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ABSTRACT: Human ectopic pregnancy (EP) remains a common cause of pregnancy-related first trimester death. Nitric oxide (NO) is

synthesized from L-arginine by three NO synthases (NOS) in different tissues, including the Fallopian tube. Studies of knockout mouse

models have improved our understanding of the function of NOS isoforms in reproduction, but their roles and specific mechanisms in infec-

tion-induced tubal dysfunction have not been fully elucidated. Here, we provide an overview of the expression, regulation and possible func-

tion of NOS isoforms in the Fallopian tube, highlighting the effects of infection-induced changes in the tubal cellular microenvironment
(imbalance of NO production) on tubal dysfunction and the potential involvement of NOS isoforms in tubal EP after Chlamydia trachomatis
genital infection. The non-equivalent regulation of tubal NOS isoforms during the menstrual cycle suggests that endogenous ovarian steroid

hormones regulate NOS in an isoform-specific manner. The current literature suggests that infection with C. trachomatis induces an inflam-

matory response that eventually leads to tubal epithelial destruction and functional impairment, caused by a high NO output mediated by

inducible NOS (iNOS). Therefore, tissue-specific therapeutic approaches to suppress iINOS expression may help to prevent ectopic implan-

tation in patients with prior C. trachomatis infection of the Fallopian tube.
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Introduction

Ectopic implantation in the first trimester of pregnancy is a common
cause of human maternal morbidity and mortality (Corpa, 2006). It
accounts for 1.5-2% of all pregnancies in the western world (Barn-
hart, 2009), and ~97% of ectopic pregnancies (EPs) are in the Fallo-
pian tube (Mukul and Teal, 2007). Tubal EP is a growing problem in
developing countries (Farquhar, 2005; Barnhart, 2009). The mamma-
lian Fallopian tube is a dynamic, steroid-responsive tissue (Jansen,
1984) composed of heterogeneous cell types: ciliated and secretory
epithelial cells as well as smooth muscle cells, all of which appear to
be specialized to perform different functions (Shao et al., 20073, b).

Tubal abnormalities and dysfunction (e.g. altered abnormal ciliary
activity or contractility) are thought to lead to tubal EP, but the

precise aetiology of its initiation and development is unknown
(Shao, 2010). A major risk factor is previous pelvic inflammatory
disease, which is quite common in women with tubal EP (Brunham
and Rey-Ladino, 2005). According to the World Health Organization
(WHO)  (http://www.who.int/mediacentre/factsheets/fs| 10/en/
index.html), 10—40% of women with untreated Chlamydia trachomatis
infection worldwide develop symptomatic pelvic inflammatory disease
associated with complications. Women infected with C. trachomatis in
the genital tract are highly susceptible to tubal EP (Chow et al., 1990).
An untreated C. trachomatis infection is likely to injure tissue, cause
permanent scarring and obstruct the Fallopian tubes at multiple sites
(Paavonen and Lehtinen, 1996; Farquhar, 2005) as a consequence of
the host inflammatory immune response (Entrican et al., 2004), ulti-
mately inhibiting or disrupting gamete transport. However, the

© The Author 2010. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



908

Shao et al.

pathological mechanisms that induce tubal EP are unknown. Since 70—
90% of women with C. trachomatis infection do not have symptoms
(Peipert, 2003), the WHO has recommended screening strategies
to decrease the C. trachomatis spread and thereby indirectly decrease
the tubal EP rate. In many industrialized countries and China, the
prevalence of C. trachomatis infection is 2—5% of the population
(Fenton et al., 2001; Parish et al., 2003; Miller et al., 2004).

How C. trachomatis infection induces Fallopian tube damage is
poorly understood at the molecular level, and a better understanding
of the biological basis of infection-induced tubal EP is needed to aid its
prevention and treatment. Nitric oxide (NO) is an endogenous short-
lived signalling molecule involved not only in multiple physiological pro-
cesses but also in diseases in different organs/tissues (Moncada and
Higgs, 1991; Moncada et al., 1991), including the Fallopian tube (Ros-
selli et al., 1998). The role of NO in regulating gene expression,
enzyme activity, and transcription factor activation has been exten-
sively demonstrated in several experimental models other than Fallo-
pian tube (Moncada and Higgs, 1991; Moncada et al., 1991). NO is a
double-edged sword. At low levels, it alters intracellular Ca*" levels
and activates uterine smooth muscle relaxation (Telfer et al., 1995).
But at high levels, it causes infection-induced immune reaction and
inflammation-induced tissue lesions (Moncada and Higgs, 1991;
Moncada et al., 1991; Rosselli et al., 1998).

The purpose of this review is to highlight the potential role of nitric
oxide synthases (NOS) in Fallopian tube physiology and to discuss
how C. trachomatis infection changes the tubal microenvironment by
regulating NO production by different NOS isoforms, leading to
tubal EP. The current review also suggests future research directions.

NO signalling and NOS isoforms
in the Fallopian tube

The diverse biological actions of NO as an intra- and inter-cellular
messenger are mediated by binding to metal-containing centres of
enzymes and by stimulation of the soluble NO-sensitive form of gua-
nylate cyclase (sGC). This event leads to increases in cyclic guanosine
monophosphate (cGMP) levels and activation of cGMP-dependent
protein kinase (PKG) or c¢cGMP-independent intracellular effects in
target cells (Moncada et al., 1991). In the clinic, treatment of vagina
with sildenafil citrate, which inhibits cGMP breakdown, increases
endometrial thickness (Jerzak et al., 2008), which may increase the
chance of successful pregnancy at spontaneous conception or IVF in
recurrent miscarriage patients. As far as caution on cardiovascular
effects of sildenafil in humans is concerned, there is a need for
studies to evaluate toxicities associated with sildenafil treatment, in
particular the human risk assessment, before clinical use of sildenafil
in women with EP.

The precise role of the NO-cGMP signalling pathway in the Fallo-
pian tube is unclear. Rat Fallopian tube cells express a number of
NO-cGMP signalling components, such as sGCal, sGCBI, PKGla
and PKGla (Zhan et al., 2003). The mammalian Fallopian tube is a
site of endogenous production of NO (Rosselli et al., 1998), which
is quickly metabolized to its stable end product, nitrate (Wennmalm
et al., 1993). One clinical study showed a significant increase in circu-
lating nitrite/nitrate levels after the luteinizing hormone surge in the
menstrual cycle (Ekerhovd et al, 2001). NO signalling is largely

regulated at the level of NO biosynthesis, and the primary source of
NO production in vivo is oxidation of L-arginine by NOS enzymes
(Alderton et al., 2001).

Three distinct tissue-localized NOS isoforms with predicted mol-
ecular weights of [30—160kDa have been identified: calcium-
independent inducible NOS (iNOS), calcium/calmodulin-dependent
neuronal NOS (nNOS) and endothelial NOS (eNOS) (Moncada
and Higgs, 1991; Moncada et al., 1991; Rosselli et al., 1998). NOS iso-
forms are encoded by three distinct genes, exhibit 50—60% amino acid
sequence similarity, and fulfil different functions (Nathan and Xie,
[994; Alderton et al, 2001). nNOS and eNOS are constitutively
expressed. iINOS is expressed in response to stimuli (e.g. immune
and inflammatory responses) and increased iNOS expression leads
to massive NO production that has both cytotoxic and cytoprotective
effects in a wide range of tissues and cells (Mashimo and Goyal, 1999).
Moreover, activation of nNOS or eNOS results in transient NO
release within seconds or minutes, whereas iINOS generates cellular
production of NO that continues for hours or even days (Moncada
and Higgs, 1991; Moncada et al., 1991).

Studies of the roles of NOS isoforms in NO production and activity
in knockout mouse models indicate that NO activity is maintained at
appropriate levels by a potent NOS network of mechanisms (Tran-
guch and Huet-Hudson, 2003). All nucleated mammalian cells
possess at least one of the three conserved NOS isoforms;
however, their expressions vary in different tissues and cells in vivo
(Bryan et al., 2009) and may reflect their biological roles. The three
NOS isoforms are expressed differentially in different cell types of
the Fallopian tube in humans (Rosselli et al., 1996; Ekerhovd et dl.,
[997; Tschugguel et al., 1998; Ekerhovd et al., 1999; Machado-Oliveira
et al., 2008; Al-Azemi et al., 2010; Refaat et al., 2009), rats (Bryant
et al., 1995; Chatterjee et al., 1996; Zhan et al., 2003; Kilic et dl.,
2008), cattle (Majewski et al., 1995; Rosselli et al., 1996; Lapointe
et al., 2006; Ulbrich et al., 2006) and pigs (Majewski et al., 1995;
Andronowska et al., 1999; Gawronska et al., 2000) (Table I).
However, only tubal epithelial cells express all NOS isoforms,
suggesting that this cell type is a potentially important determinant
of the effects of NO in the Fallopian tube (Table ). Tubal INOS
and eNOS are the predominant isoforms in both humans and
animals. As discussed below, NOS appears to have physiologically
important, isoform-specific functions in the Fallopian tube.

Regulation of NOS isoforms in
the Fallopian tube

Although gene expression of NOS isoforms depends on various
factors, hormonal regulation is quite important in the Fallopian tube.
Expression of NOS isoforms and nicotinamide adenine dinucleotide
phosphate-diaphorase (a histochemical, non-specific marker for all
NOS isoform activities) varies across the normal reproductive cycle
in human, rat, cattle and porcine Fallopian tubes (Bryant et dl.,
[995; Chatterjee et al, 1996; Gawronska et al., 2000; Lapointe
et al., 2006; Ulbrich et al., 2006; Al-Azemi et al., 2010). These
results raise the possibility that changes in NOS-derived NO pro-
duction during fluctuating physiological conditions may be involved in
regulation of important Fallopian tube functions, such as ciliary activity
or contractility.



NOS and tubal ectopic pregnancy

909

Table | Summary of reported cell type-specific differences of NOS isoforms in the Fallopian tube.

Species nNOS iNOS

Human Epithelial cells (ampulla) Epithelial cells*
Smooth muscle cells (Al], isthmus)
Endothelial cells (Al], isthmus)

Rat Epithelial cells Epithelial cells

Bovine Epithelial cells® Epithelial cells®

Smooth muscle cells® Smooth muscle cells®
Porcine Nerve fibre (isthmus) Epithelial cells (ampulla, isthmus)

Endothelial cells (IF, ampulla, isthmus)

References

Epithelial cells®
Endothelial cells (Al], isthmus)

Al-Azemi et al. (2010)
Ekerhovd et al. (1997, 1999)
Machado-Oliveira et al. (2008)
Refaat et al. (2009)

Rosselli et al. (1996)
Tschugguel et al. (1998)
Bryant et al. (1995)
Chatterjee et al. (1996)

Kilic et al. (2008)

Zhan et al. (2003)

Lapointe et al. (2006)
Majewski et al. (1995)
Rosselli et al. (1996)

Ulbrich et al. (2006)
Andronowska et al. (1999)
Gawronska et al. (2000)
Majewski et al. (1995)

Epithelial cells®
Smooth muscle cells

Endothelial cells

Epithelial cells®
Smooth muscle cells®

Endothelial cell

Epithelial cells (ampulla, isthmus)

Endothelial cells (ampulla, isthmus)

AlJ, ampullary isthmic junction; IF, infundibulum; nNOS, neuronal NOS; iNOS, inducible NOS; eNOS, endothelial NOS.

“Demonstrated in the ampulla, AlJ and isthmus.

Given the complex interactions between fluctuating and declining
levels of the major ovarian-derived steroid hormones (|7f3-estradiol
and progesterone) during the reproductive cycle, local expression of
NOS isoforms may be regulated by |73-estradiol and/or progester-
one. Indeed, NOS expression and activity in the Fallopian tube are
related to the ratio of |7@3-estradiol and progesterone (Rosselli
et al., 1998). Several clinical and experimental observations suggest a
regulatory role for estrogens in the expression of NOS isoforms and
endogenous NO production. First, during follicular development,
increases in estrogen levels are associated with circulating nitrate
levels in reproductive-age women (Rosselli et al., 1994a; Ekerhovd
et al, 2001), and circulating estrogen levels correlate with circulat-
ing/follicular nitrite/nitrate levels during ovarian stimulation in IVF
treatment (Rosselli et al., 1994a; Anteby et al., 1996). Second, in post-
menopausal women, administration of |7f3-estradiol significantly
increases circulating nitrite/nitrate levels (Ramsay et al., 1995; Cicinelli
et al., 1997). Third, in non-pregnant guinea pigs, the experimental
manipulation of endogenous estrogen levels induces expression of
nNOS and eNOS mRNA and NOS activity in the heart, kidney and
skeletal muscle (Weiner et al., 1994). Fourth, treatment with
| 73-estradiol selectively up-regulates iNOS mRNA and protein
expression in the bovine Fallopian tube during the periovulatory
period (Lapointe et al., 2006).

Both genomic and non-genomic effects of estrogen may contribute
to the regulation of NOS isoform expression, but the role of tubal
estrogen receptors in this regulation is poorly characterized. On the
other hand, although the effect of pregnancy on NOS isoform
expression does not support progesterone-mediated induction of
nNOS and eNOS expression (Weiner et al., 1994), progesterone

can up-regulate tissue-dependent iINOS mRNA and protein

expression in pregnant rodents in vivo (Maul et al., 2003). Moreover,
acute in vitro treatment of bovine oviduct epithelial cells with pro-
gesterone rapidly increases iINOS and eNOS mRNA expression
(Ulbrich et al., 2006). Thus, multiple steroid-related mechanisms
may contribute to the overall regulation of NOS isoform expression
and NO production in the Fallopian tube in vivo.

Probing the biological functions
of NOS isoforms

In mammals, NOS activity is highly controlled because its product is a
potent regulator of many physiological processes (Moncada and Higgs,
[991; Moncada et al., 1991; Rosselli et al., 1998). Tubal transport of
the embryo is a complex and highly regulated process, which spans
several days. One line of evidence suggests that NO helps regulate
tubal contractility and relaxation under physiological conditions (Ros-
selli et al., 1996, 1998). In vitro treatment with two NO donors (nitro-
glycerin and spermine NONOate) and 8-bromo cGMP decreased the
contractility of the human Fallopian tube (Ekerhovd et al., 1999). In line
with these findings, the opposite effect was observed in human and
bovine Fallopian tubes treated with N-nitro-L-arginine methyl ester
(L-NAME), an inhibitor of NO synthesis (Rosselli et al., 1994b; Eker-
hovd et al, 1997). Moreover, local administration of spermine
NONOate abolished the effects of L-NAME, reducing the transport
speed of ovulated oocyte-cumulus complexes in rat Fallopian tubes
(Perez Martinez et al., 2000).

Use of pharmacological blockers of NO synthesis does not dis-
tinguish the competitive inhibitory properties of the three NOS iso-
forms or the diversity of specific NOS-derived NO production that
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may result in cell-specific responses in the Fallopian tube under phys-
jological conditions. Interestingly, the transiently increased iINOS
expression (Shao et al., unpublished data) corroborates reported
increases in circulating NO production (Ekerhovd et al., 2001) and fre-
quency of contraction (Ekerhovd et al., 1999). Taken together, these
results imply that iNOS, rather than nNOS and eNOS, is the major
contributing NOS for local NO production, which might be needed
to suppress tubal transport in the specific period. Since Fallopian
tubal transport is under precise temporal control by specific hormonal
and signalling pathways (Jansen, 1984), research is needed to deter-
mine whether tubal transport requires iINOS, and if steroid hormonal
regulation of tubal transport are independent of NOS-derived NO
network.

Key insights into the physiological significance of each NOS isoform
have come from gene knockout studies in mice. For example, central
but not ovarian nNOS activity is crucial for ovulation in nNOS-
deficient female mice (Gyurko et al., 2002), whereas studies of
iINOS-deficient female mice have shown that iINOS contributes to
the maintenance of decidual cellular integrity for implantation and
embryo survival (Burnett et al., 2002). In contrast, eNOS-deficient
female mice have a reduced ovulatory capacity, a prolonged oestrous
cycle, impaired early embryonic viability and decreases in implantation
during pregnancy (Tempfer et al., 2000; Hefler and Gregg, 2001;
Hefler et al., 2001; Pallares et al., 2008). However, typically the del-
etions remove simultaneously more than one NOS gene, hindering
the establishment of genotype-phenotype correlations. In fact,
nNOS-INOS-, nNOS-eNOS- and iINOS-eNOS-double homozygous
mutant female mice show insufficient alterations of oestrous cyclicity
and fertility (Tranguch and Huet-Hudson, 2003), suggesting that,
when one NOS isoform is deleted, compensatory responses of
other NOS isoforms maintain overall NOS activity in female reproduc-
tive events in vivo.

However, it is not clear how deletion of NOS isoforms, individually
or in combination, affects Fallopian tube function. Furthermore,
isoform-specific NOS-deficient mouse models show diverse immune
responses (Liu and Huang, 2008). For example, nNOS-deficient
mice are resistant to neuronal inflammatory injury, while eNOS-
deficient mice show increased susceptibility to neuronal and vascular
inflammatory injury. More interestingly, iNOS-deficient mice show
decreased neuronal inflammatory injury and increased susceptibility
to bacterial and viral pathogens (MacMicking et al., 1995; Wei et dl.,
1995). These provocative findings shed light on the mechanisms that
regulate the dynamic expression of different NOS isoforms under
pathophysiological conditions.

C. trachomatis infection induces
an inflammatory
microenvironment in the
Fallopian tube

Chlamydia are unique obligate intracellular pathogens that can exist in
two forms: the elementary body (EB) and the reticulate body (RB).
EBs, the transmissible form of the organism capable of extracellular
survival, attach to susceptible host cells to initiate infection. After
entering the host cell, the EB induces endocytosis into a host-derived,

membrane-bound vacuole designated as an inclusion. Inside the
inclusion, the EB rapidly differentiates into the non-infective, intracellu-
lar and replicative RB (Muschiol et al., 2006). C. trachomatis has a
unique biphasic developmental cycle, alternating between metaboli-
cally inert EBs and metabolically active RBs (Moulder, 1991). RBs
divide exponentially by binary fission before condensing back into
EBs, which are released after lysis of infected cells, allowing for
further propagation of the infection (Moulder, 1991).

Chlamydia shares morphological and structural properties of gram-
negative bacteria (Bush and Everett, 2001) and is presented in two
ways: cellular lysis and/or reminiscent exocytosis in host cells
(Hybiske and Stephens, 2007). Human Chlamydia genital infection
causes a wide range of pathologies. In women undergoing microtubo-
plasty for surgical correction of damaged Fallopian tubes, tubal biop-
sies contain Chlamydia (Henry-Suchet et al., 1981; Shepard and
Jones, 1989), and women with tubal factor infertility often have
C. trachomatis DNA or its antigen in the Fallopian tubes (Campbell
et al, 1993). In human Fallopian tube organ culture, C. trachomatis
replicates within both ciliated and non-ciliated epithelial cells
(Cooper et al., 1990). Epithelial cells, but not muscle cells, in the Fal-
lopian tube are the primary targets for Chlamydia infection (Henry-
Suchet et al., 1996; Rasmussen et al., 1997; Igietseme et al., 1998)
and may serve as the first line of defence against such infection by reg-
ulating both innate and adaptive immune responses (Wira et dl.,
2005a, b). The infected epithelial cells trigger local innate immune
responses for the recognition of invading pathogens through pattern
recognition receptors such as Toll-like receptors (Hart et al., 2009).
A polymorphonuclear leukocyte response is initiated; these cells
produce interleukin (IL) 8 and other proinflammatory cytokines (Ras-
mussen et al., 1997) and stimulate the initial neutrophilic response,
which is followed by tissue infiltration of macrophages, lymphocyte,
plasma cells and eosinophils (Kuo, 1988).

The important feature of innate immunity is cytokine production,
and regulation of inflammation-induced cytokine expression in the Fal-
lopian tube has been demonstrated by several groups. Hess et al.
(2009) demonstrated that epithelial specific-IL-1 expression in the
Fallopian tubes is higher in women with EP than in those with a
normal menstrual cycle; however, the number of women with EP
who had a Chlamydia infection was not determined. Hvid et al.
(2007) reported that C. trachomatis infection induces epithelial [L-1(3
and IL-| receptor Type | synthesis, which could be blocked by treat-
ment with IL-| receptor antagonist in human Fallopian tubes. This
group, as well as Prantner et al. (2009), reported that either inhibition
of IL- 13 signalling or deletion of IL- 13 can prevent pathology in human
Fallopian tubes after infection with C. trachomatis in vitro or in mouse
Fallopian tubes after infection with Chlamydia muridarum, a murine
strain of Chlamydia in vivo. Finally, potential sites for IL-13 synthesis
and secretion are present in macrophages in mouse Fallopian tube
(Prantner et al., 2009). Infections favour macrophage recruitment
and stimulate cytokine synthesis and secretion (La Verda and Byrne,
1994).

Another proinflammatory cytokine, tumour necrosis factor-o
(TNF-a), an inflammatory central modulator, is also increased in
response to C. trachomatis infection in human Fallopian tubes in vivo
and in vitro (Toth et al., 1992; Ault et al.,, 1996). Moreover, TNF-a
has an apoptotic role in mouse Fallopian tubes infected with
C. trachomatis in vivo (Perfettini et al, 2000). Thus, epithelial cells
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and macrophages appear to co-operate to regulate IL-1 and TNF-a
expression and activation, which may be pathogenic in Fallopian
tubes infected with Chlamydia.

The other major proinflammatory cytokines and chemokines,
including IL-2, IL-6, IL-8, IL-10, interferon gamma (IFN-7) and granulo-
cyte/macrophage-colony stimulating factor (GM-CSF), are likely
involved in the propagation and progression of inflammation in the Fal-
lopian tubes after Chlamydia infection (Rasmussen et al., 1997; Van
Voorhis et al., 1997; Entrican et al, 2004; Strandell et al., 2004;
Hvid et al., 2007). Analysis of patients according to prior exposure
to genital C. trachomatis infection has revealed that the TNFa 308A
allele and the IL-10 1082A allele are risk factors for Fallopian tube
damage in infected women (Ohman et al., 2009), further illustrating
the possibility that cytokines and chemokines mediate tubal damage
induced by C. trachomatis infection.

Inflammation is a physiological process used by the organism in
response to infection, tissue damage or cellular irritants (Stutz et al.,
2009). Inflammation progresses through different stages. Under
normal circumstance the dynamics of acute inflammation are tightly
regulated and self-limited. However, the onset of an unfavourable
chronic inflammation by abnormal persistence of a stimulus may
induce tissue damage and impair tissue function. The mechanisms
responsible for Fallopian tube occlusion are not fully understood,
but presumably they involve a combination of chronic inflammation
and scarring induced by infections.

Inappropriate regulation of iINOS-derived
NO production facilitates tubal EP

Little is known about the molecular pathogenesis of tubal EP, and in
particular, infection-induced factors (Shao, 2010). Epithelial and
smooth muscle cells are key players in tubal transport (Jansen,
1984; Shao, 2010). Indeed, it has been suggested that initial alterations
in tubal cell mobility, which result in abnormal ciliary activity, epithelial
secretion and contractility, may be responsible for EP. Epithelial cells
and macrophages are the targets of C. trachomatis infection in the Fal-
lopian tube (Henry-Suchet et al., 1996; Rasmussen et al., 1997; Igiet-
seme et al., 1998), highlighting the major cellular sites for the disease.
This link has been strengthened by studies demonstrating that
C. trachomatis infection directly induces loss of microvilli and cilia in
epithelial cells, tubal oedema and extensive disruption of the
mucosal surface in human Fallopian tubes in vitro (Cooper et al.,
[1990) and in mice in vivo (Tuffrey et al, 1990). Notably, in mice
with C. muridarum infection, the transport of ovulated oocyte-cumulus
complexes is inhibited by loss of spontaneous contractile activity and
up-regulation of iINOS protein expression in Fallopian tubes in vivo
(Dixon et al., 2009).

iNOS is important because its expression and activity are enhanced
in inflaimmatory immune processes associated with tissue damage
(Nathan and Xie, 1994; Mashimo and Goyal, 1999). Although the
mechanisms linking C. trachomatis infection, iINOS and tubal tissue/
cell destruction are not completely understood, there is evidence
that chronic, intense inflammation contributes to tissue remodelling
and scarring in the Fallopian tube (Stephens, 2003; Entrican et al.,
2004), increasing the risk for tubal EP. C. trachomatis infection stimu-
lates the expression of a number of proinflammatory cytokines that
reflect the induction of inflammatory processes, thereby resulting in

Fallopian tube pathology and female infertility (Rasmussen et al.,
[997; Stephens, 2003; Entrican et al., 2004). It is tempting to hypoth-
esize that inflammation is a mechanism that links C. trachomatis infec-
tion to tubal EP.

Cytokines produced in the Fallopian tube in response to Chlamydia
infection may regulate iINOS and subsequently generate NO. In fact,
NO is considered to be part of the innate immune response
because it is a bactericidal agent that is lethal to intracellular pathogens
such as C. trachomatis. NO production is a feature of innate immune
cells, such as macrophages and dendritic cells, but NO is also pro-
duced in epithelial cells (Bogdan, 2001). NO production in response
to C. trachomatis infection in the Fallopian tube can be both protective
and pathogenic. NO can participate in microbe-triggered immune
responses within the Fallopian tube; however, their pathological
expression may lead to tubal damage and EP (Refaat et al., 2009).
The ability of C. trachomatis to target both immune and non-immune
cell responses may explain its tendency to establish chronic, latent
infection and cause tissue damage (Stephens, 2003).

In macrophages and other cell types, iNOS expression is transcrip-
tionally induced by stimulation with cytokines or exposure to microbial
products (Xie et al, 1992; Nathan and Xie, 1994). Since both epi-
thelial and smooth muscle cells in the human Fallopian tube express
iINOS (Table 1), it is assumed that the tubal cells targeted for cytokine
action by NO production can be the cytokine-producing cell itself (e.g.
epithelial cells) or, through direct release, neighbouring cells such as
macrophages. iINOS-synthesized NO is equally important in human
immune regulation and disease (Nathan and Xie, 1994) but in large
amounts is thought to disrupt cellular signalling cascades, resulting in
anti-inflammatory or immunosuppressive effects. Interestingly, iNOS-
deficient mice show greater inflammation, more dissemination of
C. trachomatis infection (Igietseme et al., 1998; Ramsey et al., 2001)
and impaired clearance (Perry et al., 1998), demonstrating that
iNOS may contribute to infection-induced immunopathology, rather
than the host immunity against Chlamydia.

It has been suggested that NO is important for implantation and
early pregnancy and activation of inflammatory response in mice
(Rosselli et al., 1998; Purcell et al., 1999). If optimally balanced, NOS-
derived NO accumulation is crucial for implantation in rodents
(Barroso et al., 1998; Ota et al., 1999; Purcell et al., 1999; Novaro
et al., 2002). In the Fallopian tube, iINOS is expressed in multiple
cells, where it regulates NO production through autocrine or para-
crine effects. INOS participates in the growth associated with the
decidual response in the rat uterus (Spencer et al, 1998). The
effects of NO are highly dependent on the local microenvironment,
tissue/cell type and redox state (Rosselli et al., 1998). Although the
cause of tubal EP seems to be multifactorial, NO and iNOS are
likely to contribute to tubal EP because tubal iINOS mRNA and
protein expression is increased in the ampullary region, a site of ferti-
lization, of women with tubal EP (Al-Azemi et al., 2010).

The reason why high levels of NO favour permanent tubal damage,
resulting in tubal EP may be that large and sustained fluxes of NO can
induce cytotoxicity and transcriptional disturbance in various tissues/
cells (Moncada and Higgs, 1991; Moncada et al., 1991). Thus, it is
most likely that cytokine/chemokine-triggered iINOS-derived NO
production in women infected with Chlamydia causes Fallopian tube
scarring and blocks tubal transport by inhibiting ciliary beats and
smooth muscle contractions, ultimately resulting in EP (Fig. 1). If this
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C. trachomatis infection
a
b Cytokines b
and “
C Chemokines <

¢t N
\ 4"—
)

Tissue remodeling and scarring

® iNOS
b: paracrine effects
c¢: autocrine effects

Tubal cell damage

!

Growth and maintenance of ectopic implants

Figure | A simplified view of inflammation-induced iNOS-derived
NO production that accounts for tubal EP in humans infected with
C. trachomatis. Fallopian tubes infected with C. trachomatis (a)
results in the synthesis of cytokines and chemokines in epithelial
cells (epi) and macrophages (b). As secretion, in turn, autocrine
and paracrine up-regulation of iNOS expression (b, ¢) induces an
inappropriate NO production (d). The excessive iNOS-derived NO
production promotes tissue remodelling and scarring, leading to
tubal cell damage and destruction that may contribute to the devel-
opment of infection-induced tubal EP. Pharmacological tools to
modulate this process might be of therapeutic relevance. sm cell,
smooth muscle cell.

is true, it may provide a therapeutic target for suppression of tubal
inflammation by manipulation of cytokine and chemokine production
to inhibit the NO pathways.

Further studies are warranted to examine the molecular interaction
between pathophysiological inflammatory responses and iNOS-
derived NO regulation after acute and chronic infection with Chlamy-
dia. For example, evaluating cytokine and chemokine production and
secretion under physiological conditions (e.g. normal uterine implan-
tation) or between Chlamydia infection and the onset of tubal
damage in iINOS-deficient mice in vivo and Fallopian tubal tissue
culture in vitro will shed light on the significance of NO signalling in
the development of tubal EP induced by Chlamydia infection. Even
though NO protects against infection (Nathan and Xie, 1994;
Bogdan, 2001), iNOS-derived NO overproduction might have dele-
terious consequences for the implanted embryo if there is re-infection
and persistence of Chlamydia. Although no data provide specific insight
into how implantation occurs in damaged Fallopian tubes after Chlamy-
dia infection, the tubal microenvironment may facilitate the survival of
the implanted embryo (Mastroianni, 1999; Lyons et al., 2006). In view
of the process by which C. trachomatis infection induces tubal EP is
being probably more complicated than a simple step regulation,

there must be research priority to discern how C. trachomatis infection
promotes tubal scarring and/or fibrosis so that appropriate prevention
and treatment strategies may be adopted.

Concluding remarks and
perspective

Tubal EP induced by C. trachomatis infection is still a clinical problem
and the diagnosis remains a challenge. As the complexity of Fallopian
tubal transport under physiological conditions is being revealed
(Jansen, 1984; Shao, 2010), so is the complexity of the mechanisms
responsible for NOS regulation and inflammation-related EP after
Chlamydia infection. To our knowledge, obligatory participation of
the different NOS isoforms in the Fallopian tube in a physiological
context has not been defined.

In this brief review, we have attempted to present NOS isoforms, in
particular iNOS, as a component of the NO signalling pathway that is
invoked when tubal cells undergo chronic inflammatory processes.
Moreover, cytokines and chemokines produced and released in
response to Chlamydia infection may cause progressive damage and
functional decline of the Fallopian tube, resulting in tubal EP. Although
estrogen can exhibit both anti-inflammatory and immunomodulatory
properties in a tissue/cell-specific manner (Straub, 2007), there is
little evidence for the importance of steroid hormone interactions
with cytokines after Chlamydia infection. However, in contrast to pro-
gesterone (Tuffrey et al., 1990), high levels of endogenous estrogen or
treatment with |73-estradiol increases resistance to C. trachomatis
infection in mice (Brunham and Rey-Ladino, 2005) and the host estro-
gen receptor complex influence C. trachomatis attachment in human
endometrial epithelial cells (Davis et al., 2002). Because estrogen
acts through activation of estrogen receptors in the Fallopian tube
(Shao et al., 2007a, b), targeted deletion of estrogen receptor o/[3
lowers iINOS expression in female mouse vascular smooth muscle
cells (Liang et al., 2003). Since estrogen up-regulates iINOS expression
in the Fallopian tube, studies of the molecular mechanisms by which
estrogen modulates cell-specific pro-inflammatory cytokine secretion
and NO production are increasing our understanding the role of
estrogen in Fallopian tubal pathology after Chlamydia infection. Such
knowledge might facilitate the development of therapeutic approaches
to mitigate tubal dysfunction.
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