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Gravity aided inertial navigation system (GAINS), which uses earth gravitational anomaly

field for navigation, holds strong potential as an underwater navigation system. The

gravity matching algorithm is one of the key factors in GAINS. Existing matching

algorithms cannot guarantee the matching accuracy in the matching algorithms based

gravity aided navigation when the initial errors are large. Evolutionary algorithms, which

are mostly have the ability of global optimality and fast convergence, can be used to

solve the gravity matching problem under large initial errors. However, simply applying

evolutionary algorithms to GAINS may lead to false matching. Therefore, in order to

deal with the underwater gravity matching problem, it is necessary to improve the

traditional evolutionary algorithms. In this paper, an affine transformation based artificial

bee colony (ABC) algorithm, which can greatly improve the positioning precision under

large initial errors condition, is developed. The proposed algorithm introduces affine

transformation to both initialization process and evolutionary process of ABC algorithm.

The single-point matching strategy is replaced by the strategy of matching a sequence

of several consecutive position vectors. In addition, several constraints are introduced

to the process of evolution by using the output characteristics of the inertial navigation

system (INS). Simulations based on the actual gravity anomaly base map have been

performed for the validation of the proposed algorithm.

Keywords: gravity aided navigation, bio-inspired navigation, navigation systems, optimization, underwater vehicle,

evolutionary algorithm

INTRODUCTION

It is well known that inertial navigation systems (INSs) typically used on underwater vehicles tend
to develop accumulated errors. Above water, the INS data can be corrected by the use of global
navigation satellite system (GNSS) (Bishop, 2002). However, due to the rapid attenuation of higher
frequency signals and the unstructured nature of the undersea environment, GNSS signals can
only propagate within short distance under water (Paull et al., 2013). As a passive navigation
system, the gravity aided inertial navigation system (GAINS) holds strong potential as an auxiliary
navigation system (Canciani and Raquet, 2017). GAINS obtains a gravity anomaly measurements
by using gravimeters installed on a vehicle. These measurements are matched with a priori digital

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00019
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00019&domain=pdf&date_stamp=2019-05-08
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:daitian@bit.edu.cn
https://doi.org/10.3389/fnbot.2019.00019
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00019/full
http://loop.frontiersin.org/people/520405/overview


Dai et al. Underwater Gravity Aided Navigation

map of the gravity anomaly, to estimate the vehicle position.
GAINSs are completely passive and difficult to interfere with.
These advantages are totally meet the requirement of underwater
vehicles (Rice et al., 2004).

A GAINS consists of a priori gravity anomaly database
(gravity anomaly map), a measurement unit (gravimeter), and a
navigation algorithm. There are two types of GAINSs: filtering
algorithms based GAINSs (Li et al., 2013; Claus and Bachmayer,
2015; Copp and Subbarao, 2015; Allotta et al., 2016) and
matching algorithms based GAINSs (Zhao et al., 2014; Wu
et al., 2015; Zhu et al., 2015; Han et al., 2016; Song et al.,
2016). Filtering algorithms, which take use of simplified dynamic
mathematical model of the vehicle, have a good performance
in real-time. In filtering algorithms based GAINSs, commonly
used filters are the extended Kalman filter (EKF), the particle
filter (PF) and the Rao-Blackwellized particle filter (RBPF).
EKF is more effective for low nonlinear estimation problems.
PF can effectively handle highly non-linear or non-Gaussian
estimation problems. RBPF is a hybrid filter combining EKF
and PF (Simanek et al., 2015; Kim T. et al., 2018; Kim Y.
et al., 2018). However, the application of filtering algorithms is
limited since the precise model of gravity anomaly is difficult
to establish (Han et al., 2016). The matching algorithm is a key
factor in matching algorithms based GAINSs (Hegrenaes and
Hallingstad, 2011; Wu et al., 2017). Terrain contour matching
(TERCOM) (Affleck and Jircitano, 1990) algorithm and iterative
closest contour point (ICCP) (Kamgarparsi and Kamgarparsi,
1999) algorithm are two conventional matching algorithms in
GAINSs. TERCOM algorithm is realized via group correlation
analysis. Most of the improvements to the TERCOM algorithm
(Zhao et al., 2014; Han et al., 2016) are proposed to solve
bad real-time performance and heavy computational complexity
problem. However, TERCOM algorithm is sensitive to angular
error of the INS-indicated segment, which is difficult to improve.
ICCP algorithm, which uses rigid transformation to matching
the multilateral arc, has a high matching accuracy. Over the
past decade, a number of improved ICCP algorithm have been
suggested. Among them, a part of researches were developed for
improving the real-time performance (Tong et al., 2011; Wang
et al., 2013). Other studies adopted affine transformation to deal
with the scale error (Xu et al., 2014; Song et al., 2016). However,
the mismatching of ICCP algorithm is easily included when the
initial position errors of INS are large (Han et al., 2016). Both
TERCOM-based algorithms and ICCP-based algorithms cannot
guarantee the matching accuracy when initial errors are large.
TERCOM-based algorithms are sensitive to angular errors of the
INS-indicated segments and ICCP-based algorithms are sensitive
to position errors. Therefore, a matching algorithm that maintain
high matching precision under large initial errors is needed.
Evolutionary algorithms (Quan and Fang, 2010; Gao et al., 2014;
Hidalgo-Paniagua et al., 2016; Teymourian et al., 2016; Li et al.,
2017) are a good choice because most of them have the ability of
both global optimality and fast convergence.

The evolutionary algorithms have emerged as a powerful
tool for finding optimum solutions of complex optimization
problems. In the past few decades, a number of evolutionary
algorithms have been used extensively to obtain optimal designs

and overcome the computational drawbacks of traditional
mathematical optimization methods (Abrao, 2013; Yildiz, 2013).
Jaesung and Kim improved the genetic algorithm so solve robot
path planning problem (Lee and Kim, 2016). An improved
intelligent water drops algorithm and an advanced cuckoo
search algorithm are proposed to solve the capacitated vehicle
routing problem (Teymourian et al., 2016). Improved bee colony
algorithm is applied to the color image segmentation, assigning
the optimal coordinates of seeds and determining similarity
differences (Sag and Çunkaş, 2015).

Gravity matching problem can be regarded as an optimization
problem (Wu et al., 2017). Therefore, evolutionary algorithms
can be directly applied to the gravity matching problem. Gao
et al. proposed an improved artificial bee colony (ABC) algorithm
and obtained a good performance on gravity matching under
small initial errors (Gao et al., 2014). However, there exists a
lot of similarity feature points in matching area when initial
errors are large. Although the improved ABC algorithm can be
implemented on navigation systems under large initial errors,
the mismatching of position is easily included. In this paper, we
consider a challenging gravity matching problem of achieving
high precision under large initial errors. To solve this problem,
we propose an affine transformation based ABC algorithm.
Firstly, In order to avoid mismatching caused by similarity
feature points, we apply sequence matching strategy to the
proposed algorithm. Secondly, Scaling transformation, rotation
transformation, and translation transformation are introduced to
both initialization process and evolutionary process to increase
the convergence speed. In addition, we constrain the affine
transformation by utilizing the output characteristics of INS.

The rest of the paper is organized as follows. The second
part introduces the ABC algorithm. INS error propagationmodel
and the constraints of affine transformation are provided in the
third part. The fourth part of this paper presents the procedure
of affine transformation based artificial bee colony algorithm.
A comprehensive discussion on the experimental settings and
simulation results are provided in the fifth part. Conclusions are
given in the last part.

ARTIFICIAL BEE COLONY ALGORITHM

The ABC algorithm (Karaboga and Basturk, 2007) is one of the
most recently introduced swarm-based search methods (Akay
and Karaboga, 2012; Akbari et al., 2012; Sag and Çunkaş, 2015;
Li et al., 2016). It contains three groups of bees: employed bees,
onlookers, and scouts. In ABC algorithm, the position of a food
source represents a possible solution of the optimization problem
and the nectar amount of a food source corresponds to the quality
(fitness) of the associated solution. The more a solution has high
fitness, the more possibility of being selected of this solution by
onlooker bees. The number of the employed bees or the onlooker
bees is equal to the number of solutions in the population. The
initial swarm composed of employed bees are generated by (1):

xj
i
=x

j
min + rand(0, 1)(x

j
max − x

j
min) (1)
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Where x
j
i indicates the jth parameter of ith solution in the

population, i = {1, 2, · · · , SN} and SN is the size of population,
j = {1, 2, · · · ,D} and D is the number of parameters in a

solution. x
j
min and x

j
max are, respectively, the lower bound and the

upper bound of jth parameter. rand(0, 1) generates a real number
between 0 and 1.

After initialization, fitness values of solutions are calculated
by (2):

fiti =

{

1/(1+ fi) fi ≥ 0

1+
∣

∣fi
∣

∣ fi < 0
(2)

Where fi is the objective function value of ith solution in
the population. fiti is the fitness value of ith solution in the
population. The employed bee evaluates the quality of food
sources and determines a new one according to the fitness
value. If the nectar amount of new source is better than the
old source, employed bee will update its memory with new
source. The employed bees update their sources according to the
following equation:

vj
i
= xj

i
+ rand(−1, 1)(xj

i
− x

j

neighbor
) (3)

Where x
j

neighbor
is the neighbor solution selected randomly,

neighbor ∈ {1, 2, · · · , i− 1, i+ 1, · · · , SN}. v
j
i represents

new solution.
After new food sources have been explored, onlookers select

an employed bee for guidance. For this purpose, roulette wheel is
used to calculate the probabilities:

pi =
fiti

SN
∑

q= 1
fitq

(4)

After the onlooker bees select a food source as a guide, the
candidate food source is calculated by (3). Afterwards, the greedy
selection process is applied for the onlooker bees. The best
solution achieved so far is memorized. In addition, a food
source will be abandoned when limit, a control parameter, is
exceeded for the source. So it is replaced with randomly produced
solution by (1).

For the gravity matching problem, denote x as the position
of vehicle and f as the gravity objective function. Then
ABC algorithm can be directly used to find the optimal
position. However, simply applying ABC algorithm to the gravity
matching problem may lead to false matching (Gao et al., 2014).
There exists a lot of similarity gravity feature points in gravity
database, which means single-point matching process may easily
convergence at the wrong position.

SEQUENCE MATCHING STRATEGY

To solve the mismatching problem, the single-point matching
strategy in basic ABC is replaced by strategy of matching a
sequence of several consecutive position vectors. Considering
the short-term high-precision characteristics of the INS (Wu

et al., 2015), affine transformation could be used to describe the
relationship between the sequence to be matched and the INS-
indicated sequence. Specifically, these transformations include
scaling transformation, rotation transformation, and translation
transformation. The range of affine transformations can be
estimated by an INS error propagation model.

INS Error Propagation Model
Affine transformation is constrained by the output characteristics
of the INS. Therefore, an INS error propagation model (Yan
et al., 2008) is employed in this paper. In Yan et al. (2008), i-
reference frame is the fixed inertial frame; e-reference frame is
the Terrestrial reference frame (TRF); n-reference frame has its
origin on the surface and its axes pointing East, North, and
Up (ENU reference frame); b-reference frame is centered in
the center of gravity of the vehicle, with the y-axis pointing in
the direction of the forward motion of the vehicle, the z-axis
pointing up and the x-axis completing a right-handed reference
frame. However, GAINSs are commonly used in underwater
environments. In which case n-reference frame adopts North,
East and Down (NED) reference frame; b-reference frame is
centered in the center of gravity of the vehicle, with the x-axis
pointing in the direction of the forward motion of the vehicle,
the z-axis pointing down and the y-axis completing a right-
handed reference frame (Allotta et al., 2016). Hence the INS error
propagation model in Yan et al. (2008) needs to be modified.

In actual case, there exist rotation errors between n-reference
frame (ideal mathematics platform) and n’-reference frame
(actual mathematics platform). n’-reference frame can be gained
after rotating 3 times of n-reference frame. Let αz , αy, αx be the
three rotational angles and α=

[

αx αy αz

]

, the rotation matrixes
can be expressed as:

Cαz =





cosαz − sinαz 0
sinαz cosαz 0
0 0 1





Cαy =





cosαy 0 − sinαy

0 1 0
sinαy 0 cosαy





Cαx =





1 0 0
0 cosαx sinαx

0 − sinαx cosαx





(5)

Then, the coordinate transformation matrix from n-reference
frame to n’-reference frame is derived:

Cn′

n = CαxCαyCαz (6)

Denoting with ω
n′

nn′ the relative angular velocity of n′-
reference frame in n-reference frame, the following equation has
been derived:

ω
n′

nn′ = CαxCαy





0
0
α̇z



 + Cαx





0
α̇y

0



 +





α̇x

0
0



 = Cω





α̇x

α̇y

α̇z



 (7)
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Hence, the differential equation of Euler platform error angles
can be expressed as follows:

α̇=C-1
ω ω

n′

nn′ (8)

Here Cω and C-1
ω are calculated by the following expressions:

Cω=





1 0 − sinαy

0 cosαx sinαx cosαy

0 − sinαx cosαx cosαy





C−1
ω = 1

cosαy





cosαy sinαx sinαy cosαx sinαy

0 cosαx cosαy − sinαx cosαy

0 sinαx cosαx





(9)

Denoting with ω
n
ie the rotational angular velocity of the earth. L

and h are, respectively, latitude, and depth. RM is the local radius
of curvature in meridian and RN is the local radius of curvature
in prime vertical. L̂ = L+ δL, ĥ = h+ δh. In addition, δL and δh
are slight errors. The following equations have been derived:

ω
n
ie =

[

ωie cos L 0 −ωie sin L
]T

(10)

ω
n
en =

[

vnE
RN−h

−
vnN

RM−h
−

vnE
RN−h

tan L
]T

(11)

δωn
ie =





−ωie sin L̂δL
0

−ωie cos L̂δL



 (12)

δωn
en =











δvnE/
(

R̂N − ĥ
)

−δvnN/

(

R̂M − ĥ
)

−
(

tan L̂δvnE + v̂nEsec
2L̂δL

)

/
(

R̂N − ĥ
)











(13)

ω
n
in and δωn

in can be expressed as follows:

ωn
in = ω

n
ie + ω

n
en (14)

δωn
in = δωn

ie + δωn
en (15)

On the basis of these formulas, the INS attitude error and velocity
error have been derived (Yan et al., 2008):

α̇ = C-1
ω

[(

I-Cn′

n

)

ω̂
n
in + Cn′

n δωn
in − Cn′

b δωb
ib

]

(16)

δv̇n =

[

I-
(

Cn′

n

)T
]

Cn′

b f̂
b
sf +

(

Cn′

n

)T
Cn′

b δf bsf −
(

2δωn
ie + δωn

en

)

×
(

v̂n − δvn
)

−
(

2ω̂n
ie + ω̂

n
en

)

× δvn + δgn (17)

Where δωb
ib

is the measurement error of gyroscope, δωn
in is

the calculation error of ω
n
in. δf b

sf
is the measurement error of

accelerometer. In addition, δωb
ib
are mainly consist of a constant

bias ε
b and zero mean Gaussian white noise wb

g . δf
b
sf
are mainly

consist of a constant bias ∇b and zero mean Gaussian white
noise wb

a . Besides, δgncould be ignored. Hence, the INS error

propagation model used in underwater environment is defined
by the following equations:











































































δL̇=
δvnN

RM−h
+ δh

vnN
(RM−h)2

δλ̇=
δvnE

RN−h
sec L+ δL

vnE
RN−h

tan L sec L+ δh
vnE sec L

(RN−h)2

δḣ=δVD

α̇=C−1
ω

[(

I−Cn′
n

)

ω̂
n
in + Cn′

n δωn
in − Cn′

b
ε
b
]

− C−1
ω Cn′

b
wb
g

δv̇n=

[

I−
(

Cn′
n

)T
]

Cn′

b
f̂ b
sf
+

(

Cn′
n

)T
Cn′

b
∇b −

(

2δωn
ie + δωn

en

)

×
(

v̂n − δvn
)

−
(

2ω̂n
ie + ω̂

n
en

)

× δvn +
(

Cn′
n

)T
Cn′

b
wb
a

ε̇
b=0

∇̇b=0

(18)

Range of Scaling Transformation
Through the INS error propagation model (18), the range of
rotation transformation and translation transformation can
be estimated. However, the range of scaling transformation
cannot be directly calculated. To better describe the
scaling transformation, the INS-indicated distance and
the actual distance in a short period are expressed by the
following equations:

dINSk−1,k =

∥

∥

∥
vINS
k−1

+ vINS
k

∥

∥

∥

2
· 1t (19)

drealk−1,k ≈

∥

∥

∥
vreal
k−1

+ vreal
k

∥

∥

∥

2
· 1t (20)

dINS
k-1,k

and dreal
k−1,k

are, respectively, the INS-indicated
distance and the actual distance between k-1th sampling
point and kth sampling point. vINS

k
and vreal

k
are the INS-

indicated linear velocity and the actual linear velocity of kth
sampling point. 1t is the sampling period of the discrete
time system.

Then, the relationship between dINS
k-1,k

and dreal
k−1,k

is derived:

dreal
k−1,k

dINS
k−1,k

=

∥

∥

∥
vreal
k−1

+ vreal
k

∥

∥

∥

∥

∥

∥
vINS
k−1

+ vINS
k

∥

∥

∥

(21)

Where vINS
k

is described by an equation in the form:

vINSk = vrealk + δvk (22)

Here δvk is the INS accumulated velocity error of kth sampling
point. Accordingly, (21) is developed into the following form:

dreal
k−1,k

dINS
k−1,k

=

∥

∥

∥
vINS
k−1

+ vINS
k

− δvk-1 − δvk

∥

∥

∥

∥

∥

∥
vINS
k−1

+ vINS
k

∥

∥

∥

(23)
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Denoting with N the number of sampling points on matching
sequence, the constraint of scale transform has been derived:

S=

N
∑

k= 2

dreal
k−1,k

N
∑

k= 2

dINS
k−1,k

=

N
∑

k= 2

∥

∥

∥
vINS
k−1

+ vINS
k

− δvk-1 − δvk

∥

∥

∥

N
∑

k= 2

∥

∥

∥
vINS
k−1

+ vINS
k

∥

∥

∥

(24)

AFFINE TRANSFORMATION BASED
ABC ALGORITHM

In order to achieve high positioning accuracy under large initial
errors, this paper proposes an affine transformation based ABC
algorithm. The proposed algorithm is specifically presented
to deal with the gravity matching problem for underwater
navigation system. The affine transformation based ABC
algorithm introduces affine transformation to both initialization
process and evolutionary process of ABC algorithm. In addition,
the affine transformation satisfies the constraint conditions
provided by the output characteristics of the INS.

Objective Function and Initialization
The proposed algorithm use mean absolute difference (MAD)
function as the objective function:

f (x) =
1

N

N
∑

k= 1

∣

∣

∣
gobsk − gxk

∣

∣

∣
(25)

Where x indicates a sequence of several consecutive position
vectors. gobs

k
is the measured gravity anomaly value of kth

sampling point and gx
k
is the corresponding gravity anomaly value

on gravity anomaly base map of kth sampling point. f (x) is the
objective function.

fit (x), the fitness value of x, is calculated by (26):

fit (x) =
1

1+ f (x)
(26)

Initialization process is the first step of the proposed algorithm. In
ABC algorithm, the initial swarm composed of employed bees are
given by (1). But the lower bound and the upper bound of the x in
sequencematching are difficult to acquire. Thus, the initialization
method should be redefined.

The proposed algorithm applies scaling transformation,
rotation transformation, and translation transformation on the
INS-indicated sequence to implement initialization. Translation
transformation is implemented by choosing a random first
element of initial swarm:

xL
i,1
=xLmin + rand(0, 1)(xLmax − xLmin) (27)

xλ
i,1
=xλ

min + rand(0, 1)(xλ
max − xλ

min) (28)

Where xL
i,1
and xλ

i,1
indicate the latitude and longitude of the first

sampling point on sequence i, i = {1, 2, · · · , SN} and SN is the
size of population. xLmax and xLmin are, respectively, the upper
bound and the lower bound of latitude in search scope. xλ

max and

xλ
min are, respectively, the upper bound and the lower bound of
longitude in search scope.

Let Sinii be the scale factor used for initialization sequence i.
The value of Sinii is calculated by (29):

Sinii =

{

rand(1, S), S ≥ 1
rand(S, 1), S < 1

(29)

The expression of S is obtained from (24). The rotation angle
used for initialization sequence i can be calculated by the
following equation:

β ini
i = rand(β ini

min,β
ini
max) (30)

Where β ini
min and β ini

max are the minimum angle error and the
maximum angle error of a segment in INS-indicated trajectory.
Thus, the rotation matrix used for initialization sequence i have
been derived:

Rini
i =

[

cosβ ini
i − sinβ ini

i
sinβ ini

i cosβ ini
i

]

(31)

Let XINS =
{

xINS1 , xINS2 , . . . , xINSN

}

be the INS-indicated trajectory
and Xini

i =
{

xinii,1 , x
ini
i,2 , . . . , x

ini
i,N

}

be the ith initialization sequence.
After above mentioned transformations have been performed,
the initial swarm is obtained:

XINS
i

′ = Sinii Rini
i XINS (32)

Tini
i = xinii,1 − xINS1

′ (33)

Xini
i = XINS

i
′+Tini

i (34)

Where XINS
i

′ is the intermediate sequence, xINS
1

′ is the first

point in XINS
i

′. Additional translation vector need to be applied
on generated trajectories if they are out of range. Let initLmin
and initLmax be the maximum and minimum latitude of initial
trajectory. initλmin and initλmax are the maximum and minimum
longitude of initial trajectory. T =

{

TL,Tλ
}

, the translation
vector, can be expressed as:

TL =







xLmin − initLmin, initLmin < xLmin
xLmax − initLmax, init

L
max > xLmax

0, other
(35)

Tλ =







xλ
min − initλmin, initλmin < xλ

min

xλ
max − initλmax, init

λ
max > xλ

max

0, other

(36)

Employed Bee Phase
With the initialization complete, an employed bee updates its
food source in the neighborhood. Suppose Xini

i is the sequence to

be updated, Xini
j =

{

xinij,1 , x
ini
j,2 , . . . , x

ini
j,N

}

is selected randomly in

the neighborhood of Xini
i , j ∈ {1, 2, · · · , i− 1, i+ 1, · · · , SN} and

SN is the size of population. The evolution equation is derived
through the relation between Xini

i and Xini
j .

Denoting with Q the covariance matrix:

Q =

[

Q11 Q12

Q21 Q22

]

=

N
∑

k=1

(

xinii,k − x̃inii

) (

xinij,k − x̃inij

)T
(37)
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Where x̃inii and x̃inij are, respectively, the average value of all

sampling points in Xini
i and Xini

j . The eigenvalues of Q and the

rotation angle fromXini
i toXini

j are calculated through quaternion

algorithm (Berthold, 1987):

λ1,2 = ±
[

(Q11 + Q22)
2 + (Q21 − Q12)

2
]1/2

λ3,4 = ±
[

(Q11 − Q22)
2 + (Q21 + Q12)

2
]1/2

(38)

tg(
τ

2
) = (Q11 + Q22 − λm)/(Q12 − Q21) (39)

Where λµ (µ= {1, 2, 3, 4}) are four eigenvalues of Q. λm is the
maximum eigenvalue. τ is the rotation angle from Xini

i to Xini
j .

Then, the rotation angle used for Xini
i during employed bee phase

is calculated by the following equations:

βem
i =rand(− |τ | , |τ |) (40)

Notice that the angle between Xini
i and XINS after rotation

should be in the range (β ini
min,β

ini
max). Denoting with η be the

rotation angle from Xini
i to XINS, βem

i should meet the following
in equation:

β ini
min + η < βem

i < β ini
max + η (41)

Then, the following expression is obtained by (40) and (41):

βem
i =rand

(

max(− |τ | ,β ini
min + η),min(|τ | ,β ini

max + η)
)

(42)

Thus, the rotation matrix used for Xini
i during employed bee

phase is calculated by (43):

Rem
i =

[

cosβem
i − sinβem

i
sinβem

i cosβem
i

]

(43)

Let Linii and Linij be the length of Xini
i and Xini

j . Lins is the length

of INS-indicated trajectory. The scale factor used for Xini
i during

employed bee phase is calculated by the following equations:

Semi = rand(min(
Linij

Linii

,
Linii

Linij

),max(
Linij

Linii

,
Linii

Linij

)) (44)

Notice that the scale factor between Xini
i and XINS after scaling

transformation should meet the range on the right side of (29):

{

1 · Lins < Linii · Semi <S · Lins, S ≥ 1

S · Lins < Linii · Semi <1 · Lins, S < 1
(45)

Denoting with Semmin and Semmax the lower bound and the upper
bound of Semi . According to (44) and (45), Semi is updated by (46):

Semi = rand
(

Semmin, S
em
max

)

(46)

Semmin =











max(min(
Linij

Linii

,
Linii

Linij

), L
ins

Linii

), S ≥ 1

max(min(
Linij

Linii

,
Linii

Linij

), S · Lins

Linii

), S < 1
(47)

Semmax =











min(max(
Linij

Linii

,
Linii

Linij

), S · Lins

Linii

), S ≥ 1

min(max(
Linij

Linii

,
Linii

Linij

), · L
ins

Linii

), S < 1

Xini
i is converted toXini

i
′ after rotation transformation and scaling

transformation have been performed:

Xini
i

′ = Semi Rem
i Xini

i (48)

Let x̃inii
′ be the average value of all sampling points in Xini

i
′ and

the translation vector is calculated by (49):

Tem
i = (x̃inij − x̃inii

′) · rand(−1, 1) (49)

Then, the employed bees update their sources according to the
following equation:

Xem
i = Xini

i
′ + Tem

i (50)

If the fitness value of Xem
i is larger than the fitness value of Xini

i ,
Xini
i will be replaced by Xem

i . At the end of the employed bee
phase, all of current sequences are denoted by Xem.

Onlooker Bee Phase and Scout Bee Phase
The probability of each sequence to be selected by the onlooker
bee is calculated by (4). Suppose Xem

i is the sequence selected by
onlooker bee, the rotationmatrixRon

i , the scale factor Soni , and the
translation vector Ton

i used on Xem
i during onlooker bee phase

can be calculated by (43), (46),and (49). Thus, the onlooker bees
update their sources according to the following equation:

Xon
i = Soni Ron

i Xem
i + Ton

i (51)

If the fitness value of Xon
i is larger than the fitness value ofXem

i ,
Xem
i will be replaced by Xon

i . The best solution achieved so far
is memorized. In addition, a sequence will be abandoned when
limit, a control parameter, is exceeded for the source during scout
bee phase. So it is replaced with randomly produced solution by
(34). The pseudo of the proposal is given below.

Procedure of the proposal

Begin

1. confirm search scope
2. initialize a matching sequence Xini

i at generation t = 0
with trial(i)= 0 using (34) for i= 1,2,. . . ,SN

3. evaluate f
(

Xini
i

)

for i= 1,2,. . . ,SN and set the best
solution as Xbest

4. while termination condition is not reached do

//employed bee phase

1) set k= 1, while k<SN+1 do
Produce a new solution Xem

k
for Xini

k
using (50)

if f
(

Xini
k

)

> f
(

Xem
k

)

, Xini
k

= Xem
k
, trial(i)= 0

else trial(i)= trial(i)+1
end if
k= k+1
end while

2) all of current sequences are denoted by Xem

//onlooker bee phase
3) set k= 1, while k<SN+1 do
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Select a sequence Xem
i based on its probability of

selection calculated using (4) and produce a new solution
Xon
i using (51)

If f
(

Xem
i

)

> f
(

Xon
i

)

, Xem
i = Xon

i , trial(i)= 0
else trial(i)= trial(i)+1
end if
k= k+1
end while

4) all of current sequences are denoted by Xon

//scout bee phase
5) denote the best solution in Xon as Xbest

′

if f (Xbest) > f
(

Xbest
′
)

, Xbest = Xbest
′

end if
6) reinitialize ith sequence if trial(i) > limit
7) t = t+1
8) all of current sequences are denoted by Xini

end while

5. output Xbest

End

TABLE 1 | Simulation condition of INS.

Parameters Quantity Unit

Gyro constant drift 0.02 ◦/h

Gyro random drift (1σ) 0.02 ◦/h

Accelerometer constant bias 100 µg

Accelerometer random bias (1σ) 100 µg

Velocity 7.71 m/s

Acceleration 0 m/s

Initial angle error 0 ◦

Azimuth angle 60 ◦

Initial longitude error 0.1 ′

Initial latitude error 0.1 ′

Simulation time 16 h

SIMULATION AND ANALYSIS

Simulation Parameters
In order to test the feasibility of our approach, numerous
simulation experiments have been performed. An INS indicated
trajectory start from (156◦E, 20◦N) is generated and the INS
relevant parameters are listed in Table 1. The INS position error
is shown in Figure 1 (Supplementary Data Sheet 1). As seen
from Figure 1, the position error of the generated trajectory
exhibits a Scuhler oscillation of 84.4 min.

In order to evaluate the algorithm presented in this work, a
gravity anomaly base map is required. In the simulations tests,
goco05c model (Fecher et al., 2017) is used to calculate the
gravity anomaly in the area from (147.6◦E, 19.5◦N) to (156.6◦E,
24◦N). After interpolated, the grid step is converted to 0.3′.
The 3-D map of the gravity anomaly data is shown in Figure 2

(Supplementary Data Sheet 1). The gravity anomaly relevant
parameters are shown in Table 2.

FIGURE 1 | The INS position error.

FIGURE 2 | 3-D gravity anomaly base map.

TABLE 2 | Parameters of gravity anomaly base map.

Model name Goco05c

Number of grid points 900 × 1800

Grid step 0.3′

Minimum value −130. 039 mGal

Maximum value 180. 902 mGal

Mean −15.246 mGal

Figure 3 shows the angle error of a segment in INS-indicated
trajectory. It is obtained that the angle error is vary in a small
range and the maximum segment angle error is 15◦. Thus, β ini

min
and β ini

m ax are set as −15◦and 15◦, respectively. The proposed
algorithm uses the 3σ principle to confirm the search scope (Han
et al., 2016). Table 3 shows the configuration of the proposed
algorithm. In this paper, optimal parameter values of affine
transformation based ABC are obtained based on experience.
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FIGURE 3 | The INS-indicated segment angle error.

TABLE 3 | Configuration of the proposed algorithm.

Maximum iterations 500

Limit 20

Population size 10

Number of sampling points per sequence 12

Sampling interval 5 min

The variance of gravity anomaly measurement noise 1 mGal

FIGURE 4 | Position errors of basic ABC.

Comparison Between Basic ABC and
Affine Transformation Based ABC
Based on the parameters above, the first set of 50 Mont
Carlo simulation tests were done on the trajectory after
3 h of sailing. Simulation results of introducing sequence

FIGURE 5 | Position errors of affine transformation based ABC.

TABLE 4 | Comparison of 50 Mont Carlo simulation results between basic ABC

and affine transformation based ABC.

Algorithm Initial error (′) Mean error (′) Matching

probability (%)

Basic ABC 4.82 4.22 28

Affine transformation

based ABC

4.82 0.73 96

FIGURE 6 | Matched trajectory.

matching strategy into ABC algorithm has better positioning
precision and matching probability than the basic ABC,
as shown in Figures 4, 5. Statistical results of simulation
tests are given in Table 4. In Table 4, a matching result is
considered to be a successful matching if the position error
is within 2′.
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Comparison Between ICCP, Improved-ABC
and Affine Transformation Based ABC
Due to ICCP is a widely used gravity matching algorithm
and improved-ABC algorithm (Gao et al., 2014) is
presented to tackle the similar problem. We use these
algorithms as references, comparing the results of

FIGURE 7 | The average error of longitude and latitude.

TABLE 5 | Statistical results of the matching errors.

Algorithm Initial position

error (km)

Mean error (km) Standard

deviation (km)

ICCP 22.47 25.85 0

Improved-ABC 22.47 15.95 8.70

Proposed algorithm 22.47 2.05 0.55

ICCP algorithm and improved-ABC algorithm with the
proposed algorithm.

To test algorithms under large initial position errors, the
second set of 50 Mont Carlo simulation tests were done on the
trajectory after 7 h of sailing using the above three algorithms.
Trajectories of matching results are shown in Figure 6, each
trajectory is a typical one in 50 Mont Carlo simulations. Figure 7
indicates the average error of longitude and latitude of each
sampling point in 50 Mont Carlo simulations. In order to better
evaluate the proposed algorithm, the statistical results of all the
three algorithms are given in Table 5.

Simulation results in Figures 6, 7, and Table 5 show that the
matching accuracy of the proposed algorithm is significantly
superior to the other two algorithms under large initial
position errors.

To better observe the effect of initial errors on these three
algorithms, matching results of the whole trajectory within 16 h
are shown in Figure 8 and Table 6. The results are divided
into three time periods for statistic. In Table 6, a matching

TABLE 6 | Statistical results within 16 h.

Time period Algorithm Average

matching

time (s)

Mean error

(′)

Matching

probability

(%)

0–5 h Improved-ABC 0.05 5.96 57

ICCP 0.67 3.71 67

Proposed algorithm 0.21 1.00 100

5–10 h Improved-ABC 0.04 14.71 20

ICCP 3.41 9.22 30

Proposed algorithm 0.82 3.23 82

10–16 h Improved-ABC 0.05 27.47 9

ICCP 9.88 22.33 0

Proposed algorithm 1.75 6.63 73

FIGURE 8 | Matching results of the whole trajectory.
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result is considered to be a successful matching if the position
error is within 5′. It can be concluded that the convergence
speed of ICCP algorithm decreases a lot with the increase
of initial position errors. While the convergence speed of
improved-ABC algorithm is not affected by initial position
errors. The proposed algorithm converge slower than improved-
ABC algorithm and much faster than ICCP algorithm under
large initial errors. In Figure 8, at the beginning, all of the three
algorithms can hold high positioning accuracy. But with the
initial errors and the search scope increase, the accuracy of ICCP
algorithm and improved-ABC algorithm decrease significantly,
whereas the proposed algorithm can guarantee much higher
matching accuracy.

CONCLUSION

Gravity aided inertial navigation system can solve the problem
of INS error accumulation and ensure the concealment of INS.
However, there are still many problems in the field of gravity
aided navigation system. In this paper, we focus on the problem of
how to ensure thematching accuracy under the large initial errors
condition. In order to avoid mismatching under large initial
errors, an affine transformation based ABC algorithm is adopted.
The simulation results show that the proposed algorithm can
achieve high matching precision under the condition of large
initial errors.

In addition to ABC algorithm, other evolutionary algorithms
can also be used to solve the gravity matching problem. How to

introduce the sequence matching strategy in other evolutionary
algorithms? How are the effects of these algorithms after
introducing the sequence matching strategy? These need to
be further studied in the future. What’s more, the matching
accuracy of gravity matching algorithm is highly correlated
with the precision and resolution of the gravity anomaly base
map. This paper focuses on the matching algorithm for large
initial errors. How to perform a gravity matching algorithm
in the area with low uniqueness should be discussed in the
next step.
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