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Abstract
Recent studies reported that a convolutional neural network (CNN; a deep learning model) can detect elevated pulmonary 
artery wedge pressure (PAWP) from chest radiographs, the diagnostic images most commonly used for assessing pulmonary 
congestion in heart failure. However, no method has been published for quantitatively estimating PAWP from such radio-
graphs. We hypothesized that a regression CNN, an alternative type of deep learning, could be a useful tool for quantitatively 
estimating PAWP in cardiovascular diseases. We retrospectively enrolled 936 patients with cardiovascular diseases who had 
undergone right heart catheterization (RHC) and chest radiography and estimated PAWP by constructing a regression CNN 
based on the VGG16 model. We randomly categorized 80% of the data as training data (training group, n = 748) and 20% 
as test data (test group, n = 188). Moreover, we tuned the learning rate—one of the model parameters—by 5-hold cross-
validation of the training group. Correlations between PAWP measured by RHC [ground truth (GT) PAWP] and PAWP 
derived from the regression CNN (estimated PAWP) were tested. To visualize how the regression CNN assessed the images, 
we created a regression activation map (RAM), a visualization technique for regression CNN. Estimated PAWP correlated 
significantly with GT PAWP in both the training (r = 0.76, P < 0.001) and test group (r = 0.62, P < 0.001). Bland–Altman 
plots found a mean (SEM) difference between GT and estimated PAWP of − 0.23 (0.16) mm Hg in the training and − 0.05 
(0.41) mm Hg in the test group. The RAM showed that our regression CNN model estimated high PAWP by focusing on 
the cardiomegaly and pulmonary congestion. In the test group, the area under the curve (AUC) for detecting elevated PAWP 
(≥ 18 mm Hg) produced by the regression CNN model was similar to the AUC of an experienced cardiologist (0.86 vs 0.83, 
respectively; P = 0.24). This proof-of-concept study shows that regression CNN can quantitatively estimate PAWP from 
standard chest radiographs in cardiovascular diseases.
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Introduction

The prevalence of heart failure is increasing, and high rates 
of mortality and hospital admissions due to heart failure 
represent a major burden on health care systems [1]. In 
heart failure, elevated left atrial pressure causes pulmonary 

congestion, and pulmonary artery wedge pressure (PAWP) 
measured by right heart catheterization (RHC) is widely 
used as a surrogate for left atrial pressure and was found to 
be directly associated with severity and prognosis of heart 
failure [2, 3]. However, RHC is an invasive procedure with 
a potential risk for complications; therefore, a noninvasive 
method is needed to assess PAWP.

Chest radiography is the most common diagnostic imag-
ing tool in medicine and has been used as the first-line test 
for detecting elevated PAWP [4]. Abnormal signs on chest 
radiographs, such as increased cardiothoracic ratio, alveolar 
and interstitial edema, and dilated left atrium, were reported 
to be associated with elevated PAWP [4]. However, the inter-
pretation of chest radiographs is subjective and depends on 
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the experience of the physician; often, general physicians 
have difficulty assessing PAWP by chest radiographs [5, 6].

With the recent development of artificial intelligence 
(AI), deep learning has become a powerful tool to assist with 
diagnosis in medicine. Convolutional neural network (CNN) 
is a traditional type of deep learning model for processing 
data that have a grid pattern, such as images, and is designed 
to automatically extract features from low- to high-level pat-
terns [7]. CNN has become an effective method for detect-
ing and classifying various diseases [8–10]. In the field of 
cardiovascular medicine, recent studies found that CNN was 
useful for detecting cardiomegaly, heart failure, and elevated 
PAWP from chest radiographs [11–13]. However, it is not 
able to quantitatively estimate PAWP.

Recently, regression CNN, an alternative type of deep 
learning, has been used in the field of radiology to quan-
titatively estimate age from radiographs [14]. Regression 
CNN is a method for training a network to perform linear 
regression on data rather than simply classifying them. In 
the present study, we hypothesized that a regression CNN 
that uses chest radiographs could be useful for quantitatively 
estimating PAWP in patients with cardiovascular diseases. 
Therefore, we performed a study with the aim to create, 
train, and test a novel regression CNN method for estimat-
ing PAWP from standard chest radiographs.

Materials and methods

Study participants

We retrospectively enrolled 936 patients with cardiovas-
cular diseases who had undergone both RHC and chest 
radiography between January 2017 and December 2019 at 
Nihon University Itabashi Hospital, Tokyo, Japan. RHC was 
performed to accurately monitor hemodynamic status, and 
treatment was not changed between the two procedures. The 
exclusion criteria included respiratory diseases (lung tumor, 
postpneumonectomy, pneumonia, and tuberculosis), percu-
taneous cardiopulmonary support, a left ventricular assist 
device, and unstable clinical conditions that required emer-
gency cardiac catheterization. Paired RHC data and chest 
radiograph images were collected.

Data collection

RHC was performed with a Swan-Ganz catheter in either the 
cardiac catheterization laboratory or the cardiac care unit. 
Pressure calibration was performed, and pressure was meas-
ured at end-expiration while the patient was supine. The 
following hemodynamic parameters were measured: PAWP, 
pulmonary artery systolic pressure, mean pulmonary artery 

pressure, cardiac index, and cardiac output (cardiac output 
was measured by thermodilution or the Fick method).

Chest radiography was performed in a standing or sitting 
position. A Digital Imaging and Communications in Medi-
cine (DICOM) image of the chest radiograph was available 
for each patient. All DICOM images were transformed to 
256 × 256 pixels. We then used a regression CNN to estimate 
PAWP as a real number (see Fig. 1). The VGG16 model 
is one of the popular models for transfer learning, so we 
used it with the ImageNet parameters as layers 2–19 of the 
model (we did not use the flattened and dense layers of the 
VGG16) [15]. VGG16 is a classification system based on 
3-channel color images. The size of layer 1 (the input layer) 
is 256 × 256 × 3 pixels. Because the chest radiograph image 
is a 1-channel, grayscale image, we stacked three identical 
images on top of each other to create a color image. After 
analysis by VGG16, the convoluted images were transitioned 
to a global average pooling (GAP) layer, which is layer 20. 
Using a GAP layer, we were able to create a regression acti-
vation map (RAM) to visualize in the form of a heatmap 
how our deep learning model estimated PAWP [16]. Because 
the aim of the study was to develop a regression CNN for 
estimating PAWP as a real number, we set the identity func-
tion as the activation function of the output layer. Creating a 
RAM is a recently developed method to produce a heatmap 
that highlights the regions in the image where the regression 
CNN model focuses.

Preparation of training and test data sets

To develop a regression CNN and estimate its generalization 
error, we randomly categorized all data (N = 936) as train-
ing data or test data (Fig. 2). In this process, we developed 

Fig. 1  Regression convolutional neural network. The structure of the 
regression convolutional neural network used to estimate pulmonary 
artery wedge pressure
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a CNN using four subsets (the main training data) and vali-
dated it with a rest subset (the validation data). To achieve 
high accuracy, we created expanded data by randomly rotat-
ing images by plus and minus 10 degrees and randomly 
scaling the images by plus and minus 5%. The size of the 
expanded data and the original images was the same. For 
example, if subset 5 was to be validated, the total number 
of images in subsets 1–4 was 596 images, and the expanded 
data also included 596 images. Therefore, the total number 
of images in the main training data was 1192 images (596 
original images and 596 expanded data images). The above 
procedures were performed for cross-validation. The learn-
ing condition was set as minibatch learning (batch size = 8), 
root mean square propagation (RMSprop) was performed 
for optimization, and mean squared error (MSE) was set as 
the cost function to measure performance of the model; 200 
epochs were run.

Construction of the regression CNN

The learning rates of RMSprop were set as  10–5.5,  10–6.0, and 
 10–6.5; Supplementary Fig. 1 shows the learning results of 
these three learning rates; each graph has five lines because 
we performed fivefold cross-validation. The cross-validation 
MSEs of the validation data for 200 epochs of the learning 
rates  10–5.5,  10–6.0, and  10–6.5 were 31.99, 33.53, and 31.71, 
respectively. Therefore, we considered a learning rate of 
 10–6.5 to be optimal. Furthermore, to avoid overfitting, we 
searched in the range from 1 to 200 epochs for the num-
ber of epochs that resulted in the minimum cross-validation 
MSE and found that 150 was the optimal number. With 150 

epochs, the minimum cross-validation MSE was 30.25. 
Thus, we adopted the learning rate  10–6.5 and 150 epochs 
for our regression CNN.

Deep learning was performed with Python version 3.8.9 
(Python Software Foundation, Beaverton, OR, USA) and 
Keras version 2.7.0 software (GitHub, San Francisco, CA, 
USA). As the backend of Keras, we used TensorFlow 2.7.0, 
a deep learning framework. We built the regression CNN 
on a Linux computer (operating system, Ubuntu 20.04; cen-
tral processing unit, Intel Core i7-10750H; random access 
memory, 16 GB; graphics processing unit, NVIDIA GeForce 
RTX 3060).

Statistical analysis

Continuous variables were expressed as medians [inter-
quartile range (IQR)] and compared by a Mann–Whitney 
test. Categorical variables were expressed as number and 
percentage of patients and compared by a chi-squared test. 
Correlations between PAWP measured by RHC [ground 
truth (GT) PAWP] and PAWP estimated by the regression 
CNN (estimated PAWP) were tested by Pearson’s correlation 
coefficient. Bland–Altman plots were used to show agree-
ment between GT and estimated PAWP by plotting the dif-
ference against the mean. Receiver-operating characteristic 
(ROC) curves were generated, and the area under the curves 
(AUC) was determined as a measurement of the ability of 
the regression CNN model to detect elevated PAWP. We 
defined elevated PAWP as a value greater than or equal to 
18 mmHg [17]. The diagnostic ability of the regression CNN 
model and an experienced cardiologist, who was blind to the 

Fig. 2  Study flowchart. To 
develop a regression convo-
lutional neural network and 
verify its generalization error, 
we randomly categorized all 
data (N = 936) as training data 
and test data; 80% of all data 
were categorized as training 
data (training group, n = 748) 
and 20% as test data (test group, 
n = 188). The training data were 
split into 5 subsets for 5-hold 
cross-validation
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PAWP data, were evaluated by AUCs, and the AUCs were 
compared by the Delong method [18]. All statistical analyses 
were performed with JMP 13.0 (SAS Institute, Cary, NC, 
USA) and the MedCalc Software program, Version 18.5 
(MedCalc Software, Mariakerke, Belgium). For all analyses, 
P < 0.05 was considered statistically significant.

Results

Patient characteristics

The clinical diagnoses and indication for RHC of the 936 
patients are presented in Table 1. In our cohort, 593 (63.3%) 
patients had ischemic heart disease and 193 (20.6%) patients 
had heart failure. The clinical characteristics of the training 
and test groups are shown in Table 2. We found no sig-
nificant difference between the two groups in age, sex, body 
mass index, body surface area, or heart rate. Hemodynamic 
parameters, including systolic blood pressure, cardiac out-
put, cardiac index, and PAWP, were also not significantly 
different between the two groups. The distribution of PAWP 
among the study patients is shown in Supplementary Fig. 2. 
The median PAWP value was 11 mm Hg (IQR 7–15 mm Hg) 

in the training group and 11 mm Hg (IQR 8–14 mm Hg) in 
the test group (P = 0.84).

Validation of the regression CNN

In the training group, estimated PAWP derived from the 
regression CNN significantly correlated with GT PAWP 
(r = 0.76, P < 0.001, Fig. 3A). Bland–Altman plots found 
a mean (SEM) difference between the GT and estimated 
PAWP of − 0.23 (0.16) mm Hg, the upper limit of agree-
ment [defined as mean (+ 1.96 SD)] was 8.4 mm Hg, and 
the lower limit of agreement [defined as mean (− 1.96 SD)] 
was − 8.8 mm Hg (Fig. 3B). However, when the mean GT 
PAWP and estimated PAWP were over 30 mm Hg, which 
was the case in several patients, the estimated PAWP tended 
to be underestimated.

In the test group, estimated PAWP derived from the 
regression CNN significantly correlated with the GT PAWP 
(r = 0.62, P < 0.001, Fig. 3C). Bland–Altman plots found a 
mean (SEM) difference between GT and estimated PAWP of 
− 0.05 (0.41) mm Hg, the upper limit of agreement [defined 
as mean (+ 1.96 SD)] was 11.0 mm Hg, and the lower limit 
of agreement [defined as mean (− 1.96 SD)] was − 11.2 mm 
Hg (Fig. 3D). As in the training group, several patients in the 
test group had a mean GT and estimated PAWP over 30 mm 
Hg, and the estimated PAWP in these patients tended to be 
underestimated.

Assessment of the RAM

To visualize how the regression CNN assessed the images, 
we used an RAM to analyze where AI focused in the images. 
Representative cases in the test group are shown in Fig. 4. 
The red and yellow areas on the heatmaps show the regions 
where AI focused to determine the estimated PAWP. In most 
cases, our regression CNN model focused only on the left 
side of the cardiac area; however, in several cases with high 
GT PAWP (e.g., cases 3 and 4 in Fig. 4), our regression CNN 

Table 1  Clinical diagnosis and indication for right-sided cardiac cath-
eterization

Clinical diagnosis N = 936

Ischemic heart disease, n (%) 593 (63.3)
Heart failure, n (%) 193 (20.6)
Valvular heart disease, n (%) 108 (11.5)
Hypertrophic obstructive cardiomyopathy, n (%) 12 (1.2)
Pulmonary arterial hypertension, n (%) 7 (0.7)
Arrhythmia, n (%) 4 (0.4)
Atrial septal defect, n (%) 5 (0.5)
Others, n (%) 14 (1.5)

Table 2  Clinical characteristics 
of patients

CI cardiac index, CO cardiac output, IQR interquartile range, PAWP pulmonary arterial wedge pressure

Item Training group
(n = 748)

Test group
(n = 188)

P value

Age, median (IQR), y 71 (62–77) 71 (60–78) 0.67
Male, n (%) 582 (77.8) 140 (74.7) 0.33
Body mass index, median (IQR), kg/m2 23.4 (20.8–26.0) 23.6 (21.4–26.0) 0.26
Body surface area, median (IQR),  m2 1.71 (1.56–1.85) 1.71 (1.58–1.90) 0.50
Heart rate, median (IQR), bpm 69 (62–78) 68 (60–78) 0.46
Systolic blood pressure, median (IQR), mmHg 126 (109–143) 127 (111–145) 0.61
CO, median (IQR), L/min 4.4 (3.7–5.4) 4.6 (3.8–5.5) 0.55
CI, median (IQR), L/min/m2 2.6 (2.2–3.1) 2.6 (2.2–3.1) 0.35
PAWP, median (IQR), mmHg 11 (7–15) 11 (8–14) 0.84
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model focused not only on the cardiac area but also on the 
pulmonary congestion.

Detection of elevated PAWP by the regression CNN 
model and the cardiologist

When we compared the AUCs for detecting elevated PAWP 
produced by the regression CNN model and the cardiologist 
in test group, we found that the AUC produced by the regres-
sion CNN model was similar to that of the cardiologist (0.86 
vs 0.83, respectively; P = 0.24).

Discussion

This is the first clinical study to propose a method for quan-
titatively estimating PAWP using a regression CNN with 
standard chest radiographs in patients with cardiovascular 
diseases. Our study has three main findings. First, regression 

CNN can calculate estimated PAWP as a numerical value 
from standard chest radiographs; second, estimated PAWP 
moderately correlates with GT PAWP obtained by RHC; and 
third, as visualized by an RAM, regression CNN focuses on 
cardiomegaly and pulmonary congestion to estimate PAWP, 
and the diagnostic performance of the regression CNN is 
similar to that of an experienced cardiologist. This proof-of-
concept study showed that regression CNN can potentially 
be used to quantitatively estimate PAWP from standard chest 
radiographs.

PAWP has been reported to be one of the most important 
hemodynamic parameters in heart failure [19, 20]. Tradi-
tionally, physicians have subjectively estimated PAWP by 
estimating the severity of pulmonary edema from chest 
radiographs (the standard noninvasive screening method 
for assessing pulmonary congestion) [4]. However, besides 
being subjective, this approach is unreliable because stand-
ard chest radiography has low sensitivity for estimating the 
severity of pulmonary congestion [5, 21]. A recent clinical 

Fig. 3  Relation between ground truth and estimated pulmonary 
artery wedge pressure in the training and test groups. A Scatter plots 
showing the relation between ground truth (GT) and estimated pul-
monary artery wedge pressure (PAWP) in the training group. B 

Bland–Altman plot of the training group data. C Scatter plots show-
ing the relation between GT and estimated PAWP in the test group. 
D Bland–Altman plot of the test group data. GT ground truth, PAWP 
pulmonary artery wedge pressure
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study reported that the redistribution of pulmonary perfusion 
associated with pulmonary congestion was seen in a venti-
lation/perfusion single-photon emission computed tomog-
raphy even in cases where a thoracic radiology specialist 
could not detect pulmonary congestion [6]. Consequently, 
standard chest radiography has limited value for objectively 
estimating PAWP.

With the development of artificial intelligence and deep 
learning in recent years, interest has grown in using these 
technologies in clinical research. The most established, tra-
ditionally used algorithm among the various deep learning 
models is CNN [7]. CNN is a class of artificial neural net-
works that is typically composed of three types of layers, 
i.e., convolution, pooling, and fully connected layers. Fea-
ture extraction is performed in the convolution and pooling 
layers, and output, such as classification of images, is per-
formed in the fully connected layer [7]. CNN has become 
an effective method for classification tasks and was recently 
applied for diagnosing images in various clinical fields in 

medicine. For example, CNN has been used to classify skin 
diseases from skin photographs and optic disc abnormalities 
from fundus photographs [22, 23].

Several recent studies have reported on using CNN for 
diagnosing cardiovascular diseases. One recent, interest-
ing clinical study showed the usefulness of a CNN model 
for diagnosing heart failure from chest radiographs [12]. 
In addition, another recent study reported on the use of a 
CNN algorithm with chest radiographs to identify elevated 
PAWP [13]. Although these CNN models provide qualita-
tive assessments of PAWP, they are unable to quantitatively 
estimate PAWP from chest radiographs.

Regression CNN is an alternative deep learning method 
that can output a real number from digital image data such 
as radiographs. It uses convolutional layers to convert the 
inputted image data into small-scale data, which are flat-
tened by the middle, fully connected layers and ultimately 
transformed into a real number. This approach is used in 
the field of radiology, for example to quantitatively estimate 

Fig. 4  Representative cases. Examples of visualization with a regres-
sion activation map (RAM). In each case, the original image is on the 
left and its heatmap is on the right. The red and yellow areas on the 
heatmap represent the points on which the regression CNN model 
focused. A Case 1: A 73-year-old man with ischemic heart dis-
ease. Ground truth (GT) pulmonary artery wedge pressure (PAWP), 
6.0 mm Hg; estimated PAWP, 9.3 mm Hg. B Case 2: A 69-year-old 

man with ischemic heart disease. GT PAWP, 6.0 mm Hg; estimated 
PAWP, 7.6 mm Hg. C Case 3: A 60-year-old man with ischemic heart 
disease. GT PAWP, 26.0 mm Hg; estimated PAWP, 25.1 mm Hg. D 
Case 4: A 55-year-old man with heart failure. GT PAWP, 44.0  mm 
Hg; estimated PAWP, 24.0 mm Hg. GT ground truth, PAWP pulmo-
nary artery wedge pressure
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pediatric bone age from radiographs [24]. Another example 
is the use of regression CNN to predict a patient’s age from 
chest radiographs in emergency medicine [14]. In the pre-
sent study, we applied this method to quantitatively estimate 
PAWP from chest radiographs in patients with cardiovascu-
lar diseases. Our findings showed the potential usefulness 
of this approach because the PAWP estimated by the model 
from chest radiograph image data correlated with the actual 
PAWP measured by RHC.

A quantitative approach is more sensitive and objective 
than a qualitative approach, so it may be more useful for 
decision making in heart failure management. PAWP is com-
monly also assessed by echocardiography; however, this 
method has relevant shortcomings, including dependence 
on the examiner’s skill, time, and cost. Furthermore, even a 
detailed study of an echocardiogram by an expert sonogra-
pher in accordance with the current guidelines provides only 
a semiquantitative assessment [25, 26].

To enable the safe application of deep learning in medi-
cal imaging, it is important to identify and visualize how 
the deep learning process assesses and learns from images. 
To visualize the features on which deep learning focuses, 
several techniques are available, such as gradient-class acti-
vation maps, Generative Visual Rationals, and RAM [27, 
28]. In the present study, we used RAM, a state-of-the-art 
method that provides a visual explanation of how regression 
CNN has learned the features of images [16]. Our results 
revealed that our regression CNN assessed PAWP by focus-
ing on the left side of the cardiac region and on the pulmo-
nary congestion. This assessment approach was considered 
to be similar to that of a cardiologist. To our knowledge, this 
study is the first to apply RAM to medical imaging in the 
field of cardiology.

Our results suggested that a regression CNN model can 
estimate PAWP on the basis of only one DICOM image of 
a chest radiograph. This mehod is noninvasive, fast, simple, 
objective, and inexpensive and has the potential to be clini-
cally useful by assisting physicians in various clinical situ-
ations, including screening for heart disease during medical 
check-ups, managing heart failure, and treating outpatients. 
Applying regression CNN to chest radiography will make 
it a more useful and beneficial diagnostic tool in medicine.

The present study has several limitations. First, it was 
a single-center study with a relatively small sample size. 
Generally, deep learning requires thousands of data points 
to be highly accurate, although we overcame this limita-
tion by constructing a thin-layer CNN model. Second, our 
regression CNN model underestimated PAWP in several 
patients with an extremely high GT PAWP. For example, 
in case 4 (see Fig. 4), the GT PAWP was 44.0 mm Hg but 
the estimated PAWP was 24.0 mm Hg. This poor estimate 
may be because the median GT PAWP in our dataset was 
11 mm Hg (IQR 8–15 mm Hg) and few training data had 

a GT PAWP greater than or equal to 30 mm Hg. Third, 
we collected data retrospectively, and RHC and chest 
radiography were not performed simultaneously. Last, we 
excluded patients with lung diseases because we believed 
that lung lesions, such as pleural effusion or inflamma-
tion, could affect the learning process of deep learning. 
In addition, patients with percutaneous cardiopulmonary 
support and a left ventricular assist device were also 
excluded because the difficulty of performing RHC means 
that PAWP obtained in these patients may not be accurate 
and because these large medical devices may affect the 
learning process of deep learning.

In the future, this deep learning model should be 
improved by applying it in a larger cohort from a real-world 
population. Nevertheless, despite the above limitations, our 
results provide insight into the application of artificial intel-
ligence and deep learning to cardiology.

In conclusion, regression CNN can be applied to quanti-
tatively estimate PAWP from standard chest radiographs in 
patients with cardiovascular diseases.
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