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ABSTRACT

Cell cycle is controlled by the activity of protein
family of cyclins and cyclin-dependent kinases that
are periodically expressed during cell cycle and that
are conserved among different species. Genome-
wide location analysis found that cyclins are
controlled by a small number of transcription
factors that form closed network of genes
controlling each other. To investigate gene expres-
sion dynamics of this network, we developed a
general procedure for stochastic simulation of
gene expression process. Using the binding data,
we simulated gene expression of all genes of the
network for all possible combinations of regulatory
interactions and by statistical comparison with ex-
perimentally measured time series excluded those
interactions that formed gene expression temporal
profiles significantly different from the measured
ones. These experiments led to a new definition of
the cyclins regulatory network coherent with the
binding experiments which are kinetically plausible.
Level of influence of individual regulators in control
of the regulated genes is defined. Simulation results
indicate particular mechanism of regulatory activity
of protein complexes involved in the control of
cyclins.

INTRODUCTION

Cell cycle control is one of the most important topics of
molecular biology. Large part of the studies on cell cycle
was done on budding yeast Saccharomyces cerevisiae that
have served for years as a model organism for study of
eukaryotic cellular processes. The yeast cell cycle consists
of four distinct phases G1, S, G2 and M. In G1 phase,
biosynthetic activity of the cell resumes from the

slowdown in the M phase and genes active in the following
S phase are transcribed, mainly those needed for DNA
replication. The S phase starts with initiation of DNA
replication, during this phase DNA is doubled and cell
enters following G2 phase during which microtubules
are synthesized, which are required during M phase
when cell divides. Systems studies of cell cycle were
mainly performed by omics experiments. Microarray
analysis identified more than 800 genes that are periodic-
ally expressed during cell cycle (1–3). It has been found
that regulation of the cell cycle is controlled by the activity
of protein family of cyclins and cyclin-dependent kinases
(CDK) (4,5) which are also among the periodically
expressed genes group. Transcriptional regulation of the
cell cycle clock was associated with a relatively small
number of cell cycle-dependent transcription factors,
namely Fkh1, Fkh2, Mcm1, Mbp1, Swi4, Swi6, Ndd1
and Ace2 (6–9), which are conserved among different
saccharomyces species (1). Out of them, two molecular
complexes that were found as acting coordinately were
identified—SBF (Swi4/Swi6) and MBF (Mbp1/Swi6).
Based on these studies, an initial model of transcriptional
control of the cell cycle in yeast was suggested: the MBF
and SBF complexes control late G1 phase (7,10). Mcm1 is
involved in control of some genes of M/G1 phase (11).
Mcm1, together with Fkh1 and Fkh2 that associated
with Ndd1 controls transcription of G2 and M genes
(8). M and early G1 phase are controlled by Swi5 and
Ace2.

To investigate deeper this scheme, Simon et al. (12) ran
a set of genome-wide location experiments to find out how
the cell cycle transcription program is controlled by each
of the known cell cycle transcription activators. By com-
bination of their binding data and previous studies, Simon
et al. identified and extended model of transcriptional
control of cyclin/CDK genetic network, where each
group of transcription factors controls key cell cycle regu-
lators needed for cell cycle progression (Figure 1A). Since
then, no systematic experimental study on the control of
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cyclins network has been performed. In their paper, Simon
et al. suggests a new model of transcriptional control of
cell cycle regulators that define cyclins genetic network.
Based on the location analysis, they found that SBF and
MBF complexes control transcription of G1/S cyclin
genes, but also regulate expression of the G2/M cyclin
Clb2, which promotes entry into mitosis. SBF and MBF
also regulate the transcription of the transcription factor
Ndd1, which also binds the CLB2 promoter. Thus, SBF,
MBF and Ndd1 ultimately collaborate to regulate tran-
scription of the CLB2 gene. SBF and MBF therefore
regulate genes necessary for the transition through G1/S,
as well as genes whose products set the stage for further
progression through the cell cycle. Their data also revealed
that the G2/M activators (Mcm1/Fkh2/Ndd1) bind genes
whose expression is necessary for both entry into and exit
from mitosis. The G2/M activators bind and regulate
transcription of CLB2, whose product is necessary to
enter mitosis. These genes also set the stage for exit
from mitosis by regulating the gene encoding Cdc20, an
activator of the APC, which targets the APC to degrade
Pds1 and thus initiate chromosome separation.
Cdc20-activated APC also degrades Clb5 and thus
enables Cdc14 to promote the transcription and activation
of Sic1 and to initiate the degradation of Clb2. In
addition, the G2/M activators Mcm1/Fkh2/Ndd1
regulate transcription of SPO12, which encodes a
protein that also regulates mitotic exit. The M/G1 tran-
scriptional regulators (Mcm1, Ace2 and Swi5) bind genes
that are key to entering and progressing through G1. Swi5
binds to the SIC1 promoter, and all three transcriptional
regulators bind to the CLN3 promoter. Sic1 inhibits
Clb–Cdc28 during mitosis, thus facilitating exit from
mitosis. Cln3–Cdc28 activates SBF and MBF in late G1,
thus setting the stage for another cell cycle circuit (12).

Later a systematic study dealing with binding of
extended number of transcriptional regulators to DNA
was performed (13). Using genome-wide location
analysis with epitope tagging Harbison et al. determined

the genomic occupancy of 203 DNA-binding transcrip-
tional regulators including those identified as members
of the cyclins genetic network. Similar work that focused
on conservation of transcriptional regulators across differ-
ent saccharomyces species was performed recently (1).
Based on these studies, we have focused on whether the

regulatory interactions within the cyclins control genetic
network, derived from static binding, are also reflected in
their kinetics. For this purpose, we used microarray
kinetic measurements monitoring in discrete time intervals
levels of expression of whole yeast transcriptome (2).
Using a dedicated simulation model of gene expression
and a simple statistics, we investigated all interactions sug-
gested by the binding experiments from the kinetic point
of view and adapted the cyclins genetic network to
conform to both experiments. Final network included
interactions coherent with the binding experiments that
were also kinetically plausible.

MATERIALS AND METHODS

Simulation of gene expression

Gene transcription, from the regulatory point of view,
starts with a transcription factor binding to the
promoter region of a particular gene. After the regulator
binds to DNA, the RNA polymerase complex binds to the
start codon of the gene and initiates its transcription into
messenger RNA. The probability that the transcriptional
event will occur depends on the number of regulator mol-
ecules around the gene and their strength of binding to the
promoter of a gene. Under normal conditions, RNA poly-
merase and other transcriptional factors involved in the
process are considered to be available in excess, and their
concentration in the cell does not influence the accumula-
tion of transcribed mRNA molecules. The number of
mRNA molecules accumulated in a cell is influenced by
its degradation.
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Figure 1. Interactions found by genome-wide location analysis (A) and computed using the simulation procedure presented here (B). In panel B, red
lines represent interactions having the highest correlation with experimental time series, and green lines represent alternative interactions that are still
statistically significant but have a correlation coefficient lower than that of the interactions represented by red lines.
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In the cell environment, the number of regulators
molecules is generally low and the occurrence of the tran-
scriptional process for particular gene is stochastic.
Stochasticity of general biochemical reactions has been
modeled by Gillespie’s algorithm (14,15). The algorithm
was originally developed for chemical bimolecular reac-
tions and simulates collisions that lead to the formation
of a new molecule. The probability that a bimolecular
reaction will take place is dependent on the occurrence
of individual molecules. The algorithm starts with the ini-
tialization step, in which the number of molecules in the
system is defined along with the reaction constants and
random number generators. In the following Monte
Carlo step, a random number is generated to determine
the next reaction to occur, and the time step is updated.
This procedure is iterated until either all the input mol-
ecules or the simulation time are exhausted. The algorithm
relies on the knowledge of reaction constants and concen-
trations of the acting molecules—the items that are very
rarely available for transcriptional processes. Most of the
concentration measurements are performed using micro-
arrays in relative units where the exact number of mol-
ecules in the cell is hard to estimate. Also Gillespie’s
algorithm was developed for bimolecular reactions
which, in case of more than one regulator, make simula-
tion of transcription difficult to achieve.
For this reasons, it is necessary to find relation between

relative values of gene expression levels of regulators,
measured by microarrays and the probability of transcrip-
tional event occurrence. Veitia (16) using thermodynamic
analysis of the process of transcription derived that the
relation between concentration of regulators and the prob-
ability of transcription is given by a sigmoidal curve, with
number of thermodynamic parameters. Reason for using a
sigmoid is supported by two observed features. First is the
saturated promoter, when local concentration of the regu-
lator is so high that transcription occurs with the prob-
ability close to one. Further increase of regulators
concentration does not increase probability of transcrip-
tion. Second, for initiation of transcription a basal level of
regulators concentration is necessary, below which tran-
scription does not occur. Its probability is therefore zero.
Based on this analysis, we suggested a simple model where
the probability of occurrence of transcriptional event is
given by a sigmoid in which the influence of the given
regulator is weighted by a constant that can be associated
with the strength of the promoter binding of the given
regulator. Magnitude of this constant corresponds to the
range and units in which the gene expression levels are
measured. Probability of transcription event occurrence
is thus given by a formula:

pðtÞ ¼
1

1+expf�½wyðtÞ+b�g
� B ð1Þ

The affinity constant w represents the level of influence of
given regulator’s concentration y(t), the delay parameter b
is a constant <0 that determines the amount of y for a
given w that is high enough to start the transcriptional
process. B is a correction constant specifying probability
of transcription for y(t)=0. For saturated promoter

p(t)= 1�B, for typical range of the parameters
B< 0.001. As in the low molecular environment in the
cell, transcription can never reach probability of its occur-
rence equal 1, while for y(t)=0 probability of transcrip-
tion has to be 0. Parameter B corrects for this
phenomenon.

The formula can be generalized for n regulators to

pðtÞ ¼
1

1+expf�½
Pn

i¼1

wiyiðtÞ+b�g

� B ð2Þ

(according to experimental observations, it is reasonable
to consider only a maximum of three regulators).

Simulation of gene transcription process

To simulate the process of transcription and accumula-
tion of the transcribed gene mRNA with a computer,
the probability of transcription was computed according
to Equation 1 or 2, and a random number r from a
uniform distribution on the interval (0,1) was generated.
When the computed probability of transcription
satisfies p> r, transcription starts and generates one
molecule of mRNA of the regulated gene; accumulated
ymRNA(t+Dt)= ymRNA(t)+1. Transcription takes time
Dt proportional to the length of the gene here set to
50 nt/s (17). Accumulated mRNA is subjected to natural
degradation, which is assumed to follow the first-order
chemical reaction. Therefore, the amount of mRNA
degraded during the transcription process is:

ymRNAd ¼ ymRNAðt+�tÞ expð�kd�tÞ ð3Þ

kd is the degradation constant. This amount is subtracted
from the accumulated mRNA amount
(ymRNA(t+Dt)= ymRNA(t+Dt)� ymRNAd). If p� r, t is
increased by Dt and the degraded mRNA is subtracted
from the accumulated one. The simulation is repeated
until the end of the established time interval is reached.

Model parameter inference from gene expression data

The model defined in Equations 1, 2 and 3 contains several
parameters that must be estimated from gene expression
data. The model simulates process of gene expression
on the level of transcription and generates an mRNA
expression profile, which is a result of regulator activity
and a set of parameters. The parameters deduced from
Equations 1, 2 and 3 were as follows: the regulator
binding affinity constant wi, the delay parameter b and
the degradation rate constant kd. Two additional
constants must be added: the initial amount of mRNA
ymRNA0 and a constant k, which serves as a multiplier
in Equations 1 and 2 and scales the arbitrary units
in which the regulators’ gene expression profile is
measured to the scale into the units used in the model:
ymRNAcor ¼ ymRNA0+k � ymRNA.

The parameters of a process can be computed by fitting
the simulated gene expression profile of the regulated gene
to the measured one with the use of regulators expression
profile y(t); this is achieved by maximizing the correlation
between the measured process ymRNAðtÞand the simulated
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ŷmRNAðtÞ profile, i.e. by minimizing the objective function
Q given by

Q ¼ 1� corð �̂ymRNA, �ymRNAÞ ð4Þ

Due to the stochasticity of the simulation process, each
simulation generates a slightly different profile; thus, an
estimation of the parameters belonging to each individual
simulation would imply a different set of parameters.
Thus, parameters were computed from the average
profile. Experiments showed that the average profile
stabilizes after �20 runs. Therefore, an iterative optimiza-
tion procedure, minimizing the objective function Q
(Equation 4), was run for an average profile containing
at least 20 simulations. Simulated average profile was
then transformed linearly to fit to the scale of the
measured one.

For each regulated (target) gene, ChIP-on chip data
provide information about binding of regulators to the
promoters of given regulated gene. These regulators can
be considered as potentially controlling expression of this
gene. Therefore, for each target gene, the above described
optimization was run for all combinations of single and
two potential regulators for all regulators suggested by the
binding experiments. Control by more than two regulators
was analyzed only in case where it was suggested by Simon
et al. (12).

Potential regulators for the genes of cyclins regulatory
network were identified from the binding data of Harbison
et al. (13) and Simon et al. (12).

Inference of regulator–target gene interaction

To find out which potential regulators can regulate given
target gene, simulations with optimized parameters were
run 20 times for all target genes and all possible combin-
ations of their regulators as described in the previous
paragraph. Measured target gene expression profiles had
mean �ymRNAðtiÞ and variancesmRNAðtiÞ for discrete number
of time points i=1:m. Each simulation generated a set of
target gene temporal profiles with mean �̂ymRNAðtiÞ and a
variance symRNAðtiÞ. The simulated average target gene
profiles were compared with measured ones and those
simulated profiles that were significantly different from
the measured ones were rejected. As each accepted
profile was computed from a certain combination of regu-
lators, these regulators were taken as true regulators of the
given target gene.

The statistical test had to say that not only the average
simulated profile was not significantly different from
average measured one as whole, but also that it was not
different in any of time points measured. This in principle
can be achieved by two-way ANOVA with post-test,
testing whether the difference between the simulated and
measured experiments was statistically significant in each
time point. We used two-way ANOVA test with Tukey’s
least significant difference procedure to identify time
points where the simulated and measured profiles were
significantly different. Therefore, those simulated
profiles, and consequently, the combinations of regulators
for the given target gene, were accepted that passed the

two-way ANOVA test and were not different in more than
one time point out of 25 measured.
Measured gene expression profiles were adopted from

the work of Pramila et al. (2) where three experiments
were run, measured in 25 time points in 5min interval
over 120min.

RESULTS AND DISCUSSION

Genetic network controlling cyclins consists of just a few
transcription factors—Swi6, Swi4, Mbp1, Mcm1, Fkh1,
Fkh2 and Ace2. It was originally derived by Simon
et al. (12) on the basis of genome-wide location analysis
(Figure 1A). The genes of this network control each other
and also cyclins that control cell cycle progression and
periodicity. They are: B-type cyclins involved in cell
cycle progression Clb1,2,4,6 that activate Cdc28 to
promote the transition from G2 to M phase or function
in formation of mitotic spindles along with Clb3 and Clb4
(Clb6). Another group of genes they control are Cln1,2,3;
cyclins involved in regulation of the cell cycle, activating
Cdc28 kinase and promoting G1 to S phase transition.
Remaining controlled genes are Apc1 that forms largest
subunit of the anaphase-promoting complex/cyclosome
(APC/C), and kinase inhibitors Sic1 and Far1.
The above-mentioned simulation procedure was used to

infer topology and interactions within this network. For
this purpose, microarray experiments were used that
covered two cell cycles of yeast that had been made in
triplicate (2). Original data were stored as log base 10
values. For further use, the data were exponentiated and
individual profiles corresponding to the same gene from
the three parallel experiments were averaged and standard
deviation for each time point was calculated. Binding
interactions among members of this network were
identified from ChIP experiments (13) and have been
assembled in Table 1. Table 1 served for the design of
necessary simulations, modeling both single regulators
and two regulators acting together. The number of neces-
sary simulations is given by the Table 1 column labeled
‘comb’. In the case of genes for which three regulators
were suggested by Simon et al. (NDD1, SWI5, ACE2,
SWI4, CLN3 and CLB2), we also performed a simulation
for three regulators. Altogether 125 simulations were
made. For each simulation, model parameter estimates
were computed (see ‘Materials and Methods’ section),
and a statistical test was used to compare average
simulated profiles with the average experimentally
measured profile. Those simulated profiles passing the
statistical test were selected, and the values of the param-
eters wij were used to infer the regulators of the given gene
and their activity (activator or repressor). The results are
summarized in Table 2.
A comparison of Tables 1 and 2 shows the differences

between the predictions made solely based on genome-
wide location data and data computed using the simula-
tion model. A comparison of the two approaches is
given in Table 3. Table 3 shows the following: (i) there
was a partial overlap between the genome-wide location
data analysis and the results of simulation experiments.
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(ii) In some cases, the statistical test for the similarity
between the simulated and measured target gene expres-
sion profiles was satisfied by more than one combination
of regulators. (iii) The ‘cc’ column indicates a high correl-
ation between simulated and measured mean expression
profiles, a correlation that is always >0.9. The alternative
combinations of regulators must be considered equal and
cannot be excluded based on differences in the correlation.
All are statistically significant, and all are very highly
correlated. Interactions suggested by genome-wide
location analysis (12) and those found by the simulations
are depicted in Figure 1. Out of 17 total regulated genes,
six of them were found to have the same regulators by
genome-wide location analysis and simulations, seven
were found to have different regulators and the remaining
four genes indicated partial regulator overlap between the
two types of analyses. In the following paragraph, indi-
vidual regulatory interactions and differences between the
results of simulation and genome-wide location analysis
are discussed.

FKH1—Suggested control by the Swi4, Mbp1 pair was
not confirmed. Control by Fkh2 suggested from ChIP
experiments was not able to simulate Fkh1 profile with
sufficient accuracy. Although correlation between
measured and simulated expression profiles was quite
high (0.90), it failed to pass our statistical test in 5
points (approximately at 30 h and above 95 h, see
Supplementary Dataset).

FKH2—This interaction was not predicted by Simon
et al. ChIP data suggested control by Fkh1/Fkh2.
Control by Fkh1 or Fkh1/Fkh2 was confirmed by
simulation.

NDD1—Suggested control by Swi6/Swi4/Mbp1 was not
confirmed; instead, control only by Swi6 was found.

SWI5—Suggested control by triplet Fkh2/Ndd1/Mcm1
was confirmed but only for the case in which Ndd1
and Mcm1 acted as repressors. Because in genome-
wide location analysis, the type of control was not dis-
cussed, so this result can be considered as matching. The
same phenomenon was observed for the remaining com-
binations (Fkh2/Mcm1 or Fkh2/Ndd1 or Fkh1/Ndd1),
where Mcm1 and Ndd1 always acted as repressors.

ACE2—Suggested control by triplet Fkh2/Ndd1/Mcm1
was confirmed with Mcm1 acting as repressor. There
was a relatively low influence of Ndd1 (5 times lower
than that of Fkh2; see Supplementary Dataset). Other
pair-vice combinations for which Fkh2 or Fkh1 acted
as activators and the other genes as repressors were
identified.

SWI4—Suggested control by Mcm1/Swi6/Swi4/Mbp1
was confirmed for Mcm1/Swi4/Mbp1. In all known
cases, self control of Swi4 was confirmed, accompanied
by a second regulator (Mcm1, Cln3 or Mbp1).

CLN3—No combination of regulators was found to be
possible for this gene, including suggested control by
Mcm1/Swi5/Ace2.

CLB4—Suggested control by Fkh1 was confirmed,
accompanied by Swi5, which was suggested to act as

repressor.
CLB1—Instead of Mcm1, Clb1 indicated control by

Fkh1 or Fkh2, together with Swi5 as repressor.
CLB2—From the suggested control by Fkh1/Fkh2/

Ndd1/Mcm1, only the pair Fkh2/Ndd1 was sufficient
to control Clb2, with Ndd1 acting as repressor.

Table 1. Regulator binding to the promoters of regulated genes in cyclin/CDK regulators network as identified by ChIP experiments (13)

FKH1 FKH2 NDD1 MCM1 SWI5 ACE2 SWI6 SWI4 MBP1 CLN3 SUM comb

FKH1 1 1 1
FKH2 1 1 2 3
NDD1 1 1 1 1 4 10
MCM1 0 0
SWI5 1 1 1 1 4 10
ACE2 1 1 1 1 4 10
SWI6 0 0
SWI4 1 1 1 1 1 5 15
MBP1 1 1 1
CLN3 1 1 1 1 4 10
CLB4 1 1 2 3
CLB1 1 1 1 1 4 10
CLB2 1 1 1 1 1 1 6 21
SIC1 1 1 2 3
FAR1 1 1 2 3
CLN2 1 1 1 1 4 10
CLN1 1 1 1 1 1 5 15
CLB6 1 1 1 1 4 10
GIN4 1 1 1 1 4 10
SWE1 1 1 1 3 6
SPO12 1 1 2 3
APC1 1 1 1
SUM 8 10 3 11 3 2 8 10 7 2 61 125

The digit 1 in a cell indicates that the regulator from that column binds the promoter of the regulated gene from the corresponding row. Shaded cells
label interactions deduced from the work of Simon et al. (Figure 1). The SUM of a given row represents the potential number of regulators controlling
the gene assigned to that row, whereas the SUM of a column represents the number of genes that can be controlled by the regulator assigned to that
column. The row statistic ‘comb’ represents the total number of possible combinations of one and two regulators for the gene in that row.
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SIC1, FAR1 and CLN2—No kinetically plausible com-
bination of regulators was found for these genes.

CLN1—Control by Swi4/Mbp1 was confirmed together
with the alternative pair Swi6/Swi4.

CLB6—Swi4/Mbp1 pair was confirmed together with
alternative pair Swi4/Swi6 as well as Swi4/Fkh2.

GIN4—Suggested control by Mbp1 was confirmed by
combination with Swi4 or alternatively Swi6/Swi4
(SBF complex).

SWE1—Control by Swi4/Mbp1 was confirmed.

The kinetic behavior of transcription of the selected
genes was modeled with high accuracy, typically
yielding a correlation coefficient between measured and
simulated profiles higher than 0.98 (Table 3), with statis-
tically significant similarity between measured and
simulated expression profiles for 24 out of 25 total
measured points.

In several cases, regulation suggested by genome-wide
location analysis for two or more regulators proved re-
dundant from the kinetic point of view. For NDD1,
genome-wide location analysis suggested three regulators
(Swi6/Swi4/Mbp1), whereas for the simulation of Ndd1

kinetics, Swi6 alone was sufficient. Similarly, for SWI4,
suggested control is by Mcm1/Swi6/Swi4/Mbp1, whereas
for the simulation, the regulators Mcm1/Swi4/Mbp1 were
sufficient (Table 3). When simulation and experimental
variance were used to confirm or reject control by different
combinations of regulators for a given target gene, several
alternative control patterns for one target gene could be
discerned; e.g. for the case of SWI5, control by a triplet
Fkh2/Ndd1/Mcm1 was statistically equivalent to control
by pairs Fkh2/Mcm1 and Fkh2/Ndd1 (a similar result was
obtained for CLB6, SWI4 and CLN1; Table 3). These
individual regulator combinations were indistinguishable
from each other, and they must be considered equivalent.
Such results constitute alternative hypotheses which have
to be confirmed independently.
Two complexes SBF (Swi4/Swi6) and MBF (Mbp1/

Swi6) are supposed to control cyclins CLN1,2 and
CLB5,6 respectively (18) and NDD1 together with
Mbp1 (12). CLN1,2 was indeed found to be regulated
by SBF, alternatively by Swi4/Mbp1 pair. In accordance
with the binding experiments SWI4/MBP1 (or alterna-
tively SBF) was found to control also CLB6. Simulation

Table 2. The results of the inference of regulatory interactions within the cyclin/CDK regulatory network using our simulation procedure

FKH1 FKH2 NDD1 MCM1 SWI5 ACE2 SWI6 SWI4 MBP1 CLN3

FKH1 1
FKH2 1 1
FKH2 1 1
NDD1 1 1 1 1
MCM1
SWI5 1 1 1 1
SWI5 1 1 1 1
SWI5 1 1 1 1
ACE2 1 1 1 1
ACE2 1 1 1 1
ACE2 1 1 1 1
ACE2 1 1 1
SWI6
SWI4 1 1 1 1 1
SWI4 1 1 1 1 1
SWI4 1 1 1 1 1
SWI4 1 1 1 1 1
MBP1 1
CLN3 1 1 1 1
CLB4 1 1
CLB1 1 1 1 1
CLB1 1 1 1 1
CLB2 1 1 1 1 1 1
SIC1 1 1
FAR1 1 1
CLN2 1 1 1 1
CLN1 1 1 1 1 1
CLN1 1 1 1 1 1
CLB6 1 1 1 1
CLB6 1 1 1 1
CLB6 1 1 1 1
GIN4 1 1 1 1
GIN4 1 1 1 1
SWE1 1 1 1
SPO12 1 1
APC1 1

The digit 1 in a cell indicates that the regulator from the corresponding column binds to the promoter of the regulated gene from the corresponding
row (as in Table 1). Shading represents regulatory interactions inferred from the simulation process. Multiple appearances of the same gene name
(see the first column) indicate significant alternative control for that gene.
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of CLB6 control by MBF suggested by literature showed
low correlation with experimental time series (Pearson
correlation=0.34). For the control of NDD1, Swi6 only
was found to be sufficient although the simulation of the
control by MBF showed to be highly correlated with ex-
perimental time series as well (Pearson correlation=0.93,
see Supplementary Dataset).
When the same set of regulators was identified by both

experiments (simulation versus genome-wide location
analysis), some regulators located by simulation were
required to serve as repressors. For example, take
ACE2. Both experiments suggest three regulators
(Fkh2/Ndd1/Mcm1), but simulation found that Mcm1
must act as repressor, or else the Ace2 expression
profile could not be modeled successfully. Similarly for
SWI5 (regulators Fkh2/Ndd1/Mcm1), Ndd1 and Mcm1
had to act as repressors to simulate the expression profile

of Swi5. Genome-wide location analysis does not address
this issue. After searching the literature, we found that for
this case, no one has investigated the regulators’ activity
as an activator or repressor.

For four particular genes (SIC1, FAR1, CLN2 and
CLN3; Table 3), no combination of regulators suggested
by ChIP-chip experiments could simulate the kinetics of
the target genes with sufficient confidence. Control sug-
gested by genome-wide location analysis was thus not con-
firmed by simulation. This observation indicates that the
control of these genes may follow different pathway than
purely transcriptional.

The differences between binding and simulation experi-
ments could be caused principally by two items: measure-
ment inaccuracy and a type of control different than the
transcriptional one. Time series of gene expression are
usually measured using microarrays, and number of rep-
licates usually does not exceed three. When the measure-
ment covers whole cell cycle or two (as for the data used
here), the synchrony of the population decays with time,
leading to increase of variance with time. As a result, the
average measured expression profile may differ from the
real one. As the simulation is designed to fit the experi-
mental data, any error in them distorts final conclusion.
Increase of the measurement reproducibility will also
increase reliability of the predictions based on the
simulations.

The simulation used here, suppose transcriptional
control and investigates that this type of control is
possible from the kinetic point of view. When other type
of control is involved, then the simulation cannot find the
correct solution. The same argument holds for interpret-
ation of the binding experiments which say that the regu-
lator binds the promoter, but cannot discover
posttranscriptional or other events and cannot even say
whether the binding results in transcription. If, e.g. phos-
phorylation is involved in transcriptional control, the
binding experiments’ results, combined with the simula-
tion results, will fail to discover the real control mechan-
ism. The additional information, the phosphorylation, is
missing. Control of CLB2 can serve as an example. CLB2
was found to be controlled by Mcm1 together with Fkh2
and co-activator Ndd1. But Clb2-Cdc28 phosphorylates
Ndd1, which is important for recruitment to the CLB2
gene promoter, and phosphorylates Fkh2, which
enhances the interaction of Fkh2 with Ndd1 (18). The
simulation found that only the pair Fkh2, Ndd1 was suf-
ficient to control CLB2 gene, with Ndd1 acting as repres-
sor. Therefore, the multiple phosphorylations involved in
the control were replaced by kinetically acceptable alter-
native. If the current knowledge indicates that the control
of the given gene is transcriptional and the results of
kinetic simulation differ from those measured statically
(as the binding experiments) it is an indication that the
process follows different pathway then suggested, i.e.
most probably some information is missing. Therefore,
such situations have to be carefully checked and add-
itional experiments have to be designed that would inves-
tigate involvement of other possible control mechanisms.
As the binding experiments usually indicate several pos-
sible combinations of regulators, simulation can choose

Table 3. Comparison of cyclin/CDK control network revealed by

genome-wide location analysis and the simulations performed in this

article

Simon et al. Simulation cc

FKH1 SWI4, MBP1 NULL
FKH2 NULL FKH1 0.98
FKH2 FKH1, FKH2 0.97
NDD1 SWI6, SWI4, MBP1 SWI6 0.93
MCM1 NULL NULL
SWI5 FKH2, NDD1, MCM1 FKH2, NDD1, MCM1 0.98
SWI5 FKH2, MCM1 0.98
SWI5 FKH2, NDD1 0.98
ACE2 FKH2, MCM1 0.96
ACE2 FKH2, NDD1, MCM1 FKH1, NDD1 0.94
ACE2 FKH2, NDD1, MCM1 0.94
ACE2 FKH1, FKH2 0.94
SWI6 NULL NULL
SWI4 MCM1, SWI4 0.99
SWI4 SWI4, CLN3 0.99
SWI4 SWI4, MBP1 0.99
SWI4 MCM1, SWI6, SWI4, MBP1 MCM1, SWI4, MBP1 0.98
MBP1 NULL NULL
CLN3 MCM1, SWI5, ACE2 NULL
CLB4 FKH1 FKH1, SWI5 0.89
CLB1 MCM1 FKH1, SWI4 0.98
CLB1 FKH2, SWI4 0.98
CLB2 FKH1, FKH2, NDD1, MCM1 FKH2, NDD1 0.99
SIC1 SWI5 NULL
FAR1 MCM1 NULL
CLN2 SWI4 NULL
CLN1 SWI4, MBP1 SWI4, MBP1 0.94
CLN1 SWI6, SWI4 0.94
CLB6 SWI4, MBP1 SWI4, MBP1 0.99
CLB6 SWI4, SWI6 0.98
CLB6 SWI4, FKH2 0.94
GIN4 MBP1 SWI4, MBP1 0.95
GIN4 SWI6, SWI4 0.95
SWE1 SWI4, MBP1 SWI4, MBP1 0.94
SPO12 MCM1, FKH2
APC1 FKH1

If more than one combination of regulators satisfied the statistical test
for a given target gene, then they are all listed. Shaded regions indicate
interactions matching exactly in both types of analyses. The column
denoted by ‘cc’ contains Pearson correlation coefficients between
simulated and measured expression profiles of the target genes (first
column). Multiple occurrences of the same gene in the first column
indicate alternative control for that gene.
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those combinations which are kinetically possible. Role of
the modeling in these cases is in questioning or confirm-
ation of the current knowledge.

Role of the simulation of transcriptional process pre-
sented here is in investigation of kinetic plausibility of
regulatory interactions suggested by other experiments.
The simulation of molecular interactions between tran-
scription factors and promoter of the controlled gene is
closest possible approach to the transcriptional process
which allows simulating natural variance of the process
given by inevitably small number of interacting molecules.
When tested against experimentally measured time series,
all kinetically plausible regulatory interactions can be
revealed. Modeling, in this case, serves as additional con-
fidence level of data interpretation and a means for the
design of new experiments leading to discovery of, so far,
unknown control mechanisms. Second role of the simula-
tion experiments is in modeling. Once the correct pathway
is known, the output caused by changes to the given
system can be tested without making expensive experi-
ments. Simulation allows studying the dynamic features
of the whole network of regulatory interactions that
goes beyond purely experimental observations.
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