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Abstract: Nrf2 (nuclear factor erythroid 2 (NF-E2)-related factor 2) transcription factor is recognized
for its pro-survival and cell protective role upon exposure to oxidative, chemical, or metabolic
stresses. Nrf2 controls a number of cellular processes such as proliferation, differentiation, apoptosis,
autophagy, lipid synthesis, and metabolism and glucose metabolism and is a target of activation
in chronic diseases like diabetes, neurodegenerative, and inflammatory diseases. The dark side of
Nrf2 is revealed when its regulation is imbalanced (e.g., via oncogene activation or mutations) and
under such conditions constitutively active Nrf2 promotes cancerogenesis, metastasis, and radio-
and chemoresistance. When there is no stress, Nrf2 is instantly degraded via Keap1-Cullin 3 (Cul3)
pathway but despite this, cells exhibit a basal activation of Nrf2 target genes. It is yet not clear how
Nrf2 maintains the expression of its targets under homeostatic conditions. Here, we found a stable
105 kDa Nrf2 form that is resistant to Keap1-Cul3-mediated degradation and translocates to the
nucleus of lung cancer cells. RNA-Seq analysis indicate that it might originate from the exon 2 or
exon 3-truncated transcripts. This stable 105 kDa Nrf2 form might help explain the constitutive
activity of Nrf2 under normal cellular conditions.

Keywords: Nrf2 detection; Nrf2 antibodies; Nrf2 migration in SDS-PAGE

1. Introduction

Transcription factor Nrf2 was identified in 1994 as a protein that binds to the same tan-
dem repeat of consensus DNA sequence in the promoter of beta-globin gene as activating
protein 1 (AP-1) and the nuclear factor erythroid 2 (NF-E2) and contains a conserved basic
leucine zipper (bZIP) DNA binding domain highly homologous to that of NF-E2 [1]. It
belongs to the Cap ‘N’ Collar (CNC) family that contains a conserved basic leucine zipper
(bZIP) structure. Nrf2 is considered one of the major regulators of cellular defense and
survival and activates cellular antioxidant response by inducing the transcription of a wide
array of genes that are responsible for the protection against extrinsic and intrinsic insults,
including oxidative stress and xenobiotics [1,2]. The main Nrf2 target genes represent
the most important cytoprotective defense system in cell, including genes responsible for

Antioxidants 2021, 10, 786. https://doi.org/10.3390/antiox10050786 https://www.mdpi.com/journal/antioxidants

https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-0591-3090
https://orcid.org/0000-0002-1899-2760
https://orcid.org/0000-0002-1806-0891
https://orcid.org/0000-0003-0391-0352
https://orcid.org/0000-0002-9461-1878
https://www.mdpi.com/article/10.3390/antiox10050786?type=check_update&version=1
https://doi.org/10.3390/antiox10050786
https://doi.org/10.3390/antiox10050786
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/antiox10050786
https://www.mdpi.com/journal/antioxidants


Antioxidants 2021, 10, 786 2 of 14

glutathione and thioredoxin production and regeneration, NADPH regeneration, heme
and iron metabolism, reactive oxygen species (ROS), and xenobiotic detoxification [3,4].

The activation and inactivation of the Nrf2 pathway is primarily regulated by Keap1
(Kelch-like erythroid cell-derived protein with CNC homology [ECH]-associated protein 1),
a substrate adaptor for a Cul3-containing E3 ubiquitin ligase [5]. Under basal conditions,
Keap1-Cul3-E3 ligase complex is activated, causing the ubiquitination and degradation
of Nrf2 [6]. In response to extrinsic and/or intrinsic insults, Keap1-dependent ubiquitin
ligase activity is inhibited and the Nrf2 protein is accumulated. It leads to the translocation
of Nrf2 to the nucleus and activation of the transcription of its target genes [4,6]. Since
under homeostatic conditions the Nrf2 is thought to be constitutively degraded, it is not
clear how the basal expression of its target genes is maintained.

Although activation of Nrf2 has a protective role against various toxicants and diseases,
the prolonged activation has been shown to favor a progression of several types of cancers,
such as lung, breast, head and neck, ovarian, and endometrial carcinomas [5,7–9]. There
are several mechanisms by which Nrf2 signaling pathway is constitutively activated in
cancer cells: (1) somatic mutations in Keap1 or the Keap1 binding domain, that disrupt
binding of Nrf2 and Keap1; (2) epigenetic silencing of Keap1; (3) accumulation of disruptor
proteins such as p62, which leads to the dissociation of the Nrf2-Keap1 complex; (4)
transcriptional induction of Nrf2 by oncogenic K-Ras, B-Raf and, c-Myc; and (5) post-
translational modification of Keap1 cysteines by succinylation [4–11]. Nrf2 also has an effect
on metabolic reprogramming, redirecting glucose and glutamine to synthesis pathways of
purine nucleotides, glutathione, and serine [8]. Therefore, it enhances aggressive cancer
cell proliferation and promotes chemoresistance and radioresistance.

Most often studies on Nrf2 include antibodies, but there are concerns regarding Nrf2
migration in SDS-PAGE and the specificity of some anti-Nrf2 antibodies [10,11]. Nrf2 is
phosphorylated by various kinases, but even after phosphatase treatment two Nrf2 forms
were detected [12–14]. The origin of these forms is not clear. Latest studies indicate that
alternative splicing in lung and head and neck cancers produces Nrf2 forms of increased
stability that lack exon 2 or exon 2 and 3 [15].

In this work we evaluated the specificity of two commercial antibodies, Abcam
EP1808Y and Cell Signalling D1Z9C, in detecting Nrf2 forms in cells with different Nrf2
activation status and found that EP1808Y antibodies recognize extremely stable, non-
canonically regulated 105 kDa Nrf2 form that translocates to the nucleus and, most proba-
bly, originates from the alternatively spliced NFE2L2 transcripts. These results imply the
regulation of Nrf2 activity by the expression of forms with different stability translocating
to the nucleus and can help explain how the basal expression of Nrf2 transcription targets
is maintained under physiological conditions.

2. Materials and Methods
2.1. Cell Lines

Non-small cell lung cancer cell lines A549 and RERF-LC-AI were purchased from
RIKEN BRC Cell Bank (Tsukuba, Ibaraki, Japan) and CRISPR/Cas9-induced NRF2 knock-
out in A549 cells (clone 2-11) was constructed and kindly provided by Prof Eric Kmiec
(Gene Editing Institute, Christiana Care Health System, Newark, NJ, United States). All
cell lines were cultured in Dulbecco’s modified Eagle’s medium (Gibco, Thermo Fisher
Scientific, Waltham, MA, United States), with 8% of Fetal Bovine Serum (Gibco, Thermo
Fisher Scientific) and 1% of Penicillin-Streptomycin (10,000 U/mL, Gibco, Thermo Fisher
Scientific). Cells were maintained at 37 ◦C under humidified conditions with 5% CO2.

2.2. Lipid-Mediated Transfection

Cells were seeded in the 12-well plates, 100,000 cells/well. 24 h after seeding, cells
were transfected with control siRNA-A (ON-TARGET plusTM Control Pool, DharmaconTM,
referred in text as scrRNA), as a control for transfection (25 nM), and small-interfering
RNA (siRNA, ON-TARGET plusTM SMART pool, DharmaconTM) in concentration of 10
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and 25 nM, with 3 µL/well of Lipofectamine 3000 reagent (Invitrogen, Thermo Fisher
Scientific), according to manufacturer’s instructions. Western blot was performed 48 h after
transfection.

2.3. Western Blot Analysis

Total protein was acquired by lysing cells in RIPA buffer. Proteins were electrophoret-
ically separated via 8% SDS-PAGE and transferred to nitrocellulose blotting membrane
(Amersham Protran®). To block the membranes, 5% non-fat milk in Tris-buffered saline was
applied at room temperature for half an hour. Membranes were subsequently incubated
overnight with, anti-NRF2 (EP1808Y)—ChIP Grade (cat. no. ab62352; Abcam, Cambridge,
UK), anti-NRF2 (D1Z9C) XP antibody (cat. no. 12721; Cell Signaling Technology), and
anti-β-actin (cat. no. A2228; Sigma-Aldrich, St. Louis, MI, United States) in blocking buffer
at 4 ◦C at 1:500 dilution. Subsequently, membranes were washed three times in TBST
followed by incubation for 1 h with HRP-labeled goat anti-rabbit/mouse IgG (Jackson
ImmunoResearch, West Grove, PA, United States) at a 1:3000 dilution and washed in TBST
again. Bands were visualized using chemiluminescent substrate (Clarity MaxTM Western
ECL Substrate, BIO-RAD, Hercules, CA, United States).

2.4. Immunofluorescence

Cells were seeded on 15 mm coverslips in a 12-well plate and fixed with 4%
paraformaldehyde (PFA) for 10 min, rinsed 3 times with PBS and incubated 5 min with
0.2% Triton ×100 for permeabilization. After rinsing 3 times with PBS, cells were blocked
with 5% BSA in PBS, overnight at 4 ◦C. The next day, cells were stained with primary
antibodies: anti-NRF2 [EP1808Y]—ChIP Grade (cat. no. ab62352; Abcam) and anti-NRF2
(D1Z9C) XP antibody (cat. no. 12721; Cell Signaling Technology) at 1:500 dilution, at
RT for 2 h. They were washed 3 times with 1% BSA in PBS and stained with secondary
antibodies (Alexa Flour 488 goat anti-rabbit; ThermoFisher Scientific; 1:2000), in the dark at
RT, for 1 h, washed 3 times with 1% BSA in PBS and mounted using ProLong Diamond
Antifade Mountant (ThermoFisher Scientific). Specimens were imaged using a confocal
laser scanning microscope (Leica SP8X, Mannheim, Germany) with a 63× oil immersion
lens.

2.5. Treatment with Translation Inhibitors—Cycloheximide and Emetine Dihydrochloride

Cells were seeded in the 6-well plates, 300,000 cells/well. Forty-eight hours later cells
were treated with cycloheximide (10 µM) and emetine dihydrochloride (20 µM), for 8, 16,
and 24 h. Cells were collected and analyzed by Western blot.

2.6. Treatment with Neddylation Inhibitor MLN4924

Cells were seeded in the 6-well plate, 500,000 cells/well. 24 h later, cells were treated
with neddylation inhibitor MLN4924 (1 µM) for 12 h. Cells were collected and analyzed by
Western blot.

2.7. Treatment with Lambda Protein Phosphatase (λ PP)

Firstly, 800,000 cells were lysed in 250 µL of RIPA lysis buffer, sonicated for 15 min
on ice and briefly centrifuged at 13,000× g. For dephosphorylation, 40 µL of cell lysate
was incubated with 400 U of λ PP (New England Biolabs) in the dedicated buffer and
in the presence of manganese ions at 30 ◦C for 30 min. Control samples underwent the
same treatment, but without the enzyme. The Nrf2 phosphorylation was analyzed by
Western blot.

2.8. Fractionation

Cell pellets were collected from T75 bottles, 10,000,000 cells/bottle, after trypsinization
and washing with PBS. Then, 500 µL of fractionation buffer was added to the pellets
and samples were incubated for 15 min on ice. Fractionation buffer contained 20 mM
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HEPES (pH 7.4), 10 mM KCl, 2 mM MgCl2, 1 mM EDTA, and 1 mM EGTA. Just before
use, 1 mM DTT and PI Cocktail were added. Cells were lysed in fractionation buffer by
gentle pipetting every few minutes, while kept on ice for 20 min. After that, samples
were centrifuged at 3000 rpm for 5 min. The pellet contained nuclei and the supernatant
contained cytoplasm. Samples were analyzed by Western blot and lamin B1 (anti-Lamin
B1, PA5-19468, Thermo Fisher) was used as a nuclear fraction marker.

2.9. Analysis of NFEL2L2 Transcripts Expression in A549 Cells

To assess the expression of specific NFE2L2 transcripts in A549 cell line, we have
used the RNA sequencing data from the project available at NCBI Gene Expression Om-
nibus (GEO) public database (accession numbers GSM2308412, where A549 cell line was
sequenced with paired Illumina protocol. Primary analysis of RNA-seq data included the
quality control of sequenced reads with the use of FastQC (Andrews, 2010), reads trimming
with the usage of Trimmomatic [16] and mapping to the reference genome based on NCBI
reference human genome (assembly GRCh38.p13) and annotation (release 109) [17] with
the Hisat2 aligner [18]. Further data preparations was performed with SAMtools soft-
ware [19] and R software [20] together with Bioconductor platform. Assembly of RNA-Seq
alignments into potential transcripts together with calculation of their expression levels
were performed with StringTie software [21]. Visualization of the alignments, identified
transcripts and junctions was performed in IGV software [22].

3. Results

In this study we have used two lung cancer cell lines: adenocarcinomic human alveolar
basal epithelial cells A549 and a squamous cell carcinoma RERF-LC-AI (further referred
as RERF) that differ in the Nrf2 level and activation status. A549 cells have a high steady-
state level of constitutively active Nrf2 attributed to the homozygous KEAP1 mutation
(G333C) that disrupts binding with Nrf2 leading to Nrf2 accumulation and activation of its
transcriptional programs [23]. Another reason for such a high Nrf2 level in these cells is
the trisomy of the chromosome 2 with Nrf2 gene (while KEAP1 is localized on the disomic
chromosome 19) [24]. We have also made use of A549 Nrf2 functional KO cells which bear
lower levels of Nrf2 as two out of three alleles have been successfully knocked out with
CRISPR/Cas9 technology and the third allele has the ‘in frame’ deletion within the nuclear
export signal (NES) thus the expressed Nrf2 cannot re-enter the nucleus [25]. The RERF
cells have a wild type KEAP1 and therefore low Nrf2 levels under no stress conditions [26].

Firstly, we analyzed the Nrf2 migratory pattern using 8% sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE) (Figure 1a,b) with Cell Signaling D1Z9C
and Abcam EP1808Y antibodies. The epitope of D1Z9C antibodies is located in the middle
of Nrf2 protein, while of EP1808Y antibodies towards the C-terminus (Figure 1c). Both
antibodies detected two bands in A549 Nrf2 wt cells, one of ~105 kDa and the upper, below
130 kDa., while in RERF cells only the lower 105 kDa was detected under these conditions.
Interestingly, in the functional Nrf2 KO cells, both the 105 kDa and 130 kDa signals were
significantly weaker or disappeared, indicating that these bands are Nrf2-specific.

Similarly, when we knocked down the NFE2L2 (gene encoding Nrf2) with the pool of
Nrf2 targeting siRNAs (ON-TARGET plusTM SMART pool, DharmaconTM), we observed a
decrease in the signal from tested antibodies in both A549 and RERF cell lines after 25 nM
siNrf2 (Figure 2). D1Z9C antibodies detected a 130 kDa band that decreased upon 10 nM
siNrf2 in A549 and upon 25 nM siNrf2 in RERF cells. A 105 kDa band was not detected
under these conditions by D1Z9C antibodies. As before, EP1808Y antibodies detected two
Nrf2 signals: at ~130 kDa (similar to those detected by D1Z9C), much stronger in A549
cells, and at 105 kDa, in A549 and stronger in RERF cells. The intensity of both 130 kDa
and 105 kDa bands detected by EP1808Y decreased after 25nM siNrf2 and in A549 Nrf2
KO cells (Figure 1), meaning they are forms of Nrf2 protein.
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Figure 1. Nrf2 migratory pattern detected in A549 wt, A549 Nrf2 KO, and RERF cells with two monoclonal antibodies—Cell
Signaling (CS) (D1Z9C) (a) and Abcam [EP1808Y] (b), (c) Domain structure of Nrf2 with post-translational modifications and
regions recognized by Cell Signaling (CS) (D1Z9C) and Abcam [EP1808Y] antibodies. Precise epitope sequence is disclosed,
for Abcam EP1808Y it is known to be localized in the C-terminus, surrounding 550 aa and for CS—in the proximity of
275 Ala. Post-translational modifications of Nrf2 residues are marked—phosphorylation in blue (Ser40, Ser215, Ser344,
Ser348, Ser408, Ser558, Thr559, and Tyr576) and acetylation in green (Lys438, Lys443, Lys445, Lys533, Lys536, Lys538, Lys596,
and Lys599).
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Figure 2. Nrf2 knockdown in A549 and RERF cells detected by two different monoclonal antibodies. Nrf2 expression was
silenced with Nrf2-targeting siRNAs for 48 h: 10 nM (A549) and 10 nM and 25 nM (RERF). Nrf2 signal was detected with
two monoclonal antibodies: Cell Signaling (D1Z9C) and Abcam [EP1808Y]. Actin was used as a loading control. scrRNA is
a control unspecific siRNA.
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Next, we exposed cells to the translation elongation inhibitors, to see how stable
the Nrf2 forms are. We used cycloheximide (CHX) and emetine at indicated time points
and detected Nrf2 (Figure 3). Despite Nrf2 is considered a labile protein of a half-life
ranging from less than 30 min~2 h depending on the cell type [5,27–29], the ~105 kDa form
detected by Abcam EP1808Y antibodies was very stable and still observed even after 24 h of
elongation inhibition in both cell lines. The ~130 kDa Nrf2 form detected by both EP1808Y
and D1Z9C antibodies was notably less stable and not detected after 8 h chx/emetine
treatment in RERF cells. In A549 cells, the ~130 kDa Nrf2 was more stable than in RERF
cells, which is consistent with an aberrant Nrf2 degradation in these cells.
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Figure 3. Nrf2 after translation inhibition. (a) Western blot analysis of A549 wt and A549 Nrf2 KO cells after treatment with
translation inhibitors cycloheximide (chx) at different time points (8, 16, and 24 h). Nrf2 was detected using Cell Signaling
(D1Z9C) and Abcam [EP1808Y] antibodies. (b) Western blot analysis of RERF cells after treatment with translation inhibitors
cycloheximide (chx) and emetine at different time points (8, 16, and 24 h). Nrf2 was detected using Cell Signaling (D1Z9C)
and Abcam [EP1808Y] antibodies.

In the next step we studied the cellular distribution of Nrf2 forms. We performed
nuclear and cytoplasmic fractionation of A549 and RERF cells and analysed the distribution
of Nrf2 under no stress conditions with D1Z9C and EP1808Y antibodies (Figure 4). The
~130 kDa Nrf2 form was detected by both antibodies only in A549 cells and prevalently
accumulated in the nucleus, consistent with the constitutive activation of Nrf2 in these cells.
Interestingly, the 105 kDa Nrf2 form detected in both cell lines only by EP1808Y antibodies
also accumulated in the nucleus. The in situ Nrf2 localization with the immunofluorescence
confirmed the fractionation results (Figure 5). EP1808Y antibodies detected nuclear and
cytoplasmic Nrf2 in both cell lines while D1Z9C recognized primarily nuclear Nrf2.
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Figure 5. Cellular Nrf2 localization detected with Nrf2-specific monoclonal antibodies EP1808Y and
D1Z9C in A549 (a) and RERF (b) cells. After fixation, cells were stained with Abcam (EP1808Y) and
Cell Signaling (D1Z9C) antibodies followed by Alexa Fluor 488 goat anti-rabbit secondary antibodies.
Nuclei were stained with DAPI.

Since the stable 105 kDa Nrf2 form translocates to the nucleus, in the next step we
aimed to check if it is also regulated through the Keap1-Cul3-dependent mechanism.
We made use of MLN4924 neddylation inhibitor, a specific small molecule inhibitor of
NEDD8-activating enzyme E1 (NAE), that catalyzes the addition of a ubiquitin-like protein
NEDD8 (Neural precursor cell expressed developmentally down-regulated 8) to cullins.
Neddylation is necessary for the full activation of the Cullin-Ring ligases (CRLs) [30].
MLN4924 binds to the NAE and blocks its enzymatic activity. Consequently, it inhibits
the neddylation of all cullins, leading to the accumulation of their substrates [31,32]. Since
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the Keap1-dependent regulation of Nrf2 requires active Keap1-Cul3-E3 ligase complex,
MLN4924 leads to the inhibition of neddylation and disability of Cul3-containing E3 ubiq-
uitin ligase to target Nrf2 for ubiquitination and degradation by proteasome. Consequently,
Nrf2 accumulates after MLN4924 treatment, as shown in Figure 6. However, only the
~130 kDa Nrf2 form was accumulated after MLN4924, while the 105 kDa remained unaf-
fected by neddylation inhibition. This indicates that the 105 kDa Nrf2 form is regulated
independently of Keap1-Cul3-E3 ligase system.
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The question that arises here, is what is the source of these two distinct Nrf2 forms. One
option is the post-translational modifications of Nrf2 that could account for differences in
mass and stability of the two forms. Phosphorylation is the predominant Nrf2 modification
and various Nrf2 residues are phosphorylated, including Ser40, Ser215, Ser344, Ser347,
Ser408, Ser558, Thr559, and Tyr576 (Figure 1) [33–37]. Their impact on Nrf2 stability and
activity can be different and is thought to depend on the phosphorylation site. Thus we have
asked if two Nrf2 forms detected with Abcam EP1808Y antibodies are the phosphorylated
and dephosphorylated Nrf2 forms. We made use of lambda protein phosphatase (λPP),
which removes phosphate groups from phosphorylated serine, threonine and tyrosine
residues and observed that in both A549 and RERF cells the heavier upper band is affected
by λPP treatment, but the lower 105 kDa band is not (Figure 7). Interestingly, after λ

phosphatase, the molecular weight of the upper Nrf2 form was reduced to ~110 kDa, which
is visible as a band migrating just above the abundant 105 kDa Nrf2. It indicates that the
105 kDa Nrf2 is not simply a dephosphorylated Nrf2, but rather a shorter Nrf2 form.



Antioxidants 2021, 10, 786 9 of 14

Antioxidants 2021, 10, x  9 of 15 
 

the neddylation of all cullins, leading to the accumulation of their substrates [31,32]. Since 
the Keap1-dependent regulation of Nrf2 requires active Keap1-Cul3-E3 ligase complex, 
MLN4924 leads to the inhibition of neddylation and disability of Cul3-containing E3 ubiq-
uitin ligase to target Nrf2 for ubiquitination and degradation by proteasome. Conse-
quently, Nrf2 accumulates after MLN4924 treatment, as shown in Figure 6. However, only 
the ~130 kDa Nrf2 form was accumulated after MLN4924, while the 105 kDa remained 
unaffected by neddylation inhibition. This indicates that the 105 kDa Nrf2 form is regu-
lated independently of Keap1-Cul3-E3 ligase system.  

 
Figure 6. Western blot analysis of Nrf2 in A549 wt (a) and RERF (b) cell lines, after treatment with neddylation inhibitor 
MLN4924. Cells were treated with 1 μM MLN4924 for 12 hours. Nrf2 was detected using indicated antibodies. #1, #2 
represent two repetitions of MLN4924 treatment. Actin was used as a loading control. 

The question that arises here, is what is the source of these two distinct Nrf2 forms. 
One option is the post-translational modifications of Nrf2 that could account for differ-
ences in mass and stability of the two forms. Phosphorylation is the predominant Nrf2 
modification and various Nrf2 residues are phosphorylated, including Ser40, Ser215, 
Ser344, Ser347, Ser408, Ser558, Thr559, and Tyr576 (Figure 1) [33–37]. Their impact on Nrf2 
stability and activity can be different and is thought to depend on the phosphorylation 
site. Thus we have asked if two Nrf2 forms detected with Abcam EP1808Y antibodies are 
the phosphorylated and dephosphorylated Nrf2 forms. We made use of lambda protein 
phosphatase (λPP), which removes phosphate groups from phosphorylated serine, thre-
onine and tyrosine residues and observed that in both A549 and RERF cells the heavier 
upper band is affected by λPP treatment, but the lower 105 kDa band is not (Figure 7). 
Interestingly, after λ phosphatase, the molecular weight of the upper Nrf2 form was re-
duced to ~110 kDa, which is visible as a band migrating just above the abundant 105 kDa 
Nrf2. It indicates that the 105 kDa Nrf2 is not simply a dephosphorylated Nrf2, but rather 
a shorter Nrf2 form. 

 

 

(a) (b) 
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or without λ phosphatase for 30 min in 30 ◦C in the presence of MnCl2 and Nrf2 was detected by Western blot with Abcam
EP1808Y antibodies.

Our observations that the 105 kDa Nrf2 form: (1) is unexpectedly stable, (2) is not
regulated via Keap1-Cul3 ubiquitin ligase 3) migrates faster than the dephosphorylated
Nrf2, indicate that it might represent a shorter Nrf2 form that originates from an alter-
native transcription or/and translation and, most probably, has a disturbed expression
or availability of the Keap1-binding motifs: DLG and ETGE. The skipping of exon 2 that
encodes these motifs or exons 2+3 in NFE2L2 gene was observed in lung and head and neck
cancers, resulting in Nrf2 forms resistant to Keap1-mediated degradation [15]. To analyze
the NFE2L2 transcripts expressed in A549 cells we have studied the RNA sequencing data
and identified six different transcripts expressed under homeostatic conditions in these
cells (Figure 7). One of these transcripts, NM_001313904.1, has an extremely short exon
2, translated to three amino acids, due to an alternative translation initiation site and a
truncated 3’terminus of this exon (in-frame splice site in the 3’ region of exon 2) (Figure
8A). Nrf2 expressed from this transcript lacks Keap-1 binding regions thus, most probably,
escapes Keap1-Cul3 degradation. Transcript NM_001313902.1 on the other hand has a
full sequence of exon 2 but lacks exon 3, due to the alternative splicing (Figure 8B). The
protein expressed from this transcript might fold in a way that DLG and ETGE motifs
are not accessible to the Keap1. Both of these transcripts could be the potential source
of the 105 kDa Nrf2 form. It is difficult to hypothesize which transcript it is, basing on
the calculated molecular weight (MW) of the Nrf2 form it encodes, as Nrf2 migrates in
SDS-PAGE much slower than the calculations suggest. The transcript NM_001313904.1
with alternative translation initiation site encodes for a protein of a calculated MW of 56
kDa (protein isoform 6, NCBI Reference Sequence: NP_001300833.1), while the Nrf2 form
encoded by transcript NM_001313902.1 (protein isoform 4, NP_001300831.1) calculates
at 64.5 kDa. Since the predicted MW of the full-length NFE2L2 transcript (NM_006164.5
encoding isoform 1, NP_006155.2) is 68 kDa and all the isoforms migrate in 8% SDS-PAGE
above 100 kDa, further studies are needed to reliably assess the origin of the 105 kDa Nrf2
form identified in this study.
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Figure 8. Expression of different NFE2L2 transcripts in A549 cells based on RNA sequencing data. (A) Visualization of
sequence reads alignments within exon 2. Beginning of the exon 2 is on the right-hand and the end on the left-hand side.
Splice junctions are represented by arches. Apart from classical junctions at the beginning and the end of the exon, in a
portion of reads the 3’ end of exon 2 was spliced out. These reads have been aligned to the transcript NM_001313904.1
(transcripts references are below each transcript). Transcripts sequence within the exon was translated to the encoded amino
acids (B) Visualization of sequence reads alignments within exon 3. In the transcript NM_001313902.1 exon 3 is spliced out.
(C) Visualization of all the transcripts (6) identified in A549 cells. Exon 1 is on the right-hand and exon 5 on the left-hand
side. Assembly of RNA-Seq alignments into potential transcripts together with calculation of expression levels for those
transcripts were performed with StringTie software [20]. Visualization of the alignments identified transcripts and junctions
was performed in IGV software [21].
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4. Discussion

The canonical Nrf2 regulation assumes its constant synthesis and, when there is no
stress, a constitutive degradation via Keap1-Cullin3 ubiquitin ligase complex. Accordingly,
Nrf2 activation strictly depends on its de-repression via stress-induced modifications of
the “stress sensor”—Keap1 [3,38,39]. Indeed, targeted deletion of the KEAP1 gene in mice
resulted in a constitutive accumulation of Nrf2 protein in the nucleus and expression of Nrf2
target genes [40]. Though the Nrf2 expression and function are controlled on various levels
(thoroughly reviewed in [41]), it is not clear how Nrf2 maintains the basal expression of its
target genes under homeostatic conditions. It has been suggested that Nrf2 is primarily a
nuclear protein and the Keap1-Cul3-mediated degradation takes place downstream the
transcriptional activity [42,43], though such a model requires Keap1 shuttling from nucleus
to cytoplasm that some claim not to observe [44].

Here we found that a stable and a shorter form of Nrf2 exists, that is primarily recog-
nized by EP1808Y Abcam antibodies. This form is not regulated by Keap1-Cul3 complex,
nor by any other cullin-RING ubiquitin ligases since they all need to be neddylated for
activation. Inhibition of neddylation led to the upregulation of the 130 kDa, but not the
105 kDa Nrf2 form, meaning that the 105 kDa Nrf2 is not classically regulated. Moreover,
this form is similarly abundant both in cells with functional Keap1-Nrf2 pathway like
RERF cells and in A549 cells, with impaired Nrf2 degradation (due to KEAP1 mutation).
The 130 kDa form, detected by both EP1808Y and D1Z9C antibodies, was found to be
a phosphorylated form of Nrf2 thus it was more abundant in A549 cells where Nrf2 is
constitutively active, than in RERF cells with wt Keap1, under homeostatic conditions.
Upon phosphatase treatment, it was reduced to ~110 kDa, meaning that the 105 kDa form
is not simply the dephosphorylated version of ~130 kDa Nrf2. Interestingly, the 105 kDa
Nrf2 was resistant to phosphatase treatment, though both 130 kDa and 105 kDa forms were
detected in the nucleus indicating they both might be transcriptionally active. It is thus
quite likely that the 105 kDa form is a shorter, truncated version of the full length Nrf2
that, due to its truncation, is unable to interact with Keap1 and undergo Cul3-mediated
degradation. Since this form is expressed in both cell lines on comparable levels, it might
be responsible for regulating basal expression of Nrf2 genes.

It is possible that the 105 kDa form originates from an alternative transcription or/and
translation event. Among six NFE2L2 transcripts expressed in A549 cells under no stress
conditions, one is missing almost the whole exon 2, due to an alternative translation
initiation and splicing of the 3’ end of this exon (NM_001313904.1), and the other has exon
3 spliced out (NM_001313902.1). Nrf2 produced from the first transcript lacks the Keap1
interactive motifs and the product of the second) transcript could produce a form in which
DLG and ETGE regions are less accessible for Keap1, though this awaits experimental
verification. Skipping of exon 2 and both exon 2 and 3 of NFE2L2 gene was shown to occur
in lung and head and neck cancers to produce constitutively active Nrf2 forms resistant to
Keap1-mediated degradation [15]. It is thus probable that a similar mechanism is utilized
to assure the basal expression of Nrf2 targets. As Nrf2 regulates not only stress response,
but also physiological cellular processes, expression of a stable Nrf2 form would assure
that under homeostatic conditions the Nrf2 program is still active. How such a form would
be regulated is another question.

Interestingly, the 105 kDa Nrf2 signal detected by EP1808Y antibodies was before
claimed to be unspecific and most probably originating from a protein co-migrating with
Nrf2 in HepG2 cells [11]. This conclusion was drawn since authors did not manage to
decrease this signal with siNrf2 RNAs nor by depleting the protein with other anti-Nrf2
antibodies. We suspect that difficulties in knocking down the 105 kDa form result from its
exceptional stability. In our hands, the use of mixture of different Nrf2-targeting siRNAs
and a low number of cells at the time of transfection allowed for a successful reduction of
the 105 kDa form expression. Importantly, this form was also significantly reduced in the
functional Nrf2 knockout cells.
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Another interesting aspect is that, while Abcam EP1808Y antibodies detect two Nrf2
forms, Cell Signaling D1Z9C recognize primarily the 130 kDa Nrf2 with one exception,
which is Figure 1, where they detected the 105 kDa Nrf2. As we later show, the 130 kDa Nrf2
is the phosphorylated Nrf2 form. Phosphorylation of Nrf2 is induced by various stimuli,
including cold [12]. In all the experiments except from Figure 1, cell pellets were snap
frozen before Western blot analysis, while in experiment presented in Figure 1, cells were
lysed without a prior freezing. It is possible that freezing induced Nrf2 phosphorylation,
and the phosphorylated Nrf2 form was primarily recognized by D1Z9C antibodies. When
Nrf2 was not phosphorylated, D1Z9C antibodies detected the 105 kDa form. In A549
cells, Nrf2 is constitutively active and phosphorylated, thus the 130 kDa form is detected
regardless the samples preparation conditions.
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