARV =
1
N

N

∑
k=1

m̂j(k), (13)

where m̂j(k) is the reconstructed EMG and N the number of samples. For MF, the short-time Fourier
transform (STFT) of m̂j(k) was first calculated. MF was then calculated as the first statistical moment
of the STFT amplitude spectrum between 10 and 500 Hz, as given by

MF =
∑N2

n=N1
fn · Sn

∑N2
n=N1

Sn
, (14)

where n is the STFT point, and fn and Sn the frequency and amplitude spectrum of the EMG at n,
respectively. The lower and upper limits of n, N1, and N2 were designed such that the corresponding
frequencies were 10 and 500 Hz, respectively.

For each channel, KR2 was calculated on the entire 60 s reconstructed EMG signal. ARV was
calculated in a 1 s sliding window with no overlap, in line with [25]. MF was calculated using
the same sliding window, but only during the two contraction periods as shown in Figure 1a.
Moreover, the three evaluation metrics were also calculated from the same EMG channel before mixing.
For each metric, the RMSE between the values estimated from the reconstructed EMG and that derived
from the EMG before mixing was then calculated in each channel. As only one KR2 value was derived
for each channel, the estimated RMSE corresponds to the absolute error. However, in order to keep in
line with the other two metrics, we would use RMSE for KR2 in the rest of this paper.

For each evaluation metric, 60 RMSEs obtained from the ten subjects with each consisting of six
channels were adopted for the comparison between different algorithms. Based on the one-sample
Kolmogorov–Smirnov test, data were not normally distributed. Consequently, a nonparametric
Friedman test was employed to test the difference of all algorithms globally. In addition, a post hoc
test using Bonferroni’s method was employed to test the difference between each two algorithms.

Moreover, to evaluate the computational complexity, the execution time of different methods was
determined and then compared. All the analysis was implemented in Matlabr 2019a (MathWorks, Natick,
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MA, USA). The adopted computer was a DELL TECH-20191012RQ PC (Dell, Round Rock, TX, USA),
with an Interr CoreTM) i9-9900K CPU @ 3.60 GHz (16 CPUs) processor (Inter, Santa Clara, CA, USA).

3. Results

For high-pass filtering, our results in Table 1 show 40 Hz to produce the lowest RMSE for the
ARV estimation and 30 Hz to produce the lowest RMSE for the MF estimation. Taking both ARV and
MF into account, 30 Hz was considered as the optimal cutoff frequency and was implemented for the
comparison with other ECG-removal methods.

Table 1. Root mean square error (RMSE) in average rectified value (ARV) and mean frequency (MF)
for high-pass filtering (HP) with different cutoffs.

20 [Hz] 30 [Hz] 40 [Hz] 50 [Hz] 60 [Hz]

ARV [µV] 26.3 ± 8.4 8.8 ± 3.8 5.6 ± 1.8 8.4 ± 2.0 13.4 ± 2.8
MF [Hz] 18.9 ± 4.4 6.1 ± 1.9 13.0 ± 1.5 24.8 ± 2.6 38.9 ± 3.0

Figure 5 shows an example of the estimated EMG signals by different ECG removal methods
applied to the EMG–ECG mixture with healthy ECG. After implementing the ECG removal algorithms,
ECG residuals are clearly recognizable for GT, HP, WT, and AF. Considering two components as ECG
interference, ICA seems to produce less residuals but reduced EMG amplitude (Figure 5g). Almost no
residuals are observed in the signals obtained by TS (Figure 5d).

Figure 5. Example of ECG removal: (a) ECG-EMG mixture; (b) EMG reconstructed by GT; (c) EMG
reconstructed by HP; (d) EMG reconstructed by TS; (e) EMG reconstructed by WT; (f) EMG
reconstructed by AF; (g) EMG reconstructed by ICA.

A representative example of ARV calculated in 1 s sliding window with no overlap is shown in
Figure 6. For the EMG–ECG mixture with healthy ECG (solid green line), GT, HP, and AF produce
overestimates in ARV due to the ECG residuals, especially during the rest periods. ICA produces no
overestimates during the rest periods, but underestimates during the contraction periods. Given the
threshold adopted in this study, WT seems to produce overestimates for both rest and contraction
periods. In contrast, ARVs calculated from the EMG signals obtained by TS match the reference values,
as shown in Figure 6c. Similar trend is observed in the EMG-ECG mixture with dysrhythmia ECG
(solid red line). However, the performance of several methods, particularly TS, seems to degrade.
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Figure 6. Example of the ARV results calculated from the EMG signals obtained by different ECG
removal methods: (a) ARV results by GT; (b) ARV results by HP; (c) ARV results by TS; (d) ARV results
by WT; (e) ARV results by AF; (f) ARV results by ICA.

Figure 7 shows a representative example of the MF results calculated using the same sliding
window as used for ARV, but applied during the contraction periods only. For the EMG–ECG mixture
with healthy ECG (solid green line), overestimates in MF can be observed with GT and HP while
underestimates are obtained with AF. TS produces the best MF results. Data with dysrhythmia ECG
(solid red line) show a similar trend. However, AF produces much less underestimation, while TS
performs slightly worse as compared with data with healthy ECG.

40

60

80

100

120
(a) GT

40

60

80

100

120

M
F

 [
V

]

(b) HP AT 30 Hz

40

60

80

100

120

M
F

 [
V

]

(c) TS

0 10 20 30 40 50 60

t [s]

40

60

80

100

120
(d) WT

0 10 20 30 40 50 60

t [s]

40

60

80

100

120
(e) AF

MF calculated on the EMG before mixing

MF calculated on the EMG obtained by different methods from the mixture with healthy ECG

MF calculated on the EMG obtained by different methods from the mixture with dysrhythmia ECG

0 10 20 30 40 50 60
40

60

80

100

120
(f) ICA

Figure 7. Example of the MF results calculated from the EMG signals obtained by different ECG
removal methods: (a) MF results by GT; (b) MF results by HP; (c) MF results by TS; (d) MF results by
WT; (e) MF results by AF; (f) MF results by ICA.

The RMSE results of KR2, ARV, and MF over all subjects are numerically reported in Table 2 and
graphically demonstrated in Figures 8 and 9. Data are presented as median and interquartile value as
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they are not normally distributed. For both healthy and dysrhythmia ECG interference, the highest
RMSE in KR2 is observed with GT and the lowest with ICA. The KR2 RMSE for TS is slightly higher
than that of ICA. The statistical significance is indicated by * and ** in Figures 8 and 9. WT produces
the largest RMSE, while TS produces the smallest RMSE in ARV and MF for both datasets. However,
for the data with dysrhythmia ECG interference, all methods produce larger RMSE in KR2 and MF,
and TS, AF, ICA produce larger RMSE in ARV, while other methods yield smaller ARV RMSE.
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Figure 8. Boxplot of the RMSE results for different ECG removal methods with healthy ECG
interference: (a) RMSE in KR2; (b) RMSE in ARV; (c) RMSE in MF. Data are presented as median, the first
and third quartiles, and the upper and lower adjacent. + indicates the outliers (whisker length = 1.5).
** indicates significant (p < 0.05) difference from all other methods, and * indicates significant (p < 0.05)
difference between two methods.

Table 2. RMSE results for KR2, ARV, and MF.

Data with Healthy ECG Data with Dysrhythmia ECG
MD Q1 Q3 LA UA MD Q1 Q3 LA UA

KR2

GT 0.49 0.37 0.81 0.23 1.23 0.55 0.41 0.91 0.26 1.43
HP 0.11 0.06 0.25 0.00 0.42 0.14 0.08 0.19 0.00 0.29
TS 0.12 0.08 0.17 0.01 0.27 0.14 0.08 0.18 0.01 0.29
WT 0.30 0.16 0.43 0.01 0.75 0.16 0.10 0.27 0.02 0.48
AF 0.12 0.05 0.32 0.00 0.58 0.18 0.06 0.42 0.00 0.93
ICA 0.10 0.05 0.18 0.01 0.35 0.10 0.05 0.16 0.00 0.32
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Table 2. Cont.

Data with Healthy ECG Data with Dysrhythmia ECG
MD Q1 Q3 LA UA MD Q1 Q3 LA UA

ARV [µV]

GT 6.6 5.1 8.3 2.8 12.5 5.4 3.6 11.2 1.5 19.5
HP 7.2 4.0 11.1 1.8 20.6 4.0 2.4 7.2 1.1 11.4
TS 2.3 1.9 3.0 1.2 4.0 3.8 2.4 7.8 1.7 15.8
WT 15.8 13.0 20.5 7.5 28.2 11.0 6.2 16.1 3.5 29.4
AF 7.2 5.4 11.9 2.3 20.4 7.3 4.6 15.8 2.3 32.3
ICA 3.3 2.4 5.1 1.2 7.8 4.1 2.6 5.7 0.7 8.4

GT 5.7 3.6 10.0 1.7 18.5 6.4 4.0 10.7 1.6 19.0
HP 5.2 4.4 6.8 3.7 9.3 5.7 4.6 6.8 2.9 8.4

MF [Hz] TS 2.0 1.7 2.5 1.1 3.6 3.0 2.2 6.5 1.3 12.7
WT 6.8 5.8 8.1 4.8 11.1 8.5 7.1 11.2 4.3 17.0
AF 5.0 3.7 6.1 1.7 9.6 5.4 3.9 8.4 2.0 15.1
ICA 4.7 2.8 8.4 1.1 16.7 6.1 3.2 9.2 1.5 16.2

MD: median; Q1: first quartile; Q3: third quartiles; LA: lower adjacent defined as the smallest value that is
equal or larger than Q1 − 1.5× (Q3 −Q1); UA: upper adjacent defined as the largest value that is equal or
smaller than Q3 + 1.5× (Q3 −Q1).
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Figure 9. Boxplot of the RMSE results for different ECG removal methods with dysrhythmia ECG
interference: (a) RMSE in KR2; (b) RMSE in ARV; (c) RMSE in MF. Data are presented as median, the first
and third quartiles, and the upper and lower adjacent. + indicates the outliers (whisker length = 1.5).
** indicates significant (p < 0.05) difference from all other methods, and * indicates significant (p < 0.05)
difference between two methods.
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Finally, the average execution time of different algorithms for one dataset consisting of six channels
is shown in Table 3. It is clear that AF requires the highest execution time while GT requires the lowest
execution time. The execution time of TS is slightly higher than ICA.

Table 3. Execution time of different methods [ms].

GT HP TS WT AF ICA

61.4± 3.8 144.2± 1.5 274.0± 48.2 126.2± 5.5 1957.0± 769.5 212.4± 49.2

4. Discussion

Six different algorithms for ECG removal from trunk EMG were implemented and compared in
the present study. Although all these algorithms are available in the literature, no study presents a
complete comparison of all of them. The novelty of the present study lies, therefore, in the comparison
of all these algorithms based on the same dataset. Synthetic data were generated by combining in vivo
EMG from the biceps and ECG from the chest, enabling quantitative evaluation of the performance of
these algorithms as the ground truth was known. In addition, both healthy and dysrhythmia ECG
interference were considered in the present study, providing relevant indications on the robustness of
the algorithms to non-physiological ECG rhythms. For evaluation, KR2 was adopted as a statistical
measure of the ECG interference in the reconstructed EMG. Moreover, ARV and MF are common EMG
features which have been widely used in many applications [10]; therefore, they were employed to
assess the performance of the different algorithms.

Gating is the simplest method, as indicated by the execution time in Table 3. However, it inevitably
results in a loss of EMG information. In order to restrict this information loss, a short gating window,
i.e., 0.1 s, is adopted in the present study, in line with previous studies [27]. Such a short window,
on the other hand, results in ECG residuals in the processed EMG signal, producing overestimates in
the ARV, in particular during the rest periods. A balance between information loss and ECG residual
should be considered when using gating for ECG removal, which is rather challenging.

For high-pass filtering method, a 4th-order Butterworth filter with five different cutoff frequencies
was implemented in the present study [20]. Our results indicate 30 Hz cutoff to produce the best
results, in line with the work in [20]. However, Zhou et al. reported that cutoff frequencies between 50
and 90 Hz produce the most suitable signals for myoelectric prosthesis control [10]. This discrepancy
may be explained by the exercise type (isodynamic) and performance criteria (ARV only) adopted
in [10]. Furthermore, due to spectrum overlap, the implemented high-pass filter suppresses some
useful EMG information while leaving some ECG residuals in the processed signal, leading to an
overestimation in the ARV during the rest periods.

For the adaptive filtering method, a reference signal correlated with the ECG interference is
usually required [32]. In the present study, the optimal reference channel was identified from the nine
ECG leads that were not used for mixing. However, there are still considerable ECG residuals in the
best filtered EMG signal, resulting in the large RMSE in both ARV and MF. Moreover, the execution
time of the adaptive filtering method is much longer than all other methods.

The wavelet transform method based on nonlinear thresholding was used for ECG removal in
prosthesis control by previous authors [10], and was therefore implemented and compared in the
present study. Our results show WT to produce overestimates in ARV due to the ECG residuals,
indicating the adopted threshold to be too low. An increased threshold may lead to reduced residuals.
However, this can also remove EMG information. The same challenge stands for the ICA method.
In the present study, two out of six ICA components were set to zero in order to remove the ECG
interference, producing relatively low ECG residuals. However, some EMG information was also
removed, as evidenced by the reduced EMG amplitude (Figure 5g) and the underestimate in ARV
(Figure 6f). Optimization of the WT and ICA methods is also challenging in real applications, where the
ground truth is normally unknown.
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The template subtraction method utilizes the quasi-periodic characteristics of the ECG signal
and assumes the EMG to be Gaussian distributed with zero mean. Our results suggest TS to produce
the lowest RMSE in ARV and MF and the second lowest RMSE in KR2 among all the six methods,
irrespective of the data consisting of healthy or dysrhythmia ECG interference. Besides, different from
ICA, TS can work on single channel recording rather than multichannel recordings. Furthermore,
it does not need a clean ECG as a reference, which instead is required by the adaptive filtering method.
Therefore, TS seems to be the most suitable method for ECG removal in trunk EMG measurements
although its computational time is slightly higher than GT, HP, WT, and ICA.

It should be noticed that, in the present study, the synthetic data is generated by real-life
EMG and ECG recorded by physical systems, which contain the instrumentation noise and,
possibly, the power-line interference. Therefore, a notch filter was employed in the preprocessing in
order to remove the power-line interference. In addition, a 200 Hz low-pass filter was implemented
for the ECG before mixing in order to reduce the high-frequency instrumentation noise and,
therefore, reduce the crosstalk between the noise from the two signals. Other noise, such as the
motion artifacts, is not considered since it is out of the scope of the present study.

It should also be noticed that, the generated synthetic data has a fixed SNR, i.e., −10 dB, which is
realistic for trunk EMG [10]. However, although not all the six methods were compared, Zhou et al. [10]
and Drake et al. [20] suggested that the optimal ECG removal method may depend on movement
type and contraction level. Therefore, dedicated studies focused on investigating the influence of
movement type and contraction level on the performance of all these six ECG removal methods are
still needed in the future.

5. Conclusions

In the present study, six ECG removal algorithms for trunk EMG measurements were implemented
and compared for the first time using synthetic data generated by combining in vivo bicep EMG and
healthy or dysrhythmia ECG recorded on the chest. In order to assess the performance of the ECG
removal methods, KR2, ARV, and MF were calculated from the obtained EMG signals and compared
with the values derived from the EMG before mixing. Our results suggest the template subtraction
method to achieve the best performance among all the methods, providing useful insight for the
selection of suitable ECG removal algorithms. In addition, the template subtraction method does
not require multichannel recordings nor a reference signal, further increasing its applicability in
clinical practice.
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Abbreviations

The following abbreviations are used in this manuscript.

EMG Electromyogram
ECG Electrocardiogram
ARV Average rectified value
MF Mean frequency
GT Gating
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HP High-pass filtering
TS Template subtraction
AF Adaptive filtering
BSS Blind source separation
ICA Independent component analysis
MMC Máxima Medical Center
MVC Maximum voluntary contraction
SNR Signal-to-noise ratio
FIR Finite impulse response
RMSE Root mean square error
NLMS Normalized least mean square
STFT Short-time Fourier transform
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