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Abstract

We define the chromatin accessibility and transcriptional landscapes in thirteen human primary 

blood cell types that traverse the hematopoietic hierarchy. Exploiting the finding that the enhancer 

landscape better reflects cell identity than mRNA levels, we enable “enhancer cytometry” for 

enumeration of pure cell types from complex populations. We identify regulators governing 

hematopoietic differentiation and further reveal the lineage ontogeny of genetic elements linked to 

diverse human diseases. In acute myeloid leukemia (AML), chromatin accessibility reveals unique 

regulatory evolution in cancer cells with progressive mutation burden. Single AML cells exhibit 

distinctive mixed regulome profiles of disparate developmental stages. A method to account for 

this regulatory heterogeneity identified cancer-specific deviations and implicated HOX factors as 

key regulators of pre-leukemic HSC characteristics. Thus, regulome dynamics can provide diverse 

insights into hematopoietic development and disease.

INTRODUCTION

The entire human hematopoietic system is maintained by a small number of self-renewing 

multipotent hematopoietic stem cells (HSCs). More than 200 billion blood cells are 

produced in a single day1, highlighting the need for exquisite regulation that balances self-

renewal of upstream stem cells with downstream production of differentiated effector cells. 

Previous studies have profiled gene expression patterns in mouse2,3 and human4,5 

hematopoiesis providing a rich resource for characterizing these cellular states. However, 

measuring gene expression alone provides limited information regarding the causative 

regulators of cell identity. Alternatively, genome-wide chromatin-based assays are sensitive 

methods for assaying the activity of trans factors and cis regulatory elements. Recently, 

several methods have been developed to profile the epigenomes of rare cellular 

populations3,6,7, enabling the identification of regulatory elements within mouse 

hematopoiesis3. These methods have not yet been used to profile the epigenomes within rare 

progenitor populations of human hematopoiesis.

Dysregulation of the regulatory networks governing the human hematopoietic system plays a 

critical role in the development of hematologic malignancies8. The long lifespan of HSCs 

makes them susceptible to the accumulation of mutations over time9,10. In particular, in the 

case of acute myeloid leukemia (AML), HSCs isolated from leukemia patients have been 

shown to harbor some but not all of the genetic alterations found in leukemic cells. These 

cells, termed pre-leukemic HSCs11–13, provide insight into the earliest stages of the 

dysregulation of normal hematopoiesis leading to AML.

We previously described the Assay for Transposase Accessible Chromatin using sequencing 

(ATAC-seq), a method capable of measuring chromatin accessibility in rare cellular 

populations6. Here, we report the development of an improved ATAC-seq protocol, 

optimized for human blood cells, that allows for more rapid high-quality measurements. We 

apply this optimized protocol to cells isolated from 9 healthy human donors and 12 AML 
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patients, studying a total of 137 samples representing 16 of the major cell types of the 

normal hematopoietic and leukemic hierarchies. In addition, we measure the transcriptomes 

of 96 samples from the same healthy and leukemic donors to derive paired expression data. 

This reference map revealed the effects of both early mutations in epigenetic modifiers and 

late mutations in proliferative oncogenes on the leukemogenic process. Our results provide 

key insights into the evolutionary process of leukemogenesis and identify important 

regulatory programs that could be targeted to disrupt this process during its earliest stages.

RESULTS

Fast-ATAC is an optimized ATAC-seq protocol for blood cells

We created a reference regulome and transcriptome map of the normal hematopoietic 

hierarchy (Fig. 1a,b). We developed an optimized protocol for use on primary blood cells, 

termed Fast-ATAC, which relies on a 1-step membrane permeabilization and transposition 

using the lysis reagent digitonin. We found that this simplified protocol requires just 5,000 

cells, provides high quality data with reduced signal noise (Supplementary Fig. 1a–c), 

reduces the frequency of mitochondrial reads by ~5 fold (Supplementary Fig. 1d), and offers 

an approximately 5 fold improvement in fragment yield per cell (Supplementary Fig. 1e).

Using Fast-ATAC and RNA-seq, we profiled the chromatin accessibility landscape 

(“regulomes”) and transcriptomes from 13 distinct cellular populations from the human 

hematopoietic hierarchy isolated via fluorescence activated cell sorting (FACS) (Fig. 1a and 

Supplementary Fig. 2–4). Cells were taken directly from donor bone marrow or peripheral 

blood without further manipulation (Supplementary Table 1). The isolated cell populations 

included 7 unique stem and progenitor and 6 differentiated cell types spanning the myeloid, 

erythroid, and lymphoid lineages14–17. All together, we performed ATAC-seq and RNA-seq 

on 3–4 adult donors for each cell population totaling 49 transcriptomes and 77 regulomes 

(Fig. 1c, Supplementary Fig. 1f, Supplementary Fig. 5a,b, and Supplementary Table 1).

With this dataset we identified a total of 590,650 accessible peaks. We found Fast-ATAC 

profiles to be highly reproducible across technical (R=0.98, Fig. 1d) and biological (R=0.97, 

Fig 1e) replicates within hematopoietic stem cells (HSCs). In addition, we found similarly 

high concordance across all other cell types for all technical and biological replicates (mean 

R=0.94 and R=0.91 respectively, Supplementary Fig. 1g,h) except for erythroblast cells 

(technical replicates, R=0.55; biological replicates, R=0.50). Each individual cell type of the 

hematopoietic hierarchy displayed a set of uniquely expressed genes and uniquely accessible 

peaks mapping to genes known to be involved in cellular functions important for the given 

cell type (Fig. 1c and Supplementary Fig. 6a–c).

We also observed reasonable correlation (R=0.73) between Fast-ATAC and DNase-seq18 of 

CD34+ HSPCs (Fig. 1f). Importantly, we find that HSCs, a CD34+ subpopulation, can have 

different ATAC-seq profiles than the bulk CD34+ HSPC pool (R=0.77 observed versus 

R=0.91 expected for same cell type replicates, Fig. 1g), highlighting the value of highly 

purified stem and progenitor cell subpopulations for epigenomic analysis.
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Distal element accessibility is highly cell type specific

Unsupervised hierarchical clustering of our RNA-seq and ATAC-seq data shows robust 

classification of cell types among technical and biological replicates (Fig. 2a–d, 

Supplementary Fig. 7a–d). In this analysis, we observe chromatin accessibility is more adept 

than mRNA expression levels at classifying cell types, quantified by cluster purity19, 

suggesting that chromatin accessibility is more cell type-specific and better captures cell 

identity. However, we note that RNA information from enhancer transcription, splicing, or 

other features that require optimized methods, and deeper sequencing may improve cell type 

classification. When regulatory elements were subdivided as gene promoters or distal 

elements (>1,000 bp away from a transcription start site (TSS)), we find that distal elements 

provide significantly improved cell-type classification compared to promoters (Fig. 2e,f), 

similar to previous observations using DNase-seq and ChIP-seq data20,21. This observation 

is clearly illustrated by the region surrounding the TET2 gene. Despite the invariant 

expression of TET2 and ubiquitous accessibility of TET2 promoter, we find highly diverse 

accessibility profiles within nearby distal regulatory elements, clearly distinguishing HSPCs, 

NK cells, and T cells (Fig. 2g).

Enhancer cytometry deconvolutes complex cell populations

Given the accuracy with which distal regulatory landscapes delineate cell types, we 

hypothesized that Fast-ATAC data can be used to deconvolve highly complex cellular 

populations, such as CD34+ HSPCs, into their constitutive subsets (Fig. 3a). The highly cell 

type-specific nature of our ATAC-seq data enabled the development of a strategy we term 

“enhancer cytometry”, wherein we enumerate the frequency of cell types in complex cellular 

mixtures in silico based on chromatin accessibility data. To do this, we employ the 

deconvolution algorithm CIBERSORT22 to quantify the contribution of each individual cell 

type to the ensemble profile (see methods). Using a filtered peak list, we applied 

CIBERSORT to define a set of cell-type specific regulatory elements (Fig. 3b and 

Supplementary Table 2). We validated this approach using leave-one-out cross validation 

and found enhancer cytometry was able to classify all normal hematopoietic cell types (Fig. 

3c,d and Supplementary Fig. 8a–g). One exception is the discrimination of HSC and MPP, 

which share similar epigenomic profiles and therefore showed reasonable but lower accuracy 

than other cell types (Supplementary Fig. 8a,g). Comparison of enhancer cytometry on bulk 

CD34+ HSPCs to ground truth flow cytometry data showed accurate enumeration of the 

constituent cell types (R2=0.95, Fig. 3e,f). Notably, cell type deconvolution of CD34+ 

HSPCs using all regulatory elements, including promoters, was not as accurate (R2=0.91, 

Supplementary Fig. 8h). In addition, we found that enhancer cytometry can also be used to 

deconvolve CD34+ DNase-seq data (Supplementary Fig. 8i), suggesting that ATAC-seq with 

enhancer cytometry may be a general strategy for identifying and enumerating cell types 

within existing epigenomics data from complex cellular mixtures.

Regulatory networks of normal hematopoiesis

To better understand the mechanisms governing these diverse regulatory landscapes, we 

sought to quantify the effect of specific trans-factors at each developmental transition. We 

adapted a computational framework to measure gain or loss of accessibility across 
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regulatory elements sharing a feature or annotation, for example a transcription factor (TF) 

motif (see methods)23. For subsequent visualization, we cluster similar motifs to create a 

non-redundant list we call “hematopoiesis TF motifs” (Fig. 4a, N=46; see methods). We find 

TF motifs such as “GATA”, “RUNX”, and “SPI1” to be dominant regulators of chromatin 

accessibility, consistent with published results24–26 (Fig. 4a and Supplementary Fig. 9a). We 

find that activation of these TFs is cell-type specific, often displaying step-wise gains across 

developmental lineages (Supplementary Table 3). This is exemplified by the “GATA” and 

“PAX” motifs, which are strongly enriched in erythroid and lymphoid lineages respectively 

(Fig. 4b,c). To validate this approach for determining global TF motif regulators of cell 

identity, we compared GATA TF footprints27 between MEPs (GATA high) and common 

lymphoid progenitors (CLPs) (GATA low) and found that CLPs had no detectable binding at 

GATA sites when compared to MEPs (Fig. 4d).

We next reasoned that the accessibility of a given TF motif should correlate with the 

expression of the associated transcription factor throughout hematopoiesis. However, the 

underlying motif sequence does not identify the precise causative regulator of accessibility 

at those motif instances. This is a common issue in epigenomic studies and particularly 

important for cases in which many factors share identical or near-identical TF motifs. To 

assign motifs to transcription factors, we integrated our ATAC-seq and RNA-seq data to 

predict causative regulators of motif accessibility (Supplementary Fig. 9b–e and 

Supplementary Table 4; see methods). Using this approach we find a striking correlation of 

motif usage with the expression of known master regulators of hematopoiesis (Fig. 4e). For 

example, the expression of GATA1 and PAX5 are highly correlated with accessibility at 

GATA and PAX motifs, respectively (R=0.75, P=10−18 and R=0.88, P=10−230, Fig. 4e–g and 

Supplementary Fig. 9f). Interestingly, for some motifs, such as the HOX motif, we find 

many putative regulators with weak correlations (N=11; Supplementary Fig. 9g,h), 

suggesting that regulation of HOX accessibility is more complex. We provide the complete 

list of non-redundant TF deviations, TF motif to gene association table, and gene correlation 

analysis as an associated resource (Supplementary Table 3, 4 and Supplementary Data).

Regulome profiles chart the ontogeny of human diseases

In addition to enhancing our understanding of developmental gene regulation, the 

hematopoietic regulome can trace the ontogeny of activity in the noncoding genome that 

impacts human disease. Many genome-wide association studies (GWAS) have linked 

diseases to polymorphisms, but have not been able to pinpoint the cells responsible for those 

phenotypes. By measuring the activity of regulatory elements that overlap regions with 

predicted sites of functional variation from GWAS, it is now possible to more accurately 

predict the specific cell types impacted by genetic variants linked to diverse human diseases 

(Supplementary Fig. 10a–c; see methods and Supplementary Note 1)28–30. As an example, 

polymorphisms linked to mean corpuscular volume (MCV), a measure of the average 

volume of an erythrocyte cell, are most strongly enriched in erythroblasts (Fig. 4h). 

Intriguingly, many regions associated with MCV polymorphisms first become accessible at 

the CMP and MEP stages suggesting that these polymorphisms may exert their effects prior 

to full erythroid lineage commitment. Similarly, we are able to predict involvement of 

various immune cell types in rheumatoid arthritis and less well-understood diseases such as 
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alopecia areata and Alzheimer’s disease (Fig. 4i–k; see Supplementary Note 2 for further 

discussion).

Leukemogenesis and cancer evolution in AML

To characterize the evolution of AML31 in the context of normal hematopoiesis, we 

identified 3 distinct stages of AML evolution: pre-leukemic HSCs (pHSCs), leukemia stem 

cells (LSCs), and leukemic blast cells (blasts) that can be enriched by FACS (Supplementary 

Fig. 11a,b). Current data indicate that HSCs serve as the reservoir for mutation acquisition 

during the early phases of leukemogenesis (Fig. 5a). Acquisition of founder mutations 

creates pHSCs that expand to create a pre-leukemic clone. Subsequent acquisition of 

progressor mutations generates LSCs that are capable of self-renewal and the production of 

AML blasts32 (Fig. 5a).

Importantly, the population of HSCs isolated from leukemia patients by FACS represents a 

heterogeneous mixture of healthy unmutated HSCs and pHSCs. To quantify this 

heterogeneity, we define the “pre-leukemic burden” as the percentage of HSCs isolated from 

a leukemia patient that harbor at least the first mutation. We profiled the mutation frequency 

of known leukemogenic driver mutations in HSCs, T cells, and blast cells from 39 AML 

patients (Supplementary Table 5 and Supplementary Fig. 11c). Pre-leukemic burden is 

highly variable in this cohort with some patients exhibiting a complete repopulation of the 

HSC compartment with pre-leukemic cells and others exhibiting undetectable levels of pre-

leukemic mutations (Fig. 5b, Supplementary Fig. 11d).

AML represents a cooption of normal myelopoiesis

The AML leukemogenic process provides a novel system to study the genesis and evolution 

of cancer. The Fast-ATAC protocol produced robust accessibility profiles from 

cryopreserved primary patient AML cells (Fig. 5c). We find that the level of variance in 

DNA accessibility between all samples of the same cell type increases through progressive 

stages of leukemia evolution (Fig. 5d, see methods). All AML cell types exhibit more inter-

donor sample-to-sample variance than the corresponding normal hematopoietic cells (Fig. 

5e). This may be a manifestation of the point along the normal hematopoietic hierarchy at 

which the particular AML cell types exist. Indeed, key developmentally-associated genes 

such as GATA2 and CEBPB show variation amongst the AML cell types consistent with 

different developmental stages (Fig. 5f) and we find that the first four principal components 

derived from normal hematopoietic differentiation account for much of the variation 

observed in our leukemia samples (Fig. 5g, see methods). Assigning a score to the myeloid 

differentiation component of our data, we find that the various stages of AML spread across 

the trajectory from HSC to monocyte, indicating that the process of leukemogenesis largely 

mirrors the process of normal myelopoiesis (Fig. 5h and Supplementary Fig. 11e,f). 

Consistent with their functional ability to produce both lymphoid and myeloid cells in 

xenotransplantation assays11–13, pHSCs are most closely related to HSCs and MPPs (Fig. 

5h). As shown previously33, LSCs show strong similarity to GMP and LMPP cells and 

leukemic blast cells show a wider distribution with less differentiated blasts clustering with 

GMP cells and more differentiated blasts clustering with monocyte cells34,35 (Fig. 5h).
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AML cell types exhibit regulatory heterogeneity

The observed developmental positions across myelopoiesis suggest that each patient-specific 

AML might harbor a unique collection of multiple distinct normal regulatory programs. 

Using enhancer cytometry, we quantified the contribution of each normal cell type to each 

leukemic sample assayed (Fig. 6a, Supplementary Fig. 12a, and Supplementary Table 6). We 

find that each patient, at each stage of leukemogenesis, harbors regulatory contributions 

from multiple distinct normal cell types that are often developmentally distinct from each 

other. This result raises the intriguing possibility that individual AML cells may either i) 

exist in mixed cell states that are not normally maintained during normal hematopoiesis, or 

ii) show cellular heterogeneity, wherein a mixture of cell states exist within the leukemic 

clone. Importantly, we find that the majority of the patient donors have AML blasts that are 

clonally derived and harbor all the leukemic mutations at comparable allele frequencies 

(Supplementary Table 5), suggesting that the epigenomic diversity observed through 

enhancer cytometry is not related to genetic heterogeneity of the AML cells.

To discriminate between these two possibilities, we performed single-cell ATAC-seq 

(scATAC-seq) on purified LSCs and blast cells from two AML patients and compared these 

samples to myeloid cells from healthy donors. We then performed enhancer cytometry using 

principal component analysis (PCA) trained on our ensemble ATAC-seq data (Fig. 6b; see 

methods). This analytical framework was validated by projection of down-sampled bulk 

ATAC-seq data (Supplementary Fig. 12b,c) and enabled accurate projection of single cell 

accessibility profiles onto hematopoietic principal components (Fig. 6c,d and Supplementary 

Fig. 12d,e). The relationship between developmental progression and single cell chromatin 

accessibility can be further visualized as a one-dimensional histogram (Fig. 6e,f and 

Supplementary Fig. 12e; see methods).

For normal physiologic comparison, we performed scATAC-seq on normal monocytes 

(N=88) and LMPPs (N=94) isolated from healthy donors. Single LMPP and monocyte cells 

show myelopoietic developmental projection scores centered at the predicted ensemble 

scores (Fig. 6e). In contrast, AML cells are either uniformly centered at developmentally 

intermediate states (e.g. SU070 LSC with unimodal peaks located between normal LMPPs 

and monocytes in Fig. 6f), or alternatively show broad bimodal distributions representing 

regulomes from intermediate and developmentally normal cell states (e.g. SU353 LSCs and 

blasts, Fig. 6f). In addition, widely used cell lines, such as the AML line HL60, also show a 

unimodal and mixed normal cell regulome, observed by ensemble and scATAC-seq 

(Supplementary Fig. 12f–j). These results show that the regulatory heterogeneity observed in 

the ensemble profiles of AML samples can arise from both single-cell intra- and inter-

cellular heterogeneity (see Supplementary Note 3 for an extended discussion).

Synthetic normal analogs uncover AML-specific biology

The ability to accurately quantify the contribution of each normal cell regulome to the 

epigenetic profile of a leukemic cell type enables a more robust identification of AML-

specific regulatory elements. In particular, analyses of leukemic cell types in the past have 

relied on comparing the malignant cells to a carefully chosen normal cell type (for example, 

GMP). Here, due to the regulatory heterogeneity in AML, we reasoned that an effective 
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normal cell comparison would be possible with the generation of “synthetic normals” which 

represent admixtures of various normal cells defined by enhancer cytometry (see methods). 

While comparison of AML cell types to their closest normal cell analogs yields a high 

correlation (R=0.80, Fig. 6g), comparison of AML cell types to their synthetic normal 

analogs yields a higher correlation (R=0.84, Fig. 6h and Supplementary Fig. 13a) and, more 

importantly, leads to a reduction in the number of AML-specific peaks identified (N=1,791 

to N=899; Fig. 6i and Supplementary Fig. 13b,c). Also, comparing samples to the synthetic 

normal from each individual AML cell type reduces global measures of epigenetic variance 

(Supplementary Fig 13d compared to Fig. 5d).

To identify clusters of coordinately regulated elements, fold change values between each 

AML and its synthetic normal were clustered using k-means clustering to identify 7 distinct 

regulatory modules (Fig. 7a and Supplementary Fig. 14a; see methods). The usage of these 

modules was tracked through leukemogenesis to identify patterns related to specific AML 

cell types (Fig. 7b). Each module shows enrichment for peaks associated with different key 

transcription factors (Fig. 7c). For example, modules 6 and 7 show strong enrichment for 

JUN and FOS activity. Similar observations of increased JUN/FOS accessibility have been 

made from DNase-seq data in FLT3-ITD positive AML20, suggesting that this result may be 

related to the high prevalence of FLT3 mutations in our patient cohort. This increase in 

accessibility of JUN/FOS motifs is reflected by an increase in expression of these factors by 

RNA-seq (Supplementary Fig. 14b) and is maintained through the stages of leukemogenesis, 

identifying inhibition of these pathways as a potential therapeutic strategy in AML 

(Supplementary Fig. 14c–e). This observation is consistent with previous publications that 

identify over-expression of c-JUN in AML36 and find JNK inhibition as a putative 

therapeutic target37,38 and indicates that similar strategies may prove efficacious in targeting 

pHSCs.

Mechanism and consequences of pHSC clonal advantage

Using ATAC-seq and enhancer cytometry we show that pHSCs share many regulatory 

programs with HSCs and MPPs (Fig. 6a). Nevertheless, comparison to synthetic normal 

analogs identifies distinct regulatory modules (modules 1 and 2) that show decreased 

accessibility in pHSCs, representing the earliest known event of AML evolution (Fig. 7b). 

These repressed regulatory modules are enriched for motifs associated with HSPCs (i.e. 

HOX, RUNX, and GATA) and provide direct evidence to support a model where pHSCs 

maintain a unique epigenetic and functional state.

In order to better understand the consequences of a loss in accessibility at motifs associated 

with HSPCs, we probed pHSCs for phenotypic changes related to self-renewal and 

differentiation. When pHSCs are induced to differentiate down the myeloid and erythroid 

lineages (Supplementary Fig. 14f), pHSCs showed a strong resistance towards 

differentiation, instead favoring maintenance of the stem cell immunophenotype as indicated 

by retention of CD34 expression (Fig. 7d,e). We hypothesized that the observed decreased 

accessibility at HOX transcription factor motifs might mediate the observed retention of 

stem cell immunophenotype. Indeed, depletion of one such HOX factor, HOXA9, by short 

hairpin RNA (shRNA) knockdown (Supplementary Fig. 14g and Supplementary Table 7) in 
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umbilical cord blood CD34+ HSPCs led to a retention of stem cell immunophenotype in the 

context of both myeloid (Fig. 7f) and erythroid (Fig. 7g) differentiation. Moreover, a 

concomitant decrease in differentiated granulocytes and erythroid cells was also observed 

(Supplementary Fig. 14h–j), consistent with results from mouse models of HOXA9 

deficiency39,40. Together, these results suggest that decreased HOX accessibility in pHSCs 

may promote retention of stem cell characteristics and prevent differentiation of these cells. 

Additional HOX factors may play a role in defective pHSC differentiation, as the role of 

HOXA9 in hematopoiesis and leukemogenesis is complex39–41.

pHSC resistance to differentiation potentially explains the observation that pHSCs 

outcompete their normal HSC counterparts in vivo (Supplementary Fig. 14k and Fig. 5b). 

pHSCs would gain an evolutionary advantage while promoting an HSC-like state, and thus 

increase the likelihood of acquiring additional leukemogenic mutations. One implication of 

this model is that pre-leukemic burden may have adverse effects on patient survival, despite 

the fact that pHSCs do not confer disease in xenograft transplant assays11–13. 

Characterization of our patient cohort shows that pre-leukemic burden inversely correlates 

with overall and relapse-free survival (hazard ratio = 3.30 for overall survival and 2.99 for 

relapse free survival, p < 0.05; Fig. 7h,i). These results further implicate pHSCs in AML 

pathology and suggest a mechanism whereby AML arises from a pre-leukemic clone that is 

capable of outcompeting its normal HSC counterparts (Supplementary Fig. 14k), which 

predisposes patients to more aggressive or refractory leukemia.

DISCUSSION

Here we report a rich resource charting the epigenomic and transcriptomic landscape of 16 

unique blood cell types. This resource relies on the accurate and precise determination of the 

regulome landscapes in primary human blood cells, made possible by Fast-ATAC. 

Unsupervised clustering of accessible chromatin regions, specifically distal elements, groups 

individual cell types with high cluster purity (91% for ATAC-seq compared to 78% for 

RNA-seq), demonstrating that these distal regulatory elements more precisely define cell 

identity and developmental trajectory. Enhancer cytometry harnesses this specificity and 

enumerates the frequencies of pure cell types in complex cell mixtures. This technique may 

be applicable to address cell heterogeneity in other contexts of stem cell biology or cell 

therapy.

Additionally, this atlas of human hematopoiesis enriches the interpretation of GWAS results 

in several ways. We identify strong associations of disease-linked polymorphisms with the 

open chromatin landscapes of specific hematopoietic cell types, uncovering the 

developmental contexts in which the disease-relevant elements first become active. In the 

case of mean corpuscular volume, the strongest association occurs in erythroblast cells, but a 

significant association can be seen as early as the common myeloid progenitor stage (CMP). 

These results are consistent with the concept that many enhancers are developmentally 

primed prior to their activation following cell differentiation3. Our resource further provides 

a platform to identify specific trans-acting regulators that drive blood cell identity and 

function. Integration of ATAC-seq and RNA-seq data improves motif-transcription factor 

pairing and enables the accurate determination of causative regulators of chromatin 
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accessibility throughout hematopoietic differentiation. We anticipate this combined data set, 

which represents a dynamic developmental process, will be a rich resource for continued 

efforts to build computational tools that model both cis42 and trans43 determinants of 

chromatin accessibility and gene expression.

Application of this resource to the study of three distinct time points in AML evolution 

sheds light on the biology and step-wise progression of leukemia evolution. A longstanding 

debate in cancer biology is how cancer cells violate cell lineage rules44,45, for example by 

maintaining self-renewal in an otherwise differentiated cell state. By using our 

comprehensive map of hematopoiesis, patient-matched AML cell subsets, and scATAC-seq 

of hundreds of individual leukemic and normal cells, we show evidence of regulatory 

heterogeneity in the epigenome—a single cell with several normally distinct regulatory 

programs (see supplementary discussion). We find that such mixed regulatory programs may 

be the result of both intra- and intercellular regulatory heterogeneity.

This regulatory heterogeneity demonstrates that there may be no appropriate “normal” for 

tumor–normal comparisons in epigenomic and transcriptomic studies. Instead, we use 

enhancer cytometry to construct “synthetic normals”—proportionally matching the 

predicted fractional contribution of cell type-specific regulomes from normal hematopoiesis

—in order to pinpoint cancer-specific aberrations. This approach led us to identify the loss 

of HOX-mediated accessibility as the most consistent defect in pHSCs. We found that loss 

of a HOX factor can, in fact, cause defects in differentiation similar to those observed in 

pHSCs and potentially confer an evolutionary advantage. Importantly, higher pre-leukemic 

burden is predictive of poor overall and relapse-free survival in AML, indicating an 

important role for pHSCs in disease pathogenesis.

The methodologies developed here for the study of AML have important implications for the 

study of other blood and solid tumor malignancies. We anticipate that regulatory 

heterogeneity is a widespread phenomenon in many types of cancer, and that our integrative 

approach using enhancer cytometry to construct synthetic normal analogs should be broadly 

applicable to many disease pathologies. Future studies harnessing the power of enhancer 

cytometry to understand other cancer-specific regulatory networks will provide key insights 

into the aberrations that drive the formation and persistence of malignant disease. Thus, we 

believe that this work provides a methodological framework for the paradigm of mapping 

regulomes of normal tissues to better understand the ontogeny of human disease.

ONLINE METHODS

Availability of sequencing data

All sequencing data is available through the Gene Expression Omnibus (GEO) via accession 

GSE74912. Additionally, the data from normal hematopoietic cells has been made available 

as a UCSC Genome Browser Track Hub (see URLs) and as a Washington University 

EpiGenome Browser session (ID XVqu0IKMi1).
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Human samples

Normal donor human bone marrow and peripheral blood cells were obtained fresh from 

AllCells (Alameda, CA) or the Stanford Blood Center (Palo Alto, CA). All normal blood 

cell populations were sorted fresh. Human AML samples were obtained from patients at the 

Stanford Medical Center with informed consent, according to Institutional Review Board 

(IRB)-approved protocols (Stanford IRB no. 18329 and 6453). Mononuclear cells from each 

sample were isolated by Ficoll separation, resuspended in 90% FBS + 10% DMSO, and 

cryopreserved in liquid nitrogen. All analyses conducted here on AML cells utilized freshly 

thawed cells. Criteria for inclusion of AML samples were pre-established. Samples were 

selected based solely on the availability of an adequate number of cells. For normal donors, 

no exclusion criteria were used.

Definition of cell types isolated

Here we isolate HSCs, LSCs, and blast cells from AML patients. These cells are defined by 

immunophenotype (Supplementary Table 1) as demonstrated previously46. The patients 

examined by ATAC-seq and RNA-seq in this study were selected in such a way that >80% of 

the HSCs are pre-leukemic.

Additionally, we isolate multiple different normal cell types from healthy donors 

(Supplementary Table 1). Mature granulocytes were excluded from our analyses due to high 

endogenous RNases and proteases. Mature megakaryocytes proved difficult to isolate in 

adequate cell numbers and were similarly excluded.

Cell lines

Cell line data was downloaded from GEO accession number GSE65360.

Flow cytometry analysis and cell sorting

All antibodies used for flow cytometry are detailed in Supplementary Table 1).

To prepare cells for FACS, all cells were recovered for 20 minutes at 37°C in the presence of 

200 U/ml DNase (Worthington Biochemical, Lakewood, NJ) in IMDM with 10% fetal 

bovine serum. After recovery, viable mononuclear cells were separated by a Ficoll density 

gradient (GE Healthcare). When necessary, CD34-based enrichment was performed using 

paramagnetic MACS beads (Miltenyi Biotech Inc, San Diego, CA) per the manufacturer’s 

protocol.

FACS sorting was performed on a Becton Dickinson FACSAria II. All cells were 

resuspended in and sorted into cold FACS Buffer (PBS + 2% FBS + 2 mM EDTA) 

containing propidium iodide at 1 ug/ml or 4′,6-diamidino-2-phenylindole (DAPI) at 1 

ug/ml. All cell sorting steps were validated using post-sort analyses to verify purity of sorted 

cell populations (Supplementary Table 1).

Transcriptome sequencing

RNA was isolated from 1,000–100,000 FACS-purified cells using the Qiagen RNeasy Plus 

Micro Kit. RNA quality was verified on an Agilent Bioanalyzer Pico Eukaryote chip. 5 ul of 
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total RNA (300 pg – 80 ng) was used as input into the NuGen Ovation V2 cDNA synthesis 

kit. SPIA-amplified cDNA was sheared using a Covaris S2 sonicator as follows: 10% duty 

cycle, 5 intensity, 100 cycles/burst, 5 minutes, 120 ul volume. Sheared cDNA was purified 

and size selected using Ampure XP beads at a 0.9:1 beads:sample ratio. After cleanup, 

Illumina TruSeq adapters were ligated onto the cDNA using the NEB Next Ultra library prep 

kit per manufacturer instructions. Library quality and concentration were determined using 

an Agilent Bioanalyzer HS DNA chip and a Qubit fluorometer. Libraries were sequenced to 

an average depth of 12 million read pairs per sample.

Transcriptome data analysis

RNA sequencing data was aligned to the human reference genome (GRCh37/hg19) using 

STAR using standard input parameters. Aligned reads were filtered for those reads that map 

uniquely to non-mitochondrial regions. Duplicate reads were removed using PICARD 

MarkDuplicates. Transcript counts were produced using HTseq against the UCSC refGene 

transcriptome. Transcript counts were processed using DESeq2, normalizing for both library 

size and transcript GC content using Conditional Quantile Normalization47. Differential 

expression was determined without the use of a Cooks cutoff. All downstream analyses on 

RNA-seq data were performed on variance stabilizing transformed data obtained from 

DESeq2.

Fast-ATAC sequencing

This protocol has been optimized for blood cells. We note that digitonin is a gentle detergent 

and this protocol may not be ideal for cell lines and other cell types that are more resistant to 

lysis. 5,000 sorted cells in FACS Buffer were pelleted by centrifugation at 500 RCF for 5 

minutes at 4C in a pre-cooled fixed-angle centrifuge. All supernatant was removed using two 

pipetting steps being careful to not disturb the not visible cell pellet. 50 ul transposase 

mixture (25 ul of 2x TD buffer, 2.5 ul of TDE1, 0.5 ul of 1% digitonin, 22 ul of nuclease-

free water) (Cat# FC-121-1030, Illumina; Cat# G9441, Promega) was added to the cells and 

the pellet was disrupted by pipetting. Transposition reactions were incubated at 37°C for 30 

minutes in an Eppendorf ThermoMixer with agitation at 300 RPM. Transposed DNA was 

purified using a QIAgen MinElute Reaction Cleanup kit (Cat# 28204) and purified DNA 

was eluted in 10 ul elution buffer (10 mM Tris-HCl, pH 8). Transposed fragments were 

amplified and purified as described previously48 with modified primers23. Libraries were 

quantified using qPCR prior to sequencing. All Fast-ATAC libraries were sequenced using 

paired-end, dual-index sequencing on a NextSeq with 76×8×8×76 cycle reads.

ATAC-seq data analysis

ATAC-seq data were processed as previously described23 with notable exceptions. In brief, 

reads were trimmed using a custom script and aligned using Bowtie2. To call peaks, data 

were aggregated by each unique cell type, peak summits were called using MACS2, and 

filtered using a custom blacklist, as previously described23.

To generate a non-redundant list of hematopoiesis and cancer peaks we first extended 

summits to 500 bp windows (+/− 250 bps). We then ranked 500 bp peaks by their summit 

significance value (defined by MACS2) and chose a list of non-overlapping, maximally 
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significant, peaks. The complete data set comprised a total of 590,650 peaks. To annotate 

peaks with promoter/distal labels, and nearest gene, we used the Homer package, with the 

command “annotatePeaks.pl”. As described previously23, we counted fragments for each 

sample across all 590,650 peaks to provide a count matrix. To obtain normalized fragment 

counts, which were used for all downstream processing, we first performed quantile 

normalization followed by GC normalization (CQN R package47). Data tracks, used solely 

for visualization, were normalized to the number of fragments falling within all peaks for 

each sample. Coverage tracks were visualized using the Gviz R-package. Fragment yield 

(Supplementary Fig. 1e), was computed by multiplying the library diversity calculated using 

PICARD tools with the number of reads falling within peaks, values were then divided by 

the number of cells used in each assay.

For information on TF-based analyses, see Supplementary Note 1.

Unsupervised hierarchical clustering

Unless otherwise stated, all hierarchical clustering was unsupervised using Pearson 

correlation as the distance metric and performed on all relevant features (for ex. all genes for 

RNA-seq or all peaks for ATAC-seq). All clustering analyses were performed on normalized 

data as described in the relevant methods sections.

Cluster Purity

Cluster purity is calculated as described previously19. Briefly, 13 clusters were defined as 

the branches of the dendrogram that represent all individual replicates without overlap. Each 

cluster is assigned to the cell type which is most frequent in the cluster. In this way, there is 

one cluster (branch) that is assigned to represent each cell type. For each cluster, the 

accuracy of this assignment is measured by counting the number of correctly assigned 

experiments. For example, if the “HSC cluster” contained 3 HSC experiments and 2 MPP 

experiments, this cluster would be given a value of 3. The sum of correctly assigned 

experiments is divided by the total number of experiments to give the cluster purity.

GWAS Analysis

Using a list of blood-enriched GWAS, we applied the “deviation” pipeline (as described in 

the previous section for TF motifs), using an identical approach wherein each GWAS disease 

is analogous to a TF motif and each GWAS peak association is analogous to an individual 

TF motif occurrence in a peak. For more information, see Supplementary Note 1.

CIBERSORT application, benchmarking, and signature matrix generation

CIBERSORT v1.0.1 was used as recommended by the authors. Test set data and training set 

data represented unique non-overlapping samples. Benchmarking was performed using 

randomly permuted synthetic data. For each test, a unique signature matrix was made from 

N–1 replicates of each cell type (“leave-one-out”). This signature matrix was used to 

deconvolve 10 randomly permuted cellular mixtures derived from the replicate that was 

excluded from the training set and signature matrix. One hundred unique permutations were 

performed, 10 permutations each on 10 different training sets.
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The curated CIBERSORT signature matrix (Supplementary Table 2) was generated using 

the default CIBERSORT parameters. To define a list of distal elements for input into 

CIBERSORT, we filtered peaks by removing peaks mapping to sex chromosomes, 

promoter/TSS regions (+/− 1 kb), and regions found to be highly accessible in AML samples 

when compared to the closest normal cell-type. Artefactual peaks were also removed using a 

custom blacklist as described above. These regions were removed to prevent bias based on 

donor gender, enhance cell type-specific patterns, and avoid over-fitting of AML samples to 

normal cell types respectively.

Generation of synthetic normal analogs

Synthetic normal analogs were generated based on the fractional contributions predicted by 

CIBERSORT (Supplementary Table 6). For each AML sample, a synthetic normal analog 

was generated by multiplying the fractional contribution of each normal cell type by the 

normalized fragment number for that cell type. This is done on a peak-by-peak basis and the 

values are summed for each peak to give the synthetic normal value. For example, assuming 

a given sample has a fractional contribution of 0.3 HSC, 0.5 MPP, 0.2 CMP, and 0 for all 

other cell types: a synthetic normal analog for peak #1 would be constructed by taking the 

sum of the average HSC normalized fragments multiplied by 0.3, MPP multiplied by 0.5, 

CMP multiplied by 0.2, and all other cell types by zero. Synthetic normal analogs were then 

quantile normalized with the leukemic sample of interest.

Cancer modules

Synthetic normal analogs for each cancer sample were generated as described above. To 

calculate differences between tumor-synthetic normal pairs we computed log2(fold change) 

values from the AML sample of interest to the corresponding synthetic normal. Importantly, 

samples SU209-pHSC and SU583-pHSC were removed from this analysis. These samples 

appeared to be outliers in that they were more developmentally mature and exhibited an 

unexpectedly large number of differential peaks (Supplementary Fig. 13b). To determine 

unique cancer-specific regulatory modules, we first filtered for significantly altered peaks 

using a cutoff of log2(fold change) greater than 4 or less than −4 resulting in 6,752 peaks. To 

determine AML-specific regulatory modules, we used k-means to cluster the significantly 

altered peaks, described above. A K=7 was determined by analyzing the mean centroid 

distances of each cluster (Euclidean) for an increasing K from 1 to 20 (sSupplementary 

Figure 14a) where a K=7 approximated much of the peak dynamics observed. To determine 

motif enrichments within each module, we calculate the fraction of motif instances in a 

given module peak set and divide by all motif instances in all observed peaks.

AML sample genotyping

All AML patient samples described here were genotyped either by whole exome sequencing 

using the SeqCap EZ Exome SR kit v3.0 (Roche/Nimblegen) or by customized hybrid 

capture sequencing of the 130 genes most frequently mutated in AML49 (see methods) using 

the SeqCap EZ Choice kit (Roche/Nimblegen). Sequencing was performed on an Illumina 

HiSeq 2000, HiSeq 2500, or NextSeq 500. Sequence data were aligned to the human 

reference genome hg19 using BWA (v0.5.9) for global alignment and GATK (v2.8-1) for 

local realignment. Aligned reads were processed for downstream mutation calling using 
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SAMTools (v0.1.12a). SNPs were called using GATK and Varscan (v2.3.7). All data derived 

from customized hybrid capture did not have a matched normal genome and was compared 

instead to the hg19 human reference genome. Putative SNPs were filtered for: 1) minimum 

sequence depth of 50 reads, 2) less than 90% variant strand bias, 3) non-synonymous, 4) if 

the SNP is observed in dbSNP, the MAF must be less than 1%, 5) minimum variant 

frequency of 5%. Insertions and deletions (indels) were called using GATK50 and Varscan51. 

Putative indels were filtered for: 1) minimum sequence depth of 25, 2) minimum variant 

frequency of 5%, 3) less than 90% variant strand bias, 4) not observed in dbSNP. Large-scale 

genomic events such as translocations were called using FACTERA52 (v1.3) with no 

additional filtering. FLT3 internal tandem duplications were called using Pindel53 (v0.2.4) 

with no additional filtering. Manual observation was used to clarify borderline mutation 

calls. Additional weight was given to mutations called by more than one algorithm. All 

mutations were validated by targeted amplicon sequencing.

Targeted amplicon sequencing of leukemia-associated mutations

Targeted Amplicon Sequencing was performed as described previously12.

Epigenetic variance calculation

Epigenetic variance was calculated as the sum of the squares of the distance from the mean 

divided by the number of samples. This is equivalent to the VAR.P function in Microsoft 

Excel. This variance was calculated for each individual peak. To obtain the genome wide 

variance the rolling mean of 10,000 sequential peaks was calculated across the linear 

genome in chromosomal order. For calculations of epigenetic variance some samples with 

high background were omitted.

Analysis of DNase data

DNase CD34 data, made available by the Epigenomics Roadmap Consortium, was 

downloaded from SRA accession numbers SRR066150, SRR066151, SRR066152, 

SRR066351, SRR097542, SRR327476, SRR327477. Single-end DNase data was aligned, 

filtered and normalized using the methods described in the ATAC-seq data processing 

section.

Correlating TF motif deviation scores to expressed genes

Genes were first filtered for putative transcription factors (N=1,820)54. log2(fold change) 

and standard error on the mean (SEM) were computed using DESeq2 (as described above). 

To determine robust correlation coefficients (Pearson) and p-values for genes and TF 

deviation scores (as described above), we permuted (N=1,000) log2(fold change) values 

according to the measurement error as determined by SEM. Reported Pearson correlation 

coefficients represent the mean across the sampled data. Reported p-values represent a z-test 

statistic across the permutations.

To determine putative direct regulators of the given motif, we downloaded all available in 
vitro and inferred PWMs from CIS-BP55. We then calculated correlation coefficients 

(Pearson) of all CIS-BP PWMs (N=7,592) with the unique set of hematopoiesis PWMs 

(N=46). To account for offsets we take the maximum calculated correlation coefficient after 
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aligning two motifs in both orientations (reverse complement) and all possible offsets of 

length K. To filter the complete CIS-BP database (N=7,592) to a non-redundant gene list 

(N=806), we choose the motif with the maximum similarity (Pearson) to any hematopoiesis 

TF motif (Supplementary Fig. 9b and Supplementary Table 4). To find putative direct 

regulators of human hematopoiesis we filtered for TFs with a PWM correlation coefficient 

>0.8 (Supplementary Fig. 9e). Although we find many TFs can be correlated with their 

motif usage, we report the most correlated TF (Supplementary Fig. 9g,h) and the complete 

list in Supplementary Table 4.

Single-cell ATAC-seq analysis and enhancer cytometry

Single-cell ATAC-seq and enhancer cytometry analysis were performed as described in 

Supplementary Note 1.

Survival analysis

Overall survival was defined as the time from diagnosis to death from any cause. Relapse-

free survival was defined as the time from complete morphologic remission to date of 

relapse of AML or death from any cause, whichever came first. Survival analysis was 

performed using the Kaplan-Meier estimate method. All patients were included for the 

analysis regardless of their treatment. P values comparing two Kaplan-Meier survival curves 

were calculated using the log-rank (Mantel-Cox) test. Hazard ratios were determined using 

the Mantel-Haenszel approach.

In vitro culture of primary AML cells for drug sensitivity

Primary AML blasts were cultured in Myelocult H5100 (Stemcell Technologies) with 20 

ng/ml FLT3L, SCF, TPO, IL3, IL6 and 0.5 ug/ml Hydrocortisone. Blasts were cultured at 1 

million cells/ml for a total of 6 days with no media changes. Drug sensitivity was measured 

by flow cytometric analysis of annexin negative, DAPI negative cells, live cells.

In vitro culture assays on HSPCs

FACS-purified HSPCs were plated into either myeloid differentiation media [Myelocult 

H5100 (Stemcell Technologies) with 20 ng/ml FLT3L, IL3, TPO, SCF, and GM-CSF, and 

0.5 ug/ml Hydrocortisone] or erythroid differentiation media [StemSpan SFEM II (Stemcell 

Technologies) with the Erythroid Expansion Supplement (Stemcell Technologies)] and 

cultured for 6 days with media changes as necessitated by cellular proliferation. Stemness 

retention media is HPGM (Lonza) containing 20 ng/ml FLT3L, SCF, and TPO.

Knockdown of HOXA9

HOXA9 knockdown was achieved using the pRSI9 lentiviral backbone (Cellecta) that allows 

for constitutive expression of shRNA from a U6 promoter. The shRNA target sequences can 

be found in Supplementary Table 7.

IC50 determination in primary AML cells

Cell death in response to pharmacologic inhibition was measured by Annexin V staining 

using an Annexin V – AlexaFluor 647 conjugate (Life Technologies) as per the 
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manufacturer’s instructions. Responses were measured in relation to a vehicle-treated 

control.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Interrogation of chromatin landscapes in primary blood cells
(a) Schematic of the human hematopoietic hierarchy shows the 13 primary cell types 

analyzed in this work. Granulocytes and megakaryocytes were excluded. The cell types 

comprising the CD34+ HSPCs are indicated. Colors used in this schematic are consistent 

throughout the manuscript.

(b) Diagram of analyses performed using paired ATAC-seq and RNA-seq data in both 

primary human blood cells and primary patient AML cells.

(c) Normalized ATAC-seq profiles at developmentally important genes. Profiles represent 

the union of all technical and biological replicates for each cell type. See Supplementary 

Table 1 for the exact number of technical and biological replicates for each cell type. 

Genomic coordinates of regions: GATA2 chr3:128,197,777–128,218,433; CEBPB 

chr20:48,800,260–48,904,715; GYPA chr4:145,020,689–145,070,000; BCL11B 

chr14:99,513,898–99,796,947; BLK chr8:11,343,117–11,429,285. All Y axis scales range 

from 0–10 in normalized arbitrary units. X axis scales indicated by scale bar.

(d–g) Scatter plot showing correlation of (d) technical replicates, (e) different human donors, 

(f) ATAC-seq and DNase-seq data derived from CD34+ HSPCs, and (g) ATAC-seq HSCs 

with bulk CD34+ HSPCs. The R values reported are calculated from correlations of all 

peaks. Plots show 50,000 random peaks, each with at least 5 reads.
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Figure 2. Distal regulatory elements enable accurate classification of the hematopoietic hierarchy
(a,b) Unsupervised hierarchical clustering of (a) RNA-seq (N=49) and (b) ATAC-seq (N=77) 

data from all replicates of 13 normal hematopoietic cell types. Values shown are Pearson 

correlation coefficients. Cluster purity quantifies the degree that cells of the same lineage 

(color coded in the key) are clustered together. For RNA-seq, clustering was performed 

using variance stabilizing transform-normalized expression data for all expressed annotated 

genes. For ATAC-seq, clustering was performed on all peaks using quantile normalized 

quantitative read coverage data.

(c,d) Phylogenetic dendrograms of (c) RNA-seq and (d) ATAC-seq data showing inter-cell 

type correlations derived from aggregate averages of all biological and technical replicates. 

Length of tree branches represents Euclidean distance. Data represents the union of all 

technical and biological replicates for each cell type.

(e,f) Hierarchical clustering of ATAC-seq profiles (N=77) mapping to (e) promoters and (f) 

distal regulatory elements. Values shown are Pearson correlation coefficients. Promoter-

proximal peaks are defined as +/−1 kilobase from an annotated TSS. Distal element peaks 

are defined as those peaks greater than 1 kilobase from an annotated TSS.

(g) ATAC-seq peaks in the TET2 locus show highly variable distal regulatory landscapes 

(left) and relatively constitutive expression of TET2 (right). Data represents the union of all 

technical and biological replicates for each cell type: HSC=7; CMP=8; GMP=7; MEP=7; 

CD8=5; NK=6. Error bars represent 1 standard deviation. Genomic coordinates: 

chr4:106031731–106073198. Y axis scale ranges from 0–10 in normalized arbitrary units.
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Figure 3. Enhancer cytometry allows for deconvolution of the hematopoietic hierarchy
(a) Normalized ATAC-seq profiles of HSPC subsets and ensemble CD34+ HSPC DNase-seq 

profiles illustrating heterogeneity amongst CD34+ HSPC subpopulations. Predicted cell 

fractions based on flow cytometry of 6 healthy bone marrow donors are shown on the left 

and the nearest annotated genes are shown on the bottom. Genomic coordinates: PTPRG-

AS1 chr3:62194000–62196000; LOC439933 chr4:35761750–35763750; MIR1915 

chr10:21639750–21641750; HNRNPD chr4:83205250–83207250. Y axis scale ranges from 

0–10 in normalized arbitrary units.

(b) Schematic of enhancer cytometry from cell-type specific distal elements (right panel, 

N=735). The signature matrix heatmap has an upper threshold of 500 where all elements 

with signal greater than 500 appear red.

(c,d) Benchmarking of enhancer cytometry using randomly permuted synthetic mixtures to 

test robustness to (c) sequential subtraction and (d) randomized mixture content. Test data 

and training data are non-overlapping. (c) Synthesized ground truths are equal mixtures of 

the remaining cell types. In the left-most column, all cell types are present in equal parts in 

the ground truth data. Cell types are then sequentially subtracted from the synthesized 

ground truth starting with HSC until only NK cells remain. Error bars represent the standard 

deviation of 100 random permutations.

(e) Enhancer cytometry of ATAC-seq data derived from FACS-purified bone marrow CD34+ 

HSPCs.

(f) Correlation of predicted fractional contribution of each HSPC cell type by enhancer 

cytometry versus flow cytometric “ground truth” data of input CD34+ cells. X-axis 

represents the same data as shown in (e).

Corces et al. Page 23

Nat Genet. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Integrative analysis of the hematopoietic regulome refines transcriptional circuitry 
driving cell specification and enriches the understanding of human disease
(a) Transcription factor dynamics showing major TFs driving hematopoietic regulomes. The 

size of the circle represents the effect of that motif in driving accessibility in human blood 

cells. The relative distance between circles represents the co-occurrence of motifs 

throughout hematopoietic differentiation (see methods).

(b,c) Usage of the (b) GATA and (c) PAX motif throughout hematopoietic differentiation. 

Values represent the relative deviation of the motif accessibility, a measure of motif usage, 

compared to that in HSCs.

(d) Footprint analysis of the GATA motif in MEP and CLP cells.

(e) Pearson correlation of motif accessibility with transcription factor expression plotted 

against the significance of this correlation for GATA (top) and PAX (bottom) motifs. Red 

dots represent DNA-binding factors found in the analysis in Supplementary Fig. 9b to bind 

the given motif. Gray dots represent all other DNA-binding factors.

(f,g) Expression of (f) GATA1 and (g) PAX5 phenocopies the usage of the (b) GATA and (c) 

PAX motifs throughout hematopoietic differentiation

(h–k) Relative deviation scores of chromatin accessibility within hematopoietic regulatory 

elements with GWAS SNPs for (h) mean corpuscular volume, (i) rheumatoid arthritis, (j) 

alopecia areata, and (k) Alzheimer’s disease (see methods). Darker red color is 
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representative of enrichment of GWAS SNPs in the open chromatin regions of the given cell 

type.
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Figure 5. Acute myeloid leukemia regulomes reveal a cooption of normal myelopoiesis
(a) Schematic of the leukemogenic process.

(b) Mutation frequencies of HSCs isolated from AML patients (N=39). Color indicates the 

percent of cells harboring the given mutation as estimated from the variant allele frequency. 

Gray indicates a mutation present in leukemic cells but not observed in pHSC (i.e. a late 

mutation event, detection threshold = 2% of cells or 1% of alleles). Asterisks indicate the 

predicted first mutation. If a mutation is bi-allelic, the representative bar is divided in half.

(c) Normalized ATAC-seq profiles at a control locus (chr19:36102236–36277236) from 

FACS-purified AML cell types. Profiles represent the union of all biological replicates for 

each cell type. Y axis scale ranges from 0–10 in normalized arbitrary units.

(d,e) Mean variance of ATAC-seq signal across the linear genome as calculated by a moving 

average for (d) each leukemic cell stage and (e) their corresponding normal cell types (see 

methods). The distance from the center of the graph represents the variance. The position 

along the circumference represents the genomic position.
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(f) Normalized ATAC-seq profiles near GATA2 (left; chr3:128,197,777–128,218,433) and 

CEBPB (right; chr20:48,800,260–48,904,715). Profiles shown are for SU444. Y axis scale 

ranges from 0–10 in normalized arbitrary units.

(g) Cumulative variance of AML ATAC-seq data explained by the first N principal 

components derived from normal hematopoiesis.

(h) Myeloid development score derived from ATAC-seq data in normal blood cell types 

(N=4 biological replicates) and AML cell types.
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Figure 6. Enhancer cytometry and single-cell regulomes support a model of regulatory 
heterogeneity and allow for deconvolution of AML-specific biology
(a) Enhancer cytometry deconvolution showing the predicted contribution of various normal 

cell types to the regulatory landscape of different AML cell types.

(b) Schematic of single-cell ATAC-seq protocol and analysis (see methods).

(c,d) Projection of ATAC-seq data derived from (c) single SU070 LSCs (N=71) and (d) 

single SU070 blast cells (N=42) onto the principal components derived from the normal 

hematopoietic hierarchy.

(e,f) Relative density of (e) single LMPPs (N=68) and monocytes (N=90) and (f) single 

SU070 LSCs (N=62), SU070 blasts (N=42), SU353 LSCs (N=36), and SU353 blasts (N=52) 

projected onto a one-dimensional representation of the myeloid developmental progression.

(g,h) Scatter plot showing the correlation of ATAC-seq data derived from SU353 blast cells 

with (g) the closest normal cell type (GMP) (R=0.86) and (h) the enhancer cytometry-

defined synthetic normal (R=0.91). Cutoff for differential peaks is a log2(fold change) 

greater than 3. The R values reported are calculated from correlations of all peaks. Plots 

show 50,000 random peaks, each with at least 5 reads.

(i) Comparison of AML cell types to synthetic normal analogs. For each sample, the closest 

normal cell type is indicated by the color of the bar. The percent of the total significant peaks 

Corces et al. Page 28

Nat Genet. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(called by closest normal comparison) that are removed by comparison to synthetic normal 

analogs is plotted for each sample.
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Figure 7. Early chromatin accessibility alterations within pHSCs cause defects in differentiation 
which correlate with adverse patient outcomes
(a) K-means clustering was used to identify 7 clusters of co-varying peaks, termed 

regulatory modules (see methods).

(b) Enrichment of each regulatory module shown in (a) at each stage of leukemia evolution. 

All biological replicates for each AML cell type were merged. Error bars shown represent 1 

S.D. across all samples of that given cell type.

(c) Enrichment and hierarchical clustering of motifs enriched in each of the 7 AML-specific 

regulatory modules.

(d,e) Retention of CD34 expression as measured by flow cytometric analysis after 6 days of 

enforced differentiation down the (d) myeloid lineage and (e) erythroid lineage. Error bars 

represent 1 S.D. Experiments done in triplicate.

(f,g) Fold change in the percent of cells expressing CD34 as measured by flow cytometric 

analysis of cord blood-derived HSCs transduced with shRNAs targeting HOXA9 or a non-

targeting control. CD34 expression was measured after 6 days of differentiation down the (f) 

myeloid or (g) erythroid lineage. Only GFP+ transduced cells analyzed. Error bars represent 

1 S.D. Experiments done in triplicate.

(h) Overall and (i) relapse-free survival of patients stratified by pre-leukemic burden (High 

burden, N=24; Low burden N=15). High pre-leukemic burden defined as > 20% of HSCs 

Corces et al. Page 30

Nat Genet. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



harboring at least the first pre-leukemic mutation. P values comparing two Kaplan-Meier 

survival curves were calculated using the log-rank (Mantel-Cox) test. Hazard ratios (HR) 

were determined using the Mantel-Haenszel approach.

**p<0.01, ***p<0.001, ****p<0.0001 derived from two-tailed t-test
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