
Journal of Pathology Informatics 13 (2022) 100123

Contents lists available at ScienceDirect

Journal of Pathology Informatics

j ourna l homepage: www.e lsev ie r .com/ locate / jp i
Original Research Article
Classification of cervical biopsy free-text diagnoses through linear-classifier
based natural language processing
Jim Wei-Chun Hsu a, Paul Christensen a,b, Yimin Ge a,b, S. Wesley Long a,b,c,⁎

a Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
b Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
c Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
⁎ Corresponding author at: Houston Methodist Hospital, 6
E-mail address: swlong@houstonmethodist.org (S.W. Lon

http://dx.doi.org/10.1016/j.jpi.2022.100123

Available online 01 July 2022
2153-3539/© 2022 The Authors. Published by Elsevier I
creativecommons.org/licenses/by-nc-nd/4.0/).
A B S T R A C T
A R T I C L E I N F O
Keywords:
Natural language processing
Machine learning
Computational pathology
Linear classifier
FastText
Cervical biopsy
Routine cervical cancer screening has significantly decreased the incidence and mortality of cervical cancer. As selec-
tion of proper screening modalities depends onwell-validated clinical decision algorithms, retrospective review corre-
lating cytology and HPV test results with cervical biopsy diagnosis is essential for validating and revising these
algorithms to changing technologies, demographics, and optimal clinical practices. However, manual categorization
of the free-text biopsy diagnosis into discrete categories is extremely laborious due to the overwhelming number of
specimens, which may lead to significant error and bias. Advances in machine learning and natural language process-
ing (NLP), particularly over the last decade, have led to significant accomplishments and impressive performance in
computer-based classification tasks. In this work, we apply an efficient version of an NLP framework, FastText™, to
an annotated cervical biopsy dataset to create a supervised classifier that can assign accurate biopsy categories to
free-text biopsy interpretations with high concordance to manually annotated data (>99.6%). We present cases
where the machine-learning classifier disagrees with previous annotations and examine these discrepant cases after
referee review by an expert pathologist. We also show that the classifier is robust on an untrained external dataset,
achieving a concordance of 97.7%. In conclusion, we demonstrate a useful application of NLP to a real-world pathol-
ogy classification task and highlight the benefits and limitations of this approach.
Key messages

Linear classifiers using natural language processing algorithms success-
fully assigned accurate biopsy categories to free-text biopsy interpretations,
with a concordance greater than 99.6%on validation set data and 97.7% on
untrained external data.

Introduction

In the past 40 years, the incidence and mortality of cervical cancer de-
creased significantly in the United States due to successful cervical cancer
screening programs. Cytology is the mainstay of cervical cancer screening
programs around the world; the practice of cytology informs crucial subse-
quent clinical management and further testing through well-validated clin-
ical decision algorithms.1 Persistent infection with high-risk human
papillomavirus (hrHPV) causes cervical cancer and precancerous lesions.
Retrospective reviewof cervical cytology andHPV test results in correlation
with follow-up cervical biopsy diagnosesmay inform updates to clinical de-
cision algorithms.2,3 Our group previously published several studies of this
nature.4–9 As our dataset of cervical biopsy diagnoses increased in size,
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manual categorization of the free-text biopsy diagnosis into discrete catego-
ries proved increasingly challenging.

There is increasing interest in encoding pathology free-text information
by extracting clinically relevant information from data-rich pathology
reports.10 Some well-tested approaches have focused on using text-
processing algorithms to identify and amend report defects in surgical
pathology, such as errors in voice recognition11 and data tabulation.12

These approaches encompass a wide variety of text processing strategies,
including regular expressions, term detection and tokenizing, support vec-
tor machines, statistical approaches, and formal parsing. The comparison
of these approaches is difficult due to lack of validation studies, high-
quality and annotated datasets with abundant textual diversity, and well-
defined consensus approaches for performance evaluation.13

The field of natural language processing (NLP) consists of multiple
models that have been used to increase classification accuracy in myriad
applications ranging from quality improvement in factories, anomaly detec-
tion in national security, and photo recognition on social networks. These
NLP models use algorithms to transform free-text data into encoded data,
which is more reliable, less error-prone, and less costly to search than free
text.14 Two primary approaches exist: rules-based approaches, which
SA.
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Fig. 1. Overview and project workflow. 59 751 deidentified biopsy diagnoses from
5 years of cervical biopsy specimens at BioReference Laboratories, and the
associated biopsy class and mapped biopsy class. Biopsy diagnoses are pre-
processed to decrease uninformative variation in the text, and the FastText
algorithm was run with varying proportions of the data as training and validation
sets. The results were compared to rules-based regular expressions to assess
accuracy, discrimination threshold, and any discrepancies between the two
methods were examined.

J.W.-C. Hsu et al. Journal of Pathology Informatics 13 (2022) 100123
involve manual encoding of a set of rules designed to process a particular
item using the grammar and heuristic rules appropriate for that dataset,
and statistical-based approaches, which learn relationships present within
existing data (training set) and apply it to previously unseen data (valida-
tion set). Rules-based approaches, which comprise word/phrase matching
approaches such as regular expressions, SQL queries, and ontology
matching,10 have wide-ranging applicability in several areas of pathology
including automating tissue bank annotation,15 coding and retrieving surgi-
cal pathology reports,16 and extracting Cancer Registry data.12 However,
robustness to natural language variation is a challenge for any rules-based
approach. Additionally, depending on the specific rules-based approach
used, the ordering of rules can have significant and unforeseen effects on
the output, due to the fundamentally iterative nature of most rules-based
approaches.

Natural languagemodels using statistical-based approaches, introduced
through advances in machine-learning algorithms and statistical
inference,17 werefirst introduced in the late 1980s, butwith exponential in-
creases in computational power andmemory, are increasingly practical and
useful for real-world datasets. These are further subdivided into 2 dominant
approaches. Representation models learn relationships between elements
in the input through a series of transformations such as component and clus-
ter analysis before a classification/prediction step. In contrast, deep learning-
based models utilize neural networks to extract relevant features from large
training sets to feed into multi-layered (feed-forward) perceptron models,
which are simplified models of biological neurons. For natural language
processing, these 2 approaches translate into linear classifiers and deep clas-
sifiers, respectively. Linear classifiers assign labels to words by extracting rel-
evant features from the set of input sentences, which are fed to a shallow
classification algorithm (support vector machine; SVM) to obtain a categori-
cal output. Deep classifiers process the input sentences with several layers
of feature extraction, and backpropagate the features to deeper layers of the
network by convolution, which may offer better classification performance.
However, deep classifiers can have significant computational costs, often
requiring expensive graphics processing units (GPUs) or other massively par-
allel computing devices, and often require larger, more diverse training data
for acceptable classification performance.18

There is increasing focus within the field to develop more efficient lin-
ear classifiers with classification performance comparable to deep
approaches while using much less computational power that can run even
on inexpensive smartphones.19 A set of popular approaches uses distributed
representations of word vectors that are indifferent toword ordering to cre-
ate a statisticalmodel ofmultipleword phrases, or “n-gram”, frequency that
can be used in downstream classification tasks. Specifically, unlike simple
“bag of words”models, multiple-word n-grams enable local word ordering
to be captured, as exemplified by the different meanings of the phrases
“work to live” and “live to work”. As originally described in the skip-
gram model and further refined by biased sampling against frequent
words (Word2Vec,20 Google) and capturing local word ordering
(FastText,19,21 Facebook), these more efficient approaches have dramati-
cally improved the scalability and usability of natural language processing
in various portable applications, including internet search, image recogni-
tion, and content tagging. In particular, FastText, a library for efficient
text classification and representation learning developed by Facebook
(R) Research, builds on the improvements of linear classifiers while making
significant improvements in classification accuracy through fast loss
approximation (linearly decaying learning rate). This allows it to approxi-
mate the performance of conventional DNN classifiers (char-CNN,
VDCNN) and comparable linear classifiers (Tagspace) with an order of
magnitude of performance improvement.19,22

In this project, we focus on implementing unsupervised, order-invariant
word vectors to classify cervical biopsy free-text diagnoses into discrete
pre-defined categories, and compare this approach with our previously
implemented rules-based regular expression classifier. We also investigate
discrepancies between categories generated by NLP and by the rules-
based classifier, with referee pathologists determining the “ground-truth”
classification of these cases.
2

Methods

Dataset

The dataset is comprised of 59 751 free-text gynecologic biopsy diagno-
ses received from BioReference laboratories and interpreted at Houston
Methodist Hospital from 2013 to 2018 (Fig. 1). These free-text diagnoses
were labelled into discrete diagnosis categories using the rules-based classi-
fier described below. An NLP classifier was created by training on a subset
of the labelled data, then used to predict the label on the remaining data.
Additionally, a dataset comprising 6672 free-text gynecologic biopsy
diagnoses interpreted at Houston Methodist Hospital in 2020 was used
for external validation (true holdout). This external dataset comprises inter-
pretations from many different pathologists than the training and valida-
tion datasets, and was extracted from a different Laboratory Information
System (LIS).

Rules-based classifier

Regular expressions were used to construct a rules-based classifier to
generate preliminary discrete diagnosis labels. Briefly, the rules-based ap-
proach is a Java class file that accepts an input of diagnoses separated by
newlines, lowercases all alphanumeric characters, applies a series of
string-matching functions in an if/then loop to assign discrete categories
(BiopsyClass), and converts the output into a separate text file.

The string-matching functions are sequenced to capture more signifi-
cant diagnoses (e.g. invasive carcinoma, HSIL) before less significant diag-
noses (e.g. LSIL, HPV effect) (Fig. 2). The classifier mapped the free-text
biopsy diagnosis into a granular discrete class and a more general class
using the BiopsyClass and MappedBiopsyClass vocabularies, respectively



Fig. 2.Overviewof the rules-based classifier. The rules-based classifier does basic pre-processing of interpretation text followed by a stringmatching approach that eliminates
diagnoses based on severity (carcinoma, followed by HSIL, followed by LSIL). An example is provided for a sample text interpretation (inset box).
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(Table 1). The BiopsyClass vocabulary is a more granular classifier that dis-
tinguishes between Cervical Intraepithelial Neoplasia (CIN) 2, CIN3, adeno-
carcinoma in situ and carcinoma, and theMappedBiopsyClass vocabulary is
a more general classification label.
NLP classifier

Pre-processing
The free-text diagnoses were pre-processed to reduce uninformative

variation. Newlines were removed. Punctuation was preserved, but
tokenized (a space was placed before and after each punctuation symbol).
The text was transformed into lowercase. Multiple training and validation
setswere constructed by randomly samplingwithout replacement a propor-
tion r out of the 59 751 total diagnoses for the training set, where r ranged
from 0.01 (1% of dataset used for training) to 0.95 (95%)with a step size of
0.01, for 5 run replicates each, for a total of n=480 runs (see Bootstrapping
below). For comparative performance evaluation with the rules-based
approach and for discrepancy analysis, training was performed using a ran-
domly sampled 80% of the total dataset.
Table 1
Vocabularies used for natural language processing categorization.

BiopsyClass MappedBiopsyClass Description

Benign Benign Benign lesion or normal tissue
CA:AD CA Carcinoma, adenocarcinoma
CA:ADIS HSIL+ Adenocarcinoma in situ
CA:ENDOMETRIAL CA:ENDOMETRIAL Carcinoma, endometrial
CA:NOS CA Carcinoma, not otherwise specified
CA:SC CA Carcinoma, small cell
CA:SQ CA Carcinoma, squamous cell
Endometrium Endometrium Benign endometrium

HSIL:CIN2 HSIL+
High-grade squamous intraepithelial
lesion (CIN2)

HSIL:CIN3 HSIL+
High-grade squamous intraepithelial
lesion (CIN3)

LSIL LSIL Low-grade squamous intraepithelial lesion

VaIN VaIN
Vaginal squamous intraepithelial
neoplasia

3

Model training
For each training data set, we created an NLP classification model using

FastText 0.2.0 on a Linux (Ubuntu 18.04) virtual machine. Settings used in-
cluded epochs of 5–50, a learning rate of 0.1, and nGrams of 1–2 (bigrams).
Accuracy probabilities and prediction labels on the validation set were
generated using the “predict-prob” function. Selection of invariant con-
stants (hyperparameters) was assisted by use of the “autotune” feature in
FastText on a subset of hyperparameters (number of epochs, learning
rate, and nGrams). The BiopsyClass was used as the training and prediction
label for the algorithm. To reduce pathologist interpretative variance as a
confounding factor (e.g. CIN2 vs CIN3 for HSIL), the more general
MappedBiopsyClass was used to compare the performance of both the
rules-based and NLP algorithms. Unless otherwise specified, training was
performed on 80% (47 800 free-text diagnoses) of the randomly shuffled
dataset using 20% (11 951 free-text diagnoses) as the validation set.

Model validation

Bootstrapping
To assess the stability of classifier performance based on choosing dis-

crete training set entries, sampling with replacement (bootstrapping) was
performed. The algorithm was run for 5 randomly generated training and
validation steps for each proportion r, where r ranged from 0.01 to 0.95
with a step size of 0.01, for a total of n=480 runs. Sensitivity of
bootstrapping results to n-Gram size was assessed by varying n-Grams
chose from 1 to 5, and re-running the bootstrapping process. The arithmetic
mean of precision@1 was plotted for each selected proportion of the
training set.

Hyperparameter optimization
FastText offers automatic hyperparameter optimization, allowing for

semi-automated tuning of classifier hyperparameter such as learning rate,
epoch sizes, and nGram sizes. The hyperparameter optimization algorithm
sequentially runs training and validation classification and iteratively
selects the parameters that produces the highest F1-score (combined preci-
sion and recall). The default parameters are nGrams=1 and epoch=5.
Learning rate, epoch size (5–50), nGram length (from 1 to 5), array



Fig. 3. Overall and per-class classification accuracy. Training performed on 80%
(47 800 free-text diagnoses) of the randomly shuffled cervical biopsy dataset
using original default (nGrams=1, epoch=5) and optimized (nGrams=2,
epoch=20) FastText parameters. Accuracy denotes percentage of NLP
classifications concordant with rules-based regular expressions (“ground truth”).

Fig. 4. 5-fold cross validation of cervical biopsy classification using FastText with
original default (black) and optimized (red) parameters. Cross validation using
sequentially sampled portions of the data were used to assess classifier stability.
Precision and recall @1 with original default (nGrams=1, epoch=5) and
optimized (nGrams=2, epoch=20) FastText parameters were assessed for each
of 5 folds, encompassing 20% validation dataset for each fold.
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dimension size (1–100), and bucket size were selected as optimizable
hyperparameters, and performed on a randomly sampled 80% training /
20% validation dataset. Optimized classification F1-score was achieved
with an epoch size of 20, nGram length of 2, and default learning rate
(0.1) with a dimension size of 100 and bucket size of 100 000.

K-fold cross validation
Cross validation using sequentially sampled portions of the data were

used to assess classifier stability and check for spurious dependence on
the sequence of the underlying data. The biopsy predictions were randomly
shuffled, then sequentially partitioned into 5 folds, using 20% of the data as
a hold-out set for each iteration. For each iteration, validation was
performed on the remaining 80% of the dataset. Precision and recall @ 1
was evaluated with default (nGrams=1, epoch=5) and optimized
(nGrams=2, epoch=20) FastText parameters, as described in the
hyperparameter optimization section.

Analysis and discrepancies
Manual review of discrepant (NLP-predicted label differs from rules-

based predicted label) cases was performed by 2 pathologists (PAC, YG),
who assigned the correct (“ground-truth”) label for each discrepant case
after mutual discussion. The results of the discrepancy review were desig-
nated as NLP (when only NLP was correct), Rules (when only the regular
expression classifier was correct), or Neither (when neither NLP nor Rules
were correct). Optimized NLP hyperparameters were used to train the
NLP classifier on the training dataset with manually corrected “ground-
truth” labels before external validation (see below).

External validation
As described in the discrepancy analysis above, free-text diagnoseswere

labelled into discrete diagnosis categories by rules-based classifier followed
by manual review (to generate a “ground-truth” label). Optimized
(nGrams=2, epoch=20) NLP classifier hyperparameters were used, and
theNLP classifier trained previouslywas used on this dataset to predict clas-
ses with no hyperparameter tuning or modification of the training set. Any
discrepancies between the “ground-truth” label and NLP predictions were
analyzed.

Results

NLP classification concordance with regular expressions

Overall classification concordance with rules-based regular expressions
was excellent at 99.3%; however, there was considerable heterogeneity
within each BiopsyClass, ranging from 100% of diagnosis correctly classi-
fied to 57.9% for vulvar intraepithelial neoplasia (VIN) specifically (Fig. 3).

Parameter stability and effect of training parameters

K-fold cross validation
Precision and recall @1 with default (nGrams=1, epoch=5) and

optimized (nGrams=2, epoch=20) FastText parameters remained stable
between 0.987–0.989 and 0.994–0.995, respectively (Fig. 4). Run-to-run
variation in class distribution remained minimal.

N-gram analysis
In addition to automatic hyperparameter optimization, the performance

of the NLP classifier at various N-gram lengths was assessed using manual
parameters (nGrams 1 to 5). A nGram setting of 2 noticeably increased pre-
cision and recall accuracy, especially for “rare” diagnoses such as carci-
noma (CA) and vulvar intraepithelial neoplasia (VIN) with no increases in
the training set (Fig. 5A) compared to nGram of 1.With only 1% of sampled
training data, the algorithm was able to achieve more than 95% concor-
dance with rules-based regular expressions (Fig. 5B).
4

Discrepancy compilation and analysis
99 classification discrepancies in the validation set were identified. Of

these, 39/99 (39%) were decided in favour of the NLP algorithm, 55/99
(56%) in favor of rules-based regular expressions, and 5/99 (5%) of results
were incorrect by both NLP and rules (Fig. 6A, B). Examples of results from
each category are given (Fig. 6C) and encompass problematic areas for both
approaches such as descriptive “hedging-type” diagnoses as well as rarely en-
countered diagnoses such as stratified mucin-producing intraepithelial lesions
(SMILe). These difficult classifications are reflected in the lower confidence
scores (below 0.95) that the diagnoses were assigned to by the NLP algorithm.

External validation
The NLP classifier with optimized FastText parameters was used for ex-

ternal validation of 6672 free-text gynaecologic biopsy diagnoses from Jan-
uary 1, 2020 to December 31, 2020, achieving a concordance rate with
ground-truth labels of 97.7% (6516/6672 correct MappedBiopsyClass).
Examples of discrepant results are shown (Fig. 7) and shows some of the dif-
ficulties encountered including descriptive diagnoses as well as weighing of
poorly represented diagnosis such as VIN in the training set.

Discussion

In this study, we demonstrate that a fast, efficient NLP technology pack-
age (FastText) can be successfully trained on a large collection of cervical



Fig. 5. Classification accuracy versus training set proportion for various nGram values. Training set proportion versus classification accuracy (concordance with rules-based
regular expressions) for randomly sampled training set data. (A) 1%–95% of randomly sampled training set data for nGram of 1. 96.3% classification accuracy was obtained
using 4% sampling of training set data (box). (B) 1–10% of randomly sampled training set data for nGram values from 1 to 5 (coloured lines). 95.3% classification accuracy
was obtained using 1% sampling of training set data at a nGram value of 2 (box).
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biopsy free-text interpretation, and via supervised learning, classify biop-
sies with greater than 99% accuracy, which remains at up to 98% on exter-
nal untrained data. We also demonstrate the sensitivity of the algorithm to
training parameters such as n-gram length and training epochs, with an
n-gram length of 2 with concomitantly longer training intervals to optimize
classification accuracy. We also demonstrate the informative nature of dis-
crepancy analysis (identifying interpretations where the NLP predicted
Fig. 6. Discrepancy analysis. All discrepant results in the validation dataset were manu
mutual discussion. (A) Number and proportion of diagnoses concordant with the ref
matrix of discrepancies between NLP-called categories with referee categories. Nu
interpretations of discrepancies, and corresponding MappedBiopsyClass classes for NL
also provided.

5

class does not match the rules-based generated class), and how delegating
these cases to a referee decision can identify weaknesses of both models
and further refine classification accuracy while only minimally increasing
manual workload.

FastText offers a number of optimizable parameters “out of the box”
that significantly affects classification performance, including learning
rate; number of training epochs; and the use of bi-grams, tri-grams, or
ally reviewed by 2 pathologists (PAC, YG), and a referee diagnosis generated after
eree diagnosis for NLP, rules-based regular expression, or neither. (B) Confusion
mber of discrepant cases for each pair indicated in grid. (C) Example free-text
P, rules, and the referee. The classification confidence score given by FastText is



Fig. 7. External validation. The external dataset comprises 6672 free-text gynecologic biopsy diagnoses interpreted at Houston Methodist Hospital in 2020 by several
different pathologists, and extracted from a different LIS. Ground-truth labels were compiled after manual review, as performed in the discrepancy analysis. (A) Confusion
matrix of discrepancies between NLP-called categories with referee categories. Number of discrepant cases for each pair indicated in grid. (B) Example free-text
interpretations of discrepancies, and corresponding MappedBiopsyClass classes for NLP and referee categories.
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other n-grams to generate the classifier. Compared to baseline parameters,
the choice of bi-grams (nGrams=2) with longer training epochs (epoch=
20) improved classification accuracy markedly; however, n-grams greater
than 2 and longer epoch settings did not significantly improve results, but
contributed to longer processing times. A possible explanation could be
that more text diversity (larger sample sizes or multi-institutional data)
would be needed for the substantially higher token count with higher
nGram settings to be adequately trained, or that bi-grams already suffi-
ciently capture training text with limited input diversity (such as pathology
reports of only gynaecologic tissue).

Overall, NLP can achieve excellent concordance with a manually iter-
ated rules-based approach to categorization, and in certain instances can
achieve superior performance for diagnoses with variation not captured
by regular expressions, such as different syntax or phrasing. Of note, the
NLP approach is robust to training with a very limited dataset (1% of all
data), which achieved greater than 95% concordance with rules-based ap-
proaches (Fig. 5B), and is chiefly limited by misclassification of rarer diag-
noses. In other words, for a dataset of size 10 000, examining only 100
entries was sufficient to capture the majority of within-dataset variation.
Conversely, increasing the proportion of training set sampled beyond
80% did not improve classification performance, as it is likely that the algo-
rithm is overfitted with such a high proportion of training data (Fig. 5A);
this may explain why increasing epochs further or similar hyperparameter
changes did not measurably affect classification accuracy. Diagnoses with
low frequency pose challenges for rules-based approaches because they
may not have a rule coded for that scenario; the machine learning-based
models are also challenged because the labelled training data may not
have representative cases included or labelled correctly, and these
diagnostic challenges are reflected by the relatively low confidence that
the NLP algorithm assigns. These results could likely be improved by biased
or class-imbalanced sampling of less common diagnoses/tokens, as demon-
strated by similar applications of NLP in non-pathology fields.25,26 For
rules-based approaches, which require continuous revision and updating
to handle “edge cases” and changes in syntax, these challenges are compa-
rable and also require a skilled pathologist/informatician to make the nec-
essary updates.

Robustness of all classifiers, whether rules-based or machine-learning,
to unknown incoming data is always a concern. As we show in external val-
idation, the performance of the NLP classifier degrades somewhat but
remains at 97.7% (Fig. 7). The challenges of handling unknown data are
especially acute in token-based approaches such as FastText, where syntac-
tical variations, misspellings, and changing clinical guidelines, such as em-
phasis on endocervical sampling, increase token diversity and adversely
affect classification performance. These challenges are not limited to NLP,
as rules-based classifiers also require continuous revision, maintenance,
and ongoing validation to be robust to incoming data. Arguably,
retraining/fine-tuning an NLP classifier has the potential to introduce less
6

systematic bias compared to manually adding new rules to a rules-based
classifier, and could be performed as part of a semi-automated pipeline by
pathologists without much experience in machine learning. Further
pre-processing of incoming data could also be a valuable approach to
reduce token variability for both approaches; minimum pre-processing
was intentionally performed for this study to minimize subjectivity and to
make a direct comparison between the rules-based classifier and NLP clas-
sifier informative.

In addition to labelling, confidence scores generated by the FastText
algorithm are valuable for downstream interpretation tasks. These confi-
dence scores are not available in the rules-based approach. Triaging diagno-
ses with lower confidence scores for human review, aswell as incorporating
these diagnoses into the model after retrospective review, can be an
effective way to further improve model robustness. For example, re-
running the model with corrected discrepant annotations for SMILe (strati-
fied mucin intraepithelial lesion) and vulvar skin with condyloma
acuminatum correctly produced the classifications “HSIL” and “VIN”
respectively in a subsequent validation run (Fig. 6C), and this process
could be iterated to further improve classification as discrepant annotations
are manually reviewed. In addition, NLP-based approaches offer the unpar-
alleled advantage of fast retraining by simply re-processing the revised
“ground-truth” classifiers generated by referee pathologists to further im-
prove performance for real-world use, which supports an iterative training
approach to handle unexpected alterations in incoming data.

Evaluating the suitability of natural language processing technologies
for the practice of pathology is multi-factorial. Compared to manual ap-
proaches, NLP effectively eliminates inter-observer variability, and com-
pared to manually curated rule-based systems, also reduces “design bias”,
a problem inherent to systems such as regular expressions. However, a suc-
cessful implementation of this technology in a working pathology practice
involves more than dataset selection, training, and validation; the context
and method that NLP is integrated into daily workflow is also crucial to
consider. The actual correctness of so-called “ground-truth” classifiers
should also be considered; inter-observer variability among practicing pa-
thologists can be significant for descriptive, complex, or rarely seen
diagnoses23, 24; and low prediction confidence from NLP-based models
can effectively signal the presence of these so-called “problematic cases”
by automatically flagging them for post-prediction manual review.

Conclusion

In this study, we demonstrated a successful implementation of NLP-
based classifiers into study of a large-scale pathology dataset. These classi-
fiers have significant advantages compared to rules-based classifiers such as
classification performance, minimizing design bias in rule selection, and
robustness to minor variations in free-text data. Integration of these classi-
fiers into an interpretative workflow requires additional considerations
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such as LIS compatibility, flagging of problematic or “low confidence”
bases, and refinement of the user experience during operation of the classi-
fier, which remain the areas to be explored further.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jpi.2022.100123.
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