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Simple Summary: A subset of colorectal cancers (CRCs) displays deficient DNA mismatch repair
(dMMR) that leads to microsatellite instability (MSI). These tumors have distinct clinicopathological
features and have been associated with a more favorable prognosis. Knowledge of mismatch repair
(MMR) status has important implications for disease diagnosis, surgical intervention, and adjuvant
treatment decisions.

Abstract: Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide.
Universal MMR/MSI testing is standard of care for all patients with newly diagnosed CRC based
on multi-society guidelines in the United States. Such testing is intended to identify patients with
Lynch Syndrome due to a germline mutation in an MMR gene, but also detects those with sporadic
dMMR/MSI-high CRCs. The prognostic utility of MMR/MSI status in non-metastatic colorectal can-
cer has been studied extensively, yet more limited data are available for its predictive utility. Results
have not been entirely consistent due to potential stage-related differences and limited numbers of
dMMR/MSI-H patients included in the studies. In this review, we summarize the current evidence
for the prognostic and predictive value of dMMR/MSI-H in non-metastatic CRC, and discuss the use
of this biomarker for patient management and treatment decisions in clinical practice.

Keywords: mismatch repair deficiency; microsatellite instability; non-metastatic colorectal cancer;
prognostic; predictive

1. Introduction

Colorectal cancer (CRC) is the second most common cancer diagnosed in women and
the third in men worldwide, with more than 1.8 million new cases and approximately
900,000 deaths in 2017 [1]. It is estimated that 147,950 new CRC cases will be diagnosed in
the United States with 53,200 deaths in 2020 [2]. Approximately 15% of CRCs show deficient
DNA mismatch repair (dMMR) that results in microsatellite instability (MSI). These tumors
are frequently poorly differentiated with mucinous features or a medullary growth pattern,
although they can also resemble more typical CRCs. CRCs with dMMR have earlier
stage at diagnosis compared to proficient MMR (pMMR) tumors [3,4]. Due to the loss
of mismatch repair (MMR) function, these tumors accumulate a high mutational burden
with abundant mutation-derived neoantigens that attract tumor infiltrating lymphocytes
(TILs) [5,6]. Non-metastatic CRCs with dMMR/MSI generally have better stage-adjusted
prognosis compared to pMMR tumors, and data suggest that MMR status may also be
predictive of tumor responsiveness to different treatments [7,8].

Here, we review the role of dMMR/MSI in CRC development, and the prognostic and
predictive value of dMMR/MSI in non-metastatic CRCs.

2. The Role of dMMR/MSI in CRC Development

The first multi-step model of CRC carcinogenesis considered adenomatous polyposis
coli (APC) gene inactivation as the initial step followed by KRAS gene mutation and
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chromosome 18q loss of heterozygosity that further promotes the growth of precancerous
adenomas. P53 gene inactivation mediates the adenoma-to-carcinoma transition. However,
an important alternative pathway was identified where tumors showed microsatellite
instability (MSI) due to deficient DNA mismatch repair (dMMR).

MSI is characterized by short sequence repeats (SSRs) or short tandem repeats (STRs)
of repeated DNA sequences with various lengths [9]. Microsatellites are widely distributed
throughout the genome in a non-random fashion and are prone to mutations during DNA
replication [10,11]. In 1993, an analysis of 130 matched CRC tumors and adjacent normal
tissues identified differences in polymerase chain reaction (PCR) products whereby 12%
of tumors had bands that were shorter in length (band-shift) [12]. Sequencing of these
bands by the Perucho lab revealed that they contained simple repetitive sequences termed
microsatellites. Further study demonstrated that tumors with this type of mutation had
unique characteristics that led to the hypothesis that these tumors could be hereditary.
Simultaneously, Thibodeau et al. examined somatic instability in CRCs in human chromo-
somes 5q, 15q, 17p, and 18q and identified differences between normal tissue and tumor
DNA that linked MSI directly with CRC carcinogenesis [13]. MSI was found in association
with CRCs arising in hereditary non-polyposis colorectal cancer (HNPCC) including other
cancer types, suggesting that cancers developing in HNPCC have a common pathogenesis
via MSI [14]. Almost at the same time, Aaltonen’s lab confirmed widespread MSI in familial
CRC; however, MSI was also identified in 13% of sporadic CRC cases [15]. This suggested
that MSI is a pathogenic pathway shared by both hereditary and sporadic CRC. MSI CRCs
are characterized by a large number of mutations at microsatellite sequences, and are com-
monly located in the proximal colon, have poorly differentiated histology with mucinous
features, and appear to have better clinical outcomes [14,16].

The mismatch repair (MMR) system consists of a family of enzymes that detect DNA
replication errors (such as mismatches between the two strands of DNA). The MMR
system includes MHL1, MSH2, MSH6, and PMS2 genes. Approximately 90% of germline
mutations are detected in MLH1 and MSH2 genes. Germline mutations in MLH1 were
first identified in multiple familial CRC kindreds [17,18]. Human PMS1 and PMS2 genes
were subsequently implicated in familial CRC, although the role of PMS1 in CRC remains
unclear [19]. It took longer to confirm the role of MSH6 in MSI CRC due to delayed onset
of cancer that obscured the initial effort of discovery [20]. The EpCAM (Epithelial cellular
adhesion molecule) gene is located upstream of MSH2, and germline 3′ end deletion of the
EpCAM gene leads to hypermethylation of the MSH2 promoter (constitutional epimutation)
and MSI [21]. Germline mutations of these genes (MLH1, MSH2, MSH6, PMS2, and EpCAM)
lead to HNPCC, also known as Lynch syndrome.

Although progress in recognizing the role of MMR deficiency in MSI CRC is mainly
based on the studies in familial CRC (HNPCC) population, these patients represent only 3%
of all CRCs [22]. Approximately 12–17% of all CRCs have MSI which indicates the majority
of MSI CRCs are sporadic [7,23]. The sporadic MSI CRCs have unique characteristics
including later onset of cancer without familial clustering, frequent BRAFV600E mutations,
and better clinical outcomes as also found for familial MSI tumors [24,25]. Most sporadic
MSI CRCs show loss of MLH1 and PMS2 proteins and the mechanism of MSI in these
tumors is due to hypermethylation of the MLH1 gene promoter typically in association
with the CpG island methylator phenotype (CIMP) [26]. Approximately 50% of human
genes have promotor regions embedded in the clusters of cytosine-guanosine residues
called CpG islands, and cytosines in the CpG island can be methylated, thus leading
to gene silencing [27]. BRAFV600E occurs exclusively in sporadic dMMR/MSI CRCs in
association with hypermethylation of the MLH1 gene promoter, often with the CpG island
methylator phenotype (CIMP) [28,29]. However, 2.5–3.9% of patients with MSI CRCs do
not have germline mutation or MLH1 methylation and these tumors have been found to
have double somatic MMR mutations [22,30–32]. These double somatic MSI CRCs have a
higher frequency of PIK3CA somatic mutation [33].
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Genes containing microsatellites are prone to mutations due to dMMR. Such genes
include those regulating cell proliferation (TGFβR2, GRB1, TCF-4, WISP3, IGFIIR), cell cycle
or apoptosis (caspase-5, BAX, FAX, PTEN), and DNA repair (CHK1, MLH3, RAS50, MSH3).
Mutations in these genes predispose to CRC development [34].

dMMR/MSI CRCs typically harbor increased numbers of both intraepithelial and
peritumoral lymphocytes that represent a response to neoantigens generated by the high
mutational burden secondary to MSI [6,35,36]. HNPCC-associated CRCs are more com-
monly seen in men and usually develop at an earlier age than sporadic dMMR/MSI CRCs
(average age of cancer onset, 52.9 vs. 70.8 years) [37,38]. HNPCC patients have high risk
for synchronous and metachronous CRCs. One study reported that approximately 7%
of patients with HNPCC had synchronous CRCs at the time of diagnosis [39]. For HN-
PCC patients who had a segmental resection of the first colon cancer, 62% developed a
metachronous CRC within 30 years of follow-up, suggesting the need of prophylactic total
colectomy in this population [40].

It is critical to identify dMMR/MSI CRCs and currently there are different approaches
for detection, including immunohistochemistry (IHC), polymerase chain reaction (PCR)-
based methods, and next generation sequencing (NGS). IHC directly evaluates the MMR
protein presence/absence in the tumor cells while PCR-based tests use a set of primers
(most commonly including two mononucleotide probes (BAT25 and BAT26) and three
dinucleotide probes (D2S123, D5D346, D17S250)) to check for PCR products size differ-
ences between normal and tumor tissues (band-shift). These two approaches are sensitive
and specific with high concordance rate (92–97%) [41,42]. Importantly, there is a small
percentage of dMMR CRCs that show intact expression of MMR proteins at IHC, yet have a
dysfunctional MMR protein that is due to a missense mutation in an MMR gene. To detect
such cases, some experts recommend both IHC and PCR-based tests for dMMR/MSI screen-
ing [43,44]. More recently, massive parallel NGS demonstrated the capability of accurately
detecting MSI. NGS is able to detect MSI simultaneously in a large number of microsatellite
loci. One study evaluated 11,573 solid tumor specimens with NGS and demonstrated a
high concordance rate with PCR and IHC results (97%) [45]. Of note, this approach requires
specific algorithms and computational methods which can vary with different NGS platforms,
although high sensitivity and specificity were confirmed [46,47]. As NGS-guided precision
oncology is becoming part of routine clinical practice, this approach is frequently utilized
to identify MSI cancers. Liquid biopsy has emerged as a comprehensive approach to char-
acterize the molecular features of tumors by testing cell-free DNA (cfDNA, i.e., fragments
of DNA that are shed into the bloodstream from dividing cells during cell proliferation or
cell death). One study showed that MSI testing using cfDNA has an overall accuracy of
98.4% [48]. This method is currently incorporated into clinical practice, especially for those
patients who have insufficient tumor tissue for IHC, PCR, or NGS tests.

3. Prognostic Value of dMMR/MSI in Non-Metastatic Colorectal Cancer

CRCs with dMMR/MSI are more commonly seen in early stage disease and the
incidence is reported to be 20% in stage II, 11% in stage III, and 3.5% in metastatic disease,
suggesting that MSI CRCs have a reduced tendency for distant metastasis [49]. Substantial
evidence supports that dMMR/MSI is a strong prognostic marker in early stage CRCs with
a favorable impact on survival. The quick and simple and reliable (QUASAR) phase III
clinical trial evaluated the role of fluorouracil-based adjuvant chemotherapy in stage II
colon cancer. In a subsequent analysis, there were 1913 stage II and III CRCs patients,
of which 218 (11.4%) patients were found to have MSI tumors and only 10 were stage
III patients. The proportion of MSI tumors varied significantly by primary site: 179 of
695 (26%) right-sided colon, 22 of 685 (3%) left-sided colon, and 3 of 407 (1%) rectal
cancers. In a subgroup analysis in stage II patients, dMMR/MSI was associated with
a significantly decreased risk of tumor recurrence (risk ratio (RR) 0.53, 95% confidence
interval (CI): 0.29–0.67, p < 0.001) [50]. In a pooled analysis of 1027 stage II and III colon
cancer patients of which 165 (16.1%) showed dMMR/MSI, the presence of dMMR/MSI
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was associated with significantly improved disease-free survival (DFS) (hazard ratio (HR)
0.51, 95% CI: 0.29–0.89, p = 0.009) and overall survival (OS) (HR 0.47, 95% CI: 0.26–0.83,
p = 0.004) in patients who did not receive adjuvant chemotherapy [51]. In the Adjuvant
Colon Cancer Endpoint (ACCENT) database analysis that included 17 adjuvant clinical
trials, 524 of 2270 (23.1%) stage II colon cancer patients were identified to have dMMR/MSI
tumors. dMMR/MSI was associated with improved overall survival (OS) (HR 0.27, p = 0.01)
and time to recurrence (TTR) (HR 0.27, p = 0.01) in stage II colon cancer patients following
surgical resection compared to patients with MMR proficient (pMMR)/microsatellite stable
(MSS) disease [52].

The prognostic value of dMMR/MSI in stage III CRC is less clear compared to stage
II and conflicting data exist. In a pooled analysis of 2141 stage II (n = 778) and stage III
(n = 1363) colon cancer patients, 344 (16.1%) had dMMR/MSI tumors that were associated
with delayed TTR (HR 0.72, 95% CI: 0.56–0.91, p = 0.005) and improved disease-free
survival (DFS) (HR 0.80, 95% CI: 0.64–0.99, p = 0.035) and OS (HR 0.79, 95% CI: 0.64–0.99,
p = 0.031) vs. pMMR/MSS tumors. Further subgroup analysis showed that the prognostic
benefit only achieved statistical significance in stage III cancers for TTR (HR 0.72, 95% CI:
0.54–0.97, p = 0.024) [53]. In the PETACC3 adjuvant study with 1404 stage II and III colon
cancer patients, 15% of these patients had dMMR/MSI tumors with 22% being stage
II and 12% stage III cancers. Patients with dMMR/MSI cancers had better relapse-free
survival (RFS) (HR 0.54, 95% CI: 0.37–0.81, p = 0.003) and OS (HR 0.43, 95% CI: 0.27–0.70,
p = 0.001) compared to MSS CRCs by multivariable analysis [54]. In a pooled analysis of
stage II and III colon cancer patients from the National Surgical Adjuvant Breast and Bowel
Project (NSABP) clinical trials C-07 (n = 1836) and C-08 (n = 463), dMMR/MSI tumors
were associated with better RFS (HR 0.48, 95% CI: 0.33–0.70, p = 0.0001) and OS (HR 0.64,
95% CI: 0.46–0.89, p = 0.0084) [55]. Furthermore, dMMR/MSI in stage III cancers was also
found to be associated with better survival after recurrence (SAR). A pooled analysis of
seven phase III clinical trials included 2630 patients who had resected stage III colon cancer
with subsequent tumor recurrence. Among these, 271 patients (10.3%) had dMMR/MSI
tumors which were associated with better SAR (HR 0.82, 95% CI: 0.69–0.98, p = 0.029)
compared to MSS tumors. Of note, BRAFV600E was associated with poorer prognosis in
both dMMR/MSI and in pMMR/MSS stage III colon cancers [56].

Other studies found that dMMR/MSI was not prognostic in stage III colon cancer.
The prognostic impact of dMMR/MSI was studied in 2580 patients with stage III colon
cancer who participated in the phase III adjuvant trial of FOLFOX-based chemotherapy
(North Central Cancer Treatment Group (NCCTG) N0147). Among 2580 participants,
314 (12%) patients had dMMR/MSI tumors which made this the largest dMMR/MSI
stage III CRC cohort reported to date. This study revealed that dMMR/MSI was not
associated with better DFS compared to pMMR/MSS patients which did not change
after adjustment for clinical variables, BRAF or KRAS status (HR 0.82, 95% CI: 0.64–1.07,
p = 0.14). However, a statistically significant interaction was found between MMR status
and disease-free survival (DFS) by primary tumor sidedness. Significantly better DFS was
seen in dMMR tumors of the proximal colon (HR 0.71, 95% CI: 0.53–0.94, p = 0.018) but not
in the distal colon (HR 1.71, 95% CI: 0.99–2.95, p = 0.056), and these results were validated
in an independent cohort (CALGB 89803) [57]. Subsequent analysis of the PETACC3
study revealed that dMMR/MSI status was associated with better RFS (HR 0.48, 95% CI:
0.34–0.69, p < 0.001) and OS (HR 0.47, 95% CI: 0.31–0.72, p < 0.001) in the overall study
population. However, the prognostic effect was mainly driven by the benefits seen in stage
II disease since only a borderline benefit was seen for RFS in stage III patients [58].

Studies also suggested that other prognostic markers such as node stage (N2 versus
N1), and RAS and BRAF mutation status may also contribute to prognosis in dMMR/MSI
CRC. One study showed that N2 disease (≥4 positive lymph nodes) among dMMR/MSI
stage III CRCs was associated with worse clinical outcomes [57]. Due to the relatively small
numbers of dMMR/MSI CRCs included in individual studies, inconsistent results have
been reported. In the ACCENT database of 17 adjuvant chemotherapy trials, BRAFV600E
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was associated with worse SAR (HR 2.65, 95% CI 1.67–4.21, p < 0.0001) in dMMR/MSI
CRCs. Although KRAS mutations and BRAFV600E mutation were associated with worse
DFS in the NCCTG N0147 study, their prognostic value was limited to pMMR/MSS
tumors [57]. This result was confirmed in a pooled analysis of 4411 stage III colon cancer
patients from the NCCTG N0147 and PETACC8 studies with 477 dMMR/MSI tumors [59].

Recently, a systematic review and meta-analysis included 51 studies with 28,331 stage
II and III CRC patients. The 16.4% of patients found to have dMMR/MSI CRCs had
improved DFS (HR 0.67, 95% CI: 0.59–0.75, p < 0.001) and OS (HR 0.74, 95% CI: 0.68–0.82,
p < 0.001) and importantly, the observed DFS and OS benefits were similar in both stage II
and stage III disease [60]. However, another meta-analysis was performed that included
only stage III CRCs from 36 studies consisting of both randomized clinical trials (RCT)
and non-RCTs. This study found that dMMR/MSI had no prognostic impact for OS, DFS,
and disease specific survival (DSS) [61]. The discrepancies among these studies are likely
multifactorial and include data from non-randomized and non-study cohorts, different
adjuvant chemotherapy regimens, small numbers of dMMR/MSI CRC patients enrolled
in each study, and other factors contributing to heterogeneity of the patient populations.
One observation appears consistent, which is that the prognostic impact of dMMR/MSI
declines with regional and distant metastatic disease such that a favorable prognosis exists
in stage II CRC while the effects diminish in stage III disease.

Why does the prognostic value of dMMR/MSI decrease in stage III CRC? It is believed
that the prognostic benefits from dMMR/MSI rely on the immunological reaction associated
with dMMR/MSI tumors. Enhanced lymphocytic infiltration with an immunoreaction
is detected in dMMR/MSI CRCs and this leads to increased host anti-tumor immunity
to suppress tumor metastasis [62]. The observed decreased incidence of dMMR/MSI
CRCs with advancing disease stage is consistent with this hypothesis. It is speculated that
with disease progression and development of metastasis, mechanisms of immune evasion
develop that enable dMMR/MSI tumors to evade immune surveillance with loss of a
prognostic advantage. This is seen in stage IV CRCs with dMMR/MSI where no prognostic
advantage was found [63]. Table 1 lists the recent studies evaluating prognostic value of
dMMR/MSI in CRC.

Table 1. Recent studies evaluating the prognostic value of dMMR/MSI in colorectal cancer.

Study Name Year of
Publication

Disease
Stage

Patient
Number

dMMR/MSI
Patients Endpoint HR (95% CI) p Value

QUASAR study [50] * 2011 II 636 167 RR 0.44 (0.29–0.67) <0.001

Pooled analysis [51] 2010 II, III 1027 165
DFS 0.51 (0.29–0.89 0.009
OS 0.47 (0.26–0.83) 0.004

ACCENT analysis [52] 2014 II 2270 524
OS 0.27 (0.10–0.74) 0.01

TTR 0.27 (0.10–0.75) 0.01

Pooled analysis [53] 2010 II, III 2141 344
DFS 0.80 (0.64–0.99) 0.035
OS 0.79 (0.64–0.99) 0.031

TTR 0.72 (0.56–0.91) 0.005

PETACC3 [54] 2012 II, III 1404 210
RFS 0.54 (0.37–0.81) 0.003
OS 0.43 (0.27–0.70) 0.001

NSABP C-07/08 [55] 2012 II, III 2299 207
TTR 0.48 (0.33–0.70) 0.0001
OS 0.64 (0.46–0.89) <0.01

SAR 1.60 (1.07–2.41) 0.02
ACCENT analysis [56] 2019 III 2630 271 SAR 0.82 (0.69–0.98) 0.029
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Table 1. Cont.

Study Name Year of
Publication

Disease
Stage

Patient
Number

dMMR/MSI
Patients Endpoint HR (95% CI) p Value

NCCTG N0147 [57] 2013 III 2580 314
DFS 0.82 (0.64–1.07) 0.14

DFS Proximal 0.71 (0.53–0.94) 0.053
DFS Distal 1.71 (0.99–2.95) 0.056

PETACC3 [58] 2015
II 309 86

RFS 0.26 (0.10–0.65) NR
OS 0.16 (0.04–0.64) NR

III 755 104
RFS 0.67 (0.46–0.99) NR
OS 0.70 (0.44–1.09) NR

PETACC-8 and
NCCTG N0147 [59] ** 2017 III 4411 477

TTR KRAS
mutant 1.04 (0.57–1.90) 0.91

OS KRAS
mutant 1.07 0.57–2.02) 0.84

TTR
BRAFV600E 0.94 (0.58–1.51) 0.80

OS BRAFV600E 1.26 (0.78–2.04) 0.35

Systemic review and
meta-analysis [60] 2019

II, III
17065 2337 OS 0.74 (0.68–0.82) <0.001
23195 3264 DFS 0.67 (0.59–0.75) <0.001

III
7481 907 OS 0.71 (0.63–0.81) <0.001

10714 1198 DFS 0.69 (0.60–0.80) <0.001

Meta-analysis [61] 2019

III RCT NR NR
OS 0.96 (0.75–1.23) NR

DFS 0.83 (0.65–1.07) NR

III
non-RCT

NR NR
OS 0.89 (0.62–1.28) NR

DFS 0.83 (0.65–1.07) NR
DSS 1.07 (0.68–1.69) NR

Abbreviations: HR: hazard ratio; CI: confidence interval; QUASAR: Quick and Simple and Reliable; RR: recurrence rate; ACCENT: Adjuvant
Colon Cancer Endpoint database; OS: overall survival; TTR: time to recurrence; DFS: disease free survival; PETACC: Pan-European Trial
in Alimentary Tract Cancer; RFS: recurrence free survival; NSABP: National Surgical Adjuvant Breast and Bowel Project; SAR: survival
after recurrence; NCCTG: North Central Cancer Treatment Group; RCT: randomized controlled trials; DSS: disease specific survival.
* Only reported the right-sided colon cancer. ** Only listed analysis for dMMR/MSI population

4. Predictive Value of dMMR/MSI for Adjuvant Chemotherapy in Non-Metastatic
Colorectal Cancer

Initial retrospective small studies suggested that fluorouracil (5-FU)-based adjuvant
chemotherapy was beneficial for stage II and III CRC cancer irrespective of the MMR
status [64–66]. A retrospective study including 891 consecutive stage III CRC with median
follow-up of 54 months suggested that adjuvant chemotherapy significantly improved
survival in patients with dMMR/MSI cancers [67]. This study only used one microsatellite
marker to identify MSI disease and there were only 63 dMMR/MSI patients included in
the study.

Ribic et al. studied specimens from prospective, randomized trials of 5-FU-based adju-
vant chemotherapy to further evaluate the predictive utility of dMMR/MSI [68]. The study
included 570 patients with 95 (16.7%) dMMR/MSI stage II and III colon cancer patients,
and 287 patients (42 dMMR/MSI) who did not receive adjuvant treatment. MSI status was
determined by a PCR-based assay with multiple probes. dMMR/MSI was associated with
a better 5-year survival rate among patients who did not receive adjuvant chemotherapy
(HR 0.31, 95% CI: 0.14–0.72, p = 0.004). However, 5-FU-based adjuvant chemotherapy did
not improve 5-year OS (HR 1.07, 95% CI: 0.62–1.86, p = 0.80) in patients with dMMR/MSI
tumors while it seemed to benefit those with pMMR/MSS tumors (HR 0.72, 95% CI 0.53–
0.99, p = 0.04). The lack of benefit seemed to be similar in both stage II and stage III
dMMR/MSI cancers in a subgroup analysis.

Another pooled analysis combined five randomized adjuvant clinical trials with
457 stage II and III colon cancer patients and confirmed the lack of benefit of 5-FU as
adjuvant therapy in dMMR/MSI tumors [51]. Seventy dMMR/MSI patients were included
in the study and 5-FU-based adjuvant treatment failed to improve DFS (HR 1.39, 95% CI:
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0.46–4.15, p = 0.56) although it significantly improved DFS for pMMR/MSS patients
(HR 0.67, 95% CI: 0.48–0.93, p = 0.02). To further evaluate the stage-specific predictive
utility of dMMR/MSI, the study combined these patients with the previously reported
dataset [68] that resulted in 1027 stage II and III patients with 165 dMMR/MSI cases.
Although adjuvant chemotherapy showed a DFS benefit in stage III pMMR/MSS patients
(HR 0.64, 95% CI: 0.48–0.84, p = 0.001), it did not lead to a DFS benefit in either stage
II (HR 2.30, 95% CI 0.29–0.89, p = 0.09) or stage III (HR 1.01, 95% CI 0.26–0.83, p = 0.98)
dMMR/MSI colon cancers. Interestingly, there was a detrimental effect on OS observed
from receipt of adjuvant chemotherapy in stage II dMMR/MSI colon cancer patients
(HR 2.95, 95% CI: 1.02–8.94, p = 0.04). A Korean study including 860 stage II colon cancer
patients with 126 (14.7%) dMMR/MSI cases also confirmed that adjuvant chemotherapy
did not improve DFS (HR 0.557, p = 0.254) in this patient population, although OS seemed
to be improved (HR 0.288, p = 0.033) [69].

Analysis of 1913 stage II CRCs from the QUASAR study including 218 dMMR/MSI
cases, showed that MMR status is prognostic but is not predictive for the outcome of
adjuvant chemotherapy (odds ratio (OR) 0.81, 95% CI: 0.29–2.22) [50]. However, this study
had a very small number of events (only 15) which makes it difficult to interpret the
findings. Another study pooled data from two adjuvant trials (CALGB 9581 and 89803)
that included 1852 patients of which 330 were dMMR/MSI and included 199 (21.1%)
stage II and 131 (14.3%) stage III CRC patients. MMR status was found to be prognostic
but not predictive of outcome of adjuvant treatment consisting of infusional 5-FU with an
irinotecan-based regimen) [70].

Another study evaluated the predictive utility of dMMR/MSI in 2141 stage II and III
colon cancer patients of which 344 were dMMR/MSI and were treated with 5-FU-based ad-
juvant chemotherapy [53]. This study found that 5-FU-based adjuvant treatment was asso-
ciated with a reduced 5-year recurrence rate (22% versus 37%, p = 0.044) especially at distant
sites (11% versus 29%, p = 0.011), including the liver (22% versus 56%, p = 0.005). The benefit
of adjuvant chemotherapy was limited to stage III disease. A subgroup analysis suggested
that the benefit of 5-FU-based adjuvant treatment among dMMR/MSI stage III tumors was
limited to patients with suspected hereditary, but not sporadic dMMR/MSI CRCs.

Adjuvant treatment for CRC evolved and fluorouracil, leucovorin, and oxaliplatin
(FOLFOX) became the standard of care after the landmark MOSAIC study (multicenter
international study of oxaliplatin/5-fluorouracil/Leucovorin (LV) in the adjuvant treatment
of colon cancer) which showed benefits in DFS and OS for the addition of oxaliplatin to the
5-FU/leucovorin regimen [71].

A small retrospective study of 233 stage III colon cancer patients included 32 dMMR/MSI
cases. Patients had either 5-FU/LV (n = 20) or FOLFOX (n = 12) as adjuvant treatment [72].
The addition of oxaliplatin was associated with improved DFS in dMMR/MSI patients
compared to 5-FU/LV only treatment (HR 0.17, 95% CI: 0.04–0.68, p = 0.01). In an update
of the MOSAIC study with 9.5 years median follow-up, 95 dMMR/MSI stage II/III CRC
cases were identified among 1008 patients. FOLFOX as adjuvant treatment was associated
with a trend toward improved DFS (HR 0.48, 95% CI: 0.21–1.12, p = 0.088) and OS (HR 0.41,
95% CI: 0.16–1.07, p = 0.069) among patients with dMMR/MSI tumors [73]. A retrospective
study known as AGEO included 433 dMMR/MSI stage II and III colon cancer patients
and evaluated the impact of adjuvant 5-FU or FOLFOX treatment [74]. In the study pop-
ulation, oxaliplatin-based adjuvant chemotherapy was associated with a trend toward
improved DFS (HR 0.13 95% CI 0.02–1.05, p = 0.06) while 5-FU/LV alone did not show a
DFS benefit. A subgroup analysis showed that the DFS benefit from oxaliplatin-based
adjuvant treatment was limited to stage III colon cancers (HR 0.41, 95% CI: 0.19–0.87,
p = 0.02). Most recently, a pooled analysis of C-07 and MOSAIC trial including 1625 stage
III colon cancer patients with 185 dMMR/MSI cases revealed that the addition of oxali-
platin to fluoropyrimidine adjuvant treatment significantly improved OS (HR 0.52, 95% CI:
0.28–0.93) and DFS (HR 0.47, 95% CI: 0.27–0.82) compared to fluoropyrimidine alone treat-
ment. Interestingly, the survival benefit from oxaliplatin based adjuvant treatment seemed
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to be more prominent in dMMR/MSI patients [75]. These data suggested dMMR/MSI
stage III CRC patients benefit from oxaliplatin-based adjuvant treatment.

Given the favorable prognosis of dMMR/MSI in stage II CRC and lack of clear
evidence of a survival benefit from 5-FU-based adjuvant treatment, the current guidelines
do not recommend adjuvant treatment for stage II dMMR/MSI colon cancer. For stage III
CRC with dMMR/MSI, oxaliplatin-based adjuvant treatment is considered standard of care
due to the diminished prognostic benefit for dMMR/MSI in these tumors and evidence of
survival benefit from oxaliplatin-based treatment. Table 2 lists recent studies evaluating
predictive utility of dMMR/MSI for adjuvant chemotherapy.

Table 2. Recent studies evaluating the predictive value of dMMR/MSI in colorectal cancer.

Study Details Year Publi-
cation

Disease
Stage

Patient
Num-

ber

dMMR/MSI
pts

Adjuvant
Chemo Endpoint HR (95%

CI)
p

Value

Pooled analysis
[68] 2003

II, III 570 95 5-FU
OS (no adjuvant) 0.31

(0.14–0.72) 0.004

OS (with adjuvant) 1.07
(0.62–1.86) 0.80

II 312 58
5-FU

OS (with adjuvant) 3.28
(0.86–12.48) NR

III 258 37 OS (with adjuvant) 1.42
(0.36–5.56) NR

Pooled analysis
[51] 2010 II and

III

457 70

5-FU

DFS (with adjuvant) 1.10
(0.42–2.91) 0.85

1027 165

DFS, stage II (with
adjuvant)

2.30
(0.85–6.24) 0.09

DFS stage III (with
adjuvant)

1.01
(0.41–2.51) 0.98

OS stage II (with
adjuvant)

2.95
(1.02–8.94) 0.04

Korean study
[69] 2015 II 860 126 5-FU

DFS (with adjuvant) 0.557 0.254
OS (with adjuvant) 0.288 0.033

QUASAR [50] 2011 II 1913 218 5-FU OR (for recurrence) 0.81
(0.29–2.22) NR

Pooled analysis
[53] 2011 II and

III
2141 344 5-FU

5-year recurrence
rate * NR 0.044

Distant recurrence * NR 0.011
Liver recurrence * NR 0.005

Retrospective
study [72] 2010 III 233 32 FOLFOX vs.

5-FU/LV DFS 0.17
(0.04–0.68) 0.01

MOSAIC
subgroup
study [73]

2015 II and
III

1008 95
FOLFOX vs.

5-FU/LV
DFS 0.48

(0.21–1.12) 0.088

OS 0.41
(0.16–1.07) 0.069

AGEO study
[74] 2016 II and

III 433 433

FOLFOX vs.
5-FU/LV

vs. surgery
alone

DFS ** 0.41
(0.19–0.87) 0.02

Abbreviations: HR: hazard ratio; CI: confidence interval; 5-FU: Fluorouracil; OS: overall survival; NR: not reported; DFS: disease free
survival; QUASAR: Quick and Simple and Reliable; OR: odds ratio; FOLFOX: Fluorouracil, Leucovorin, and oxaliplatin. * Only listed stage
III cancers (1183 patients with 180 dMMR/MSI cases). ** Only for stage III disease

5. The Predictive Values of dMMR/MSI for Immunotherapy in Non-Metastatic
Colorectal Cancer

MMR deficiency leads to MSI resulting in a high tumor mutational burden (TMB)
that is believed to generate highly immunogenic neoantigens that attract cytotoxic
T-lymphocyte and Th1 cells to the tumor microenvironment [76]. This may, in part,
explain the good prognosis seen in early stage dMMR/MSI CRCs. A recent study of
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179 dMMR/MSI CRCs revealed that these tumors had a high rate of mutations in antigen
presentation machinery and important immune-modulating pathways [77]. Tumor cells
with dMMR/MSI show overexpression of immune checkpoint proteins compared to
pMMR/MSS cancers; this may counteract immune surveillance [78]. Together, these fea-
tures may underlie the dramatic response to immunotherapy that is observed in metastatic
dMMR/MSI CRCs.

Le et al. first reported the dramatic and durable response of treatment refractory
dMMR/MSI metastatic CRCs to an inhibitor (pembrolizumab) of programmed death pro-
tein 1 (PD-1) [79]. The response rate was 50% in the dMMR/MSI population compared
to 0% in pMMR/MSS patients. The Checkmate 142 phase 2 study subsequently reported
frequent responses to single agent nivolumab, another PD-1 inhibitor [80], or the com-
bination of nivolumab and ipilimumab (a cytotoxic T-lymphocyte-associated protein 4
(CTLA4) inhibitor) in treatment refractory dMMR/MSI metastatic CRC [81]. More recently,
single agent pembrolizumab was evaluated in the Keynote 177 study as first-line therapy
compared to physician’s choice of chemotherapy. Pembrolizumab treatment demonstrated
a dramatic PFS benefit of 16.5 versus 8.2 months (HR 0.60, 95% CI: 0.45–0.80, p = 0.0002)
in dMMR/MSI metastatic CRCs [82]. Response rate to pembrolizumab monotherapy was
43.8%, and median duration of response was not yet reached at a median follow-up of
28.4 months. Based on these data, pembrolizumab or nivolumab alone or in combina-
tion with ipilimumab were FDA-approved for the treatment of dMMR/MSI metastatic
CRCs, with pembrolizumab being the only drug approved for first-line treatment. Of note,
the FDA approval of pembrolizumab was tumor agnostic and represents the first drug
approved irrespective of tumor type if dMMR/MSI is detected.

Since dMMR/MSI has become a verified predictive biomarker for the efficacy of
immunotherapy in metastatic CRC, it is reasonable to assume that immunotherapy may
also be an effective treatment for earlier stage CRCs as neoadjuvant or adjuvant treat-
ment. The NICHE study enrolled early stage colon cancer patients (21 dMMR/MSI and
20 pMMR/MSS) and treated them with neoadjuvant nivolumab (2 doses on days 1 and
15) plus ipilimumab (1 dose on day 1) followed by surgery within 6 weeks of study en-
rollment [83]. The primary endpoint of this study was safety and feasibility, and the
secondary endpoint was efficacy assessed by histopathological response and changes in
T-cell infiltration. Treatment was well tolerated, with only five patients experiencing grade
3–4 treatment-related toxicity. Of 20 dMMR/MSI patients, 19 had a major pathological re-
sponse (MPR) (defined as≤10% residual viable tumor in the surgical specimen) of which 12
had pathological complete response (pCR). One patient had a partial pathological response
(PPR, defined as ≤50% residual viable tumor in the surgical specimen). Interestingly,
four patients with pMMR/MSS disease also had a pathological response (three MPR and
one PPR). The impressive pathological responses seen in this study clearly highlight the
role of immunotherapy as neoadjuvant treatment for early stage dMMR/MSI CRCs.

Currently, there are two phase III randomized clinical studies that evaluate the role
of immunotherapy as adjuvant treatment of dMMR/MSI stage III CRC patients. Studies
include the ATOMIC trial that evaluates FOLFOX for 12 cycles alone or combined with the
anti-PD-L1 antibody atezolizumab, where the antibody is continued as monotherapy for an
additional 6 months. The other trial is known as POLEM and evaluates fluoropyrimidine-
based chemotherapy alone or combined with another PD-L1 antibody, avelumab [84,85].
If efficacious, the potential exists for these studies to change standard of care for adjuvant
treatment of non-metastatic dMMR/MSI CRCs. Furthermore, these studies may lead
to the evaluation of immunotherapy as adjuvant monotherapy or other immunotherapy
approaches in this patient population.

6. Novel Biomarkers in dMMR/MSI CRCs

Data from immunotherapy trials showed that approximately one-half of patients
with dMMR/MSI metastatic CRC respond to immunotherapy and some patients may
have disease progression after initial treatment response. Immunotherapy also has a
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unique side effect profile and is very costly. Therefore, there is an urgent need to find
predictive biomarkers to identify the subset of patients with dMMR/MSI who can benefit
from immunotherapy.

Tumor mutational burden (TMB) is defined as the number of somatic gene mutations
and can be determined by next generation sequencing in tumor tissue [86]. In a study
of 22 patients with dMMR/MSI metastatic CRC who were treated with an anti-PD-1 or
PD-L1 antibody, TMB had the strongest association with objective tumor response rate [87].
In this study, all 13 dMMR/MSI tumors with a high TMB (cutoff value 37–41 mut/Mb)
responded to immunotherapy (median PFS not reached at median follow-up >18 months)
while 6/9 patients with low TMB had disease progression on immunotherapy with a
median PFS of 2 months for these nine patients. Analysis of the TMB distribution in
18,140 dMMR/MSI metastatic CRCs revealed that a TMB of 37.4 mut/Mb corresponded to
35th percentile in this population. Recent data have shown molecular heterogeneity includ-
ing TMB within dMMR/MSI CRCs [88]. Analysis of TMB in 1057 dMMR/MSI solid tumors,
including CRCs, demonstrated that loss of MLH1/PMS2 was most common (77.2%) as a
cause of dMMR and was associated with lower mean TMB than was loss of MSH2/MSH6
(25.0 versus 46.8 mut/Mb). However, further study is needed to confirm these findings
and to determine the role of TMB, if any, in responsiveness to immunotherapy.

Binder et al. [89] performed genome-wide DNA and RNA sequencing for HNPCC tu-
mors and classified them into two groups based on the mutational spectrum and microsatel-
lite length. Group 1 is similar to sporadic dMMR/MSI CRC while group 2 is more like MSS
CRCs. The clinical implications of this categorization await further study. dMMR/MSI
CRCs were also found to be associated with NTRK gene rearrangement [90]. In one
study, 10 of 13 (76.9%) NTRK fusion positive metastatic CRC patients had dMMR/MSI
cancer while another study found 2 of 3 (66.7%) NTRK fusion positive colon cancers
were dMMR/MSI [90,91]. It is still unknown what the best treatment is for these patients
(immunotherapy or NTRK targeted agent).

Studies evaluating the tumor microenvironment and in particular, the density of
tumor infiltrating T-lymphocytes (TILs) have shown that TIL densities are prognostic
in both dMMR/MSI and pMMR/MSS colon cancers [92]. Furthermore, significantly
intertumoral heterogeneity of CD3+ and CD8+ T-cell densities was observed in dMMR/MSI
CRCs and these data suggest that tumors with lower T-cell densities may contribute to
immunotherapy resistance [93].

β2-microglobulin (B2M) is part of the major histocompatibility complex I (MHC-I)/human
leukocyte antigen class 1 (HLA-1) and is critical for antigen presentation [94]. Studies
have shown an association of β2-microglobulin (B2M) mutation with tumor metastases
in dMMR/MSI CRCs. In this regard, Kloor et al. evaluated B2M mutation status in
104 dMMR/MSI CRC patients and found B2M mutation was only detected in localized
disease [95]. Barrow et al. investigated B2M mutation and protein expression in 229 stage II
colon cancer patients (121 dMMR/MSI cases) in the QUASAR study [96]. The investigators
detected B2M mutations in 32% (39/121 cases) of dMMR/MSI tumors and none of these
patients had tumor recurrence while 18% of B2M wild-type tumors developed disease
recurrence. Other studies also reported similar results [97,98] and together, indicate that
mutation in B2M is associated with suppression of tumor metastasis.

Fragments of DNA are shed into the bloodstream from dividing cells during cell
proliferation or cell death and are referred to as cell free DNA (cfDNA). In patients with
cancer, a fraction of the cfDNA is tumor-derived and is known as circulating tumor
DNA (ctDNA) [99,100]. Recent studies have demonstrated the promise of detectable
ctDNA to indicate minimal residual disease with increased risk of recurrence following
curative-intent surgery in patients with non-metastatic CRC [101–103]. However, data are
lacking as to how to optimally manage patients with positive ctDNA in the adjuvant
setting, although it can be agreed that such patients need adjuvant treatment given their
high risk of recurrence. Currently, a phase 2 study is investigating the role of adjuvant
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pembrolizumab in patients with positive ctDNA after resection of their dMMR/MSI solid
tumors (NCT03832569).

7. Conclusions

Approximately two-thirds of dMMR/MSI CRCs are sporadics that generally result
from epigenetic inactivation of the MLH1 gene promoter. The other one-third of tumors are
found in association with Lynch Syndrome that arises from a heritable germline mutation
in an MMR gene. dMMR/MSI is associated with favorable prognosis in early stage CRCs,
and evidence indicates that adjuvant chemotherapy is not beneficial in stage II dMMR/MSI
colon cancer patients. The prognostic value of dMMR/MSI in stage III disease is less
robust compared to stage II patients, and these patients should receive standard adjuvant
chemotherapy with a combination of fluoropyrimidine and oxaliplatin.

dMMR/MSI is a predictive biomarker for favorable response to immune checkpoint
inhibitors in patients with metastatic disease, although the role of immunotherapy in
earlier stage CRCs is under active investigation in large randomized studies. Studies
examining molecular heterogeneity as well as intertumoral heterogeneity of the tumor
microenvironment within the dMMR/MSI tumors provide an increased understanding
of de novo or acquired resistance to immunotherapy in these tumors and may lead to the
identification of new predictive biomarkers.

Major implications for clinicians:

• Stage II dMMR/MSI colon cancers have a favorable prognosis and no adjuvant
treatment is recommended.

• The prognostic advantage of dMMR/MSI is attenuated in stage III vs. stage II colon
cancers, and oxaliplatin-based adjuvant treatment is recommended.

Major open questions:

• The role of adjuvant immunotherapy for stage III colorectal cancer (alone or combined
with chemotherapy).

• The potential for molecular biomarkers to guide the use of adjuvant treatment for
dMMR/MSI stage II/III colorectal cancer patients.
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