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ABSTRACT

Motivation: The construction of statistics for summarizing posterior

samples returned by a Bayesian phylogenetic study has so far been

hindered by the poor geometric insights available into the space of

phylogenetic trees, and ad hoc methods such as the derivation of a

consensus tree makeup for the ill-definition of the usual concepts of

posterior mean, while bootstrap methods mitigate the absence of a

sound concept of variance. Yielding satisfactory results with suffi-

ciently concentrated posterior distributions, such methods fall short

of providing a faithful summary of posterior distributions if the data

do not offer compelling evidence for a single topology.

Results: Building upon previous work of Billera et al., summary stat-

istics such as sample mean, median and variance are defined as the

geometric median, Fr�echet mean and variance, respectively. Their

computation is enabled by recently published works, and embeds

an algorithm for computing shortest paths in the space of trees.

Studying the phylogeny of a set of plants, where several tree topolo-

gies occur in the posterior sample, the posterior mean balances cor-

rectly the contributions from the different topologies, where a

consensus tree would be biased. Comparisons of the posterior

mean, median and consensus trees with the ground truth using simu-

lated data also reveals the benefits of a sound averaging method when

reconstructing phylogenetic trees.

Availability and implementation: We provide two independent im-

plementations of the algorithm for computing Fr�echet means, geomet-

ric medians and variances in the space of phylogenetic trees.

TFBayes: https://github.com/pbenner/tfbayes, TrAP: https://github.

com/bacak/TrAP.

Contact: philipp.benner@mis.mpg.de

1 INTRODUCTION

Phylogenetic trees are central to the study of evolution, so much

that the sketch of a tree of species by Sir Charles Darwin has

become the icon of this theory. Nowadays, trees relating units of

selection (be it functional domains, genes or species) are struc-

tures of primary interest for systematists, but also instrumental

to a wealth of other studies where evolutionary correlations need

to be accounted for [see, for instance, McCue et al. (2001)].

Various statistical models pertaining to diverse types of observ-

ables can be found in the literature, as well as methods, for

estimating their parameters and reconstructing a phylogenetic

tree (Gascuel, 2005). Some estimation methods proceed by max-

imizing a posterior distribution or a likelihood function, and are

amenable to an exact reconstruction of the optimal tree, but

Bayesian phylogenetic analyses generally produce posterior dis-

tributions that are best explored by generating posterior samples.

While a large enough posterior sample offers a faithful

representation of the posterior knowledge, it is of little scientific

interest unless summarized by some statistics (Robert, 2001). A

summary can balance contributions from the different tree topol-

ogies occurring in the sample, resulting in a legit phylogenetic

tree, or combine them within a phylogenetic network. Here we

focus on the former, showing how to build a phylogenetic tree

that faithfully represents the sample in its entirety, despite com-

peting topologies occur.
Provided a unique topology with n edges occurs in the sample,

each tree including its edge lengths can be identified by a point in

the positive orthant of the Euclidean space R
n. Performing an

average of the sample in this linear representation is a straight-

forward operation, which produces a legit posterior mean tree. If

more than one tree topology occurs, the trees are no longer

mapped all to the same linear space, and the posterior mean is

ill-defined. Selecting the a posteriori most probable tree topology

may seem a sound alternative, however, with the unpleasant

consequence of neglecting all the sampled trees of different

topology, and therefore would not provide a satisfactory repre-

sentation of the posterior. The construction of a consensus tree,

using an absolute majority rule (Margush and McMorris, 1981)

to decide which one among competing edges should be retained,

has been widely adopted by the interested community as the

method of choice to summarize posterior samples of phylogen-

etic trees. On the theoretical side, decision-theoretic justifications

of this construction have been proposed (Holder et al., 2003;

Huggins et al., 2011). However, they are built upon loss functions

that neglect edge lengths, focusing only on the tree topology.

Besides, from the authors’ point of view, it is also a rather

conservative approach, as the absence of an absolute majority

among edges results in the inclusion of none of them, thereby

producing unresolved branching points. The extended majority-

rule consensus method (also known as greedy consensus method)

has been introduced to remedy this drawback by adding edges

with550% support (Bryant, 2003). Despite this improvement,

the consensus methods neglect much of the available information

in a sample by ignoring the context in which an edge occurs (i.e.

the remaining topology of the tree as well as all other edge

lengths). Reporting a posterior mean that balances the contribu-

tions from each topology including edge lengths rather than

isolated edges would therefore be of utmost interest.
Building upon the work published by Billera et al. (2001), who

deciphered the geometric structure of the space of phygenetic

trees and first proposed a construction of the tree space (some-

times also called BHV tree space, where BHV is an acronym of

Billera, Holmes and Vogtmann), the purpose of this article is to

show how the computation of the posterior mean of a sample of

phylogenetic trees can be achieved by simply reaching out for the

appropriate geometry. The BHV space is obtained by gluing

together the positive orthants of the linear space associated to*To whom correspondence should be addressed
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each topology, so that a point in this space identifies both a tree

topology and the lengths of the corresponding edges. The adja-
cency structure between any two orthants reflects the edges

shared by the two corresponding topologies and permits the

definition of paths visiting several orthants. Any two trees are

connected by at least one path, and the one with minimal length

is called a geodesic. Therefore, the length of a geodesic qualifies

as a distance function between phylogenetic trees, and offers a

theoretically and practically appealing alternative to existing dis-

tances (e.g. NNI or the Robinson–Foulds distance).

Furthermore, using implicit characterizations of the posterior

mean and median as minimizers of appropriate loss functions,

algorithms developed by Bač�ak (2013, 2014); Miller et al. (2012);

Sturm (2003) compute an approximation of these statistics by

walking along geodesics. Here, the determination of the geo-

desics is done in polynomial time, thanks to an algorithm

owing to Owen and Provan (2011).
This article gathers and combines technical results scattered

across multiple mathematics papers, into a general statistical

framework for analyzing posterior distributions over phylogen-

etic trees easily accessible to the target readership, namely prac-

titioners in Bayesian phylogenetics. Certainly, many other

applications exist where computing an average phylogenetic

tree is of great importance. The methods presented here are

not restricted to Bayesian statistics, yet in this context, they

allow to recover basic statistical concepts such as the posterior

mean and median, as well as a notion of variance to measure the

posterior uncertainty.
After a gentle introduction to the geometry of the tree space in

Section 2.1, the geometric median and Fr�echet mean over this

space are constructed in Section 2.2. The algorithms computing

those quantities are outlined in Section 2.3, while Section 3 shows

the method in action, and illustrates how it compares with the

majority-rule consensus method.

2 METHODS

Given a generative model and a prior distribution over its parameter

space, a Bayesian analysis of observations carried across species related

by evolution produces a posterior distribution over the space of all pos-

sible phylogenetic trees for this set of species (Gascuel, 2005; Robert and

Casella, 1999). The size of this space grows super-exponentially with the

number of species, and it is often intractable to compute the normaliza-

tion constant of this distribution. In such cases, sampling methods offer a

way to explore the posterior distribution via an arbitrarily large sample

drawn from it without requiring any further knowledge. However, al-

though a posterior sample offers a representation of the full posterior

distribution, it is of little scientific interest in absence of a method to

summarize it. Building upon previous works by Billera et al. (2001),

Miller et al. (2012), Owen and Provan (2011) and Bač�ak (2013, 2014),

we propose here to define and compute posterior mean in a sound

manner, an approach so far hindered by the poor geometrical insights

into the space of phylogenetic trees (see also Gascuel, 2005).

2.1 The geometry of the tree space

The elucidation of the geometric structure of the space of phylogenetic

trees is because of Billera, Holmes and Vogtmann (2001). For any integer

n � 3; a phylogenetic n-tree is a connected graph without cycle that has

n+1 terminal vertices called leaves, which are labeled from 0 to n and

associated with the n+1 species considered in the phylogenetic study.

The non-terminal vertices of a tree bear no label, as they are seen as sheer

‘branching points’. An example of a 6-tree is shown in Figure 1.

The construction of the tree space relies fundamentally on the identi-

fication of edges of the tree as splits: an edge is uniquely associated to the

partition of the set of leaves L=f0; . . . ; ng into two disjoint and non-

empty subsets L1 [ L2=L that would be disconnected in the graph struc-

ture by its removal. Such a split is denoted by L1jL2: For instance, the

edges labeled e1, e2 and e3 of the tree in Figure 1 correspond to the splits

ð0; 4; 5; 6j1; 2; 3Þ; ð0; 1; 2; 3j4; 5; 6Þ and ð0; 1; 2; 3; 4j5; 6Þ; respectively.

Conversely, given a set of leaves and splits subjects to certain conditions,

a unique tree is specified. Namely, it is required that any two splits L1jL2

and L1
0jL2

0 are compatible, that is, one of the sets

L1 \ L2
0; L1

0 \ L2; L1 \ L1
0; L2 \ L2

0

must be empty.

The topology of a phylogenetic tree t can therefore be uniquely speci-

fied via the associated set of compatible splits, which is denoted by S(t).

Yet, a phylogenetic tree is more than a sheer topology, as its edges also

have (positive) length. Writing jejt for the length of the edge e=L1jL2 of

t, one obtains a canonical mapping of the phylogenetic tree t onto R
2n�1
+

by further setting je0jt=0 whenever e0=L1
0jL2

0 =2SðtÞ.
While any phylogenetic tree over a given set of species can be repre-

sented in this way in the linear cone R
2n�1
+ , the converse is obviously not

true: Assume that e and e0 are two incompatible edges, any coordinates in

the linear cone that have positive entries for e and e0 do not correspond to

any legit phylogenetic tree. In other words, the set of phylogenetic trees

forms a manifold in the linear cone R
2n�1
+ . All the phylogenetic trees

t sharing a given topology also exhibit the same split set S, and are

such that jejt=0 whenever e =2S. The BHV tree space can therefore be

understood as a collection of smaller dimensional positive orthants

embedded jointly in R
2n�1, each associated to a particular tree topology.

Among these orthants, those of maximal dimension play a special role: a

tree whose representation lies in their interior is binary, as such trees have

the maximal possible number of edges. Shrinking the length of any edge

down to zero results in the formation of a triple branching-point, so that

the orthants associated to non-binary tree topologies appear as the faces

of larger dimensional orthants.

More interestingly, non-maximal orthants (those associated to non-

binary tree topologies) are faces of several orthants simultaneously. The

simplest instance is a triple-branching point, from which three different

edges can be grown depending on which pair of species diverged first. As

these three edges cannot be compatible, these three departures from the

triple-branching point lie in different orthants, which are therefore all

adjacent. Figure 2 shows a section of T 4, where every tree in the interior

of the orthant is a binary tree. For instance, the point ð0; 1=2Þ may be

reached by taking a tree from the interior and shrinking the length of the

edge e1 to zero. This location corresponds to a non-binary tree that lies at

the face of three maximal orthants.

As an example, take the space T 3, which consists of all trees with only

four leaves. Binary trees in this space have a single inner edge identified as

one of the splits ð0; 1j2; 3Þ; ð0; 2j1; 3Þ or ð0; 3j1; 2Þ. An orthant ½0;1Þ is

associated with each of the splits. The origin 0 is a face of each orthant,

0

1 2 3
4

5 6

e1
e2

e3

Fig. 1. An example of a 6-tree
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which represents the same non-binary tree. A piece of T 3 is constructed

by gluing all three orthants together at this common point.

The tree space, as a compound of orthants, is not a convex subset of

R
2n�1
+ : while one can form a linear interpolation between two trees of

different topologies in the embedding space R
2n�1
+ , by simply shrinking

the edges to be removed and simultaneously growing those to be created,

the cooccurrence of incompatible edges along this path places it outside

of the tree space. However, as seen above, the orthants composing the

tree space have a rich adjacency structure, which guarantees at least the

path-connectedness of the space: any two phylogenetic trees can be con-

nected by at least one path that remains in this space, although this path

might not be a straight line as in R
2n�1
+ whenever the topologies differ.

Yet, these paths have a length, and one can consider the shortest path

connecting two trees. In geometric terms, such a path is called a geodesic.

Defining a distance over the tree space as the length of the shortest path

connecting any two points equips the space with a metric dð�; �Þ which, as

an alternative to the NNI or Robinson–Foulds distances, allows to meas-

ure the discrepancy between any two trees, whatever their topologies.

Although the technical details are not important for this article, it

should be noted that the BHV tree space is a Hadamard space (Billera

et al., 2001), which allows to use tools from this mathematical field.

2.2 Mean, median and variance of a sample of

phylogenetic trees

Let us now exploit the above geometric properties of the tree space to

summarize a sample of phylogenetic trees by a single point. Following the

rationale of decision theory (e.g. Robert, 2001), the construction begins

with the definition of a loss function, which measures how faithful a rep-

resentation of the sample would be achieved by a given point in the tree

space. A loss function is defined as the cost Lðt; t0Þ of choosing a phylo-

genetic tree t0 instead of some other t, and the decision theory literature

advocates strongly to summarize a posterior distribution by choosing t̂ as

the minimizer of the expected loss function

t̂=argmin
t02T n

Z
T n

Lðt; t0Þ�tjXdt ; ð1Þ

where �tjX denotes the posterior distribution over phylogenetic trees

given the data X. Approximating the latter via a posterior sample of

phylogenetic trees t1; . . . ; tK, the above formula becomes

t̂=argmin
t02T n

1

K

XK
i=1

Lðti; t
0Þ :

Two very typical choices for the loss function are the distance and the

squared distance. When the parameters to be estimated lie in a Euclidean

space, it is well-known that the resulting estimates coincide respectively

with the median and mean of the posterior distribution. Although the tree

space is not Euclidean, distances between pairs of trees are well defined,

and a minimizer of (Equation 1) can be sought, respectively yielding the

so-called geometric median and Fr�echet mean.

In contrast to other approaches that provide a decision-theoretic ar-

gument for point estimates of phylogenetic trees (e.g. Holder et al., 2003;

Huggins et al., 2011), the loss function considered here derives the intrin-

sic metric of the underlying space. In particular, the loss function con-

siders both the topology and the branch lengths of phylogenetic trees, as

opposed to those supporting the consensus method, and thereby con-

siders all available information in a sample. Unfortunately, in tree

space, a simple gradient search is not a practical method to solve such

optimization problems (see Miller et al., 2012). Therefore, appropriate

algorithms are required and will be presented in Section 2.3.

A side benefit of the method presented here is the sound definition of

the sample variance, also called the Fr�echet variance, which is simply

given as the value of the minimization problem with the squared distance.

In complement to the point estimate, this quantity provides the modeler

with insight onto the reliability of the point estimate. It is noteworthy that

existing phylogenetic reconstruction methods are not tied to a notion of

variance, and often retort to bootstrapping methods for reporting similar

information.

2.3 Computing the sample mean, median and variance

The question of how to computemedians and means of a given set of trees

will be addressed in the following. It turns out that efficient approxima-

tion methods from optimization theory can be extended into Hadamard

spaces and applied to median and mean computations. For the reader’s

convenience, the simple version for unweighted medians and means is

outlined here (see also Bač�ak, 2013).

2.3.1 Algorithm for computing medians Let us first describe the

algorithm for computing a median of a given set of trees

t=ft1; . . . ; tKg (i.e. the set of all tree samples).

Set x0= t1 and suppose that at the i-th iteration, an approximation xi
2 T n of the median of t is available. To find xi+1; a tree tk is selected from

the set of trees t at random and xi+1 is defined as a point on the geodesic

between xi and tk. (In other words, xi+1 is a convex combination of xi and

tk, which will be denoted ð1� �Þxi+�tk for some � 2 ½0; 1�.) The position

of xi+1 on this geodesic is determined by a parameter �i 2 ½0; 1�; which is

computed at each iteration. By this procedure, we obtain a sequence of

trees x1; x2; . . ., which is known to converge to a median of t:

ALGORITHM 2.1 (Computing median). Let x0=t1: At each step i 2 N0;

choose randomly ri 2 f1; . . . ;Kg according to the uniform distribution and

put

xi+1= 1� �ið Þxi+�itri ;

with �i defined by �i=min 1; 1
ði+1Þdðtri ;xiÞ

n o
; for each i 2 N0, where d is the

metric on T n.

2.3.2 Algorithm for computing means Computing the mean is simi-

lar to the computation of the median. As a matter of fact, it only differs in

the coefficients determining the position of xi+1 on the geodesic from xi
to tk:

ALGORITHM 2.2 (Computing mean). Let x0= t1 and, at each step, i 2 N0;

choose randomly ri 2 f1; . . . ;Kg according to the uniform distribution and

put

xi+1=
1

i+1
xi+

i

i+1
tri :

0

1 2
3
4

(1,1)

0

1 23 4(3/4,0)

0

1 2 34 (0,0)

(0,1/2)

0

1 2 34

Fig. 2. 4-trees of a given combinatorial structure. The horizontal direc-

tion shows the length of e1 : ð0; 3; 4j1; 2Þ, whereas the vertical direction

shows e2 : ð0; 4j1; 2; 3Þ
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The approximation algorithms for computing medians and means use

(at each step) the algorithm for finding a geodesic in tree space by Owen

and Provan (2011).

3 RESULTS

The content of this section is intended to illustrate the behavior

of the posterior mean and median, in comparison with the ma-

jority-rule consensus tree, which is, for instance, computed by

MrBayes (Huelsenbeck and Ronquist, 2001). Following a formal

argument that relates these two estimates when extremely large

or little information is available, the posterior distributions

derived from real and simulated datasets are investigated in a

way that best illustrates the different outcomes yielded by the

existing and the proposed approaches. A prerequisite is the adop-

tion of a specific statistical model, which is outlined first.

3.1 Consensus versus posterior mean

The majority-rule consensus method is a reference method to

summarize samples from a posterior distribution. There, the con-

sensus tree consists of those splits that occur in450% of the

samples. The average length of a retained edge is computed

using the subsample where the corresponding split does occur,

thereby neglecting a fraction of the posterior mass, but also the

context in which the split occurs. In contrast, the Fr�echet mean

and geometric median account for the full posterior, and are

expected to provide a more meaningful summary. However,

both estimates have a property called stickiness (see Miller

et al., 2012): If there is a high posterior uncertainty on the

topology, the Frechet mean and geometric median result in

non-binary trees, a behavior that parallels the multiple branching

points reconstructed by the consensus tree when no absolute

majority occurs.

Take for instance the space T 3 that consists of three orthants

½0;1Þ glued together at 0, as discussed earlier, and place a tree

on each orthant. If all three trees are equally far apart, say at a

distance r to the origin, then obviously the Fr�echet mean lies at

the origin. The term stickiness refers to the fact that the mean

stays at the origin if one of the trees is moved further away. In

fact, one tree may be located at a distance anywhere between

r and 2r away from the origin without affecting the mean.

Instead of moving one tree further away from the origin, one

may similarly add another tree somewhere between the three

trees, and the Fr�echet mean would again stay at the origin.
A probabilistic counterpart of this phenomenon can be

observed in the same setting. Equip T 3 with a distribution

whose trace in each orthant is a normalized Gaussian distribu-

tion, centered at identical distance from the origin, and truncated

at 0. By symmetry the Fr�echet mean is at the origin, and one can

ask how far the location parameter m of one component can be

perturbed without affecting the mean. In T 3, m is just a scalar,

and one can study the distance of the Fr�echet mean t̂ to the

origin 0 as a function of m. An analytic but complicated solution

of the distance dð0; t̂Þ exists; however, a fairly good answer is

provided by the following approximation:

dð0; t̂Þ � max 0;
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðe�Þ

p
� 2�ð1Þ

1+2�ð1Þ

( )
;m � 1

where � is the standard normal distribution function. The

Fr�echet mean stays at the origin until m reaches �2.16, which

roughly matches the case of only three trees. Also in this case one

may similarly increase the probability mass on one orthant and

the Fr�echet mean would stay at the origin until a certain thresh-

old is reached.

3.2 Statistical model

The statistical model we use in this study is often used for the

analyses of motifs of transcription factor binding sites. It became

popular because of its analytic tractability (cf. Siddharthan et al.,

2005), and it is simple enough so that the marginal likelihood of

an alignment, given a phylogenetic tree can be computed analyt-

ically. In particular, it permits Bayesian model selection, or to

gain some insights on how well an estimate generalizes to new

data, and therefore qualifies perfectly for the purpose of compar-

ing different downstream methods for summarizing the posterior

samples.

A dataset consists of an alignment of n+1 homologous se-

quences. The observations within each column of the alignment

are assumed to evolve according to a phylogenetic tree t. The

topology of the phylogenetic tree is a priori uniformly distribu-

ted, and the edge lengths of t are drawn from a gamma distri-

bution. The process of evolution is specified by a mutation

model, which is parameterized by a column-specific stationary

distribution �. It follows a priori a Dirichlet distributed with

pseudocounts �. It is sufficient to discuss the model for a

single column of the alignment. Binary trees have 2n� 1

nodes, each of which is associated with a random variable XðkÞ

that takes values in an alphabet A. Assume that node k is the

parent of node i. The mutation process along the edge between

the two nodes is defined as

XðiÞjXðkÞ=x;�=# � pMi
Categoricalð#Þ+pMi

�x ;

which was introduced by Felsenstein (1981). The probability of a

mutation from node k to node i is denoted pMi
and depends on

the length l of the edge that connects the two nodes, i.e.

pMi
=1� exp ð�lÞ. Furthermore, pMi

denotes the probability of

no mutation, given as pMi
=1� pMi

.
To obtain samples from the posterior distribution, we imple-

mented a Metropolis coupled MCMC algorithm (Geyer and

Thompson, 1995) for the given model. In the sequel, these sam-

ples will serve as input to the reconstrution of the posterior mean,

median, and consensus trees.

3.3 Estimation results

Using a multiple sequence alignment from a study by Karol et al.

(2001), which was slightly modified by Yang and Rannala

(2005), the phylogeny of the small subunit rRNA gene (SSU

rRNA) from the nuclear genome of eight land plants and six

charales (see Fig. 3) has been reconstructed. It appears that the

edge that separates Psilotum nudum and Dicksonia antarctica

from the remaining tree has a very short length of �0.0027.

Figure 4 shows the marginal posterior distribution of this edge

(e1) and a competing one (e2) that groups P.nudum with Taxus

baccata and Arabidopsis thaliana. There remains a high posterior

uncertainty about the exact topology of the tree at this very
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branching. The posterior mass on e1 is, however, sufficient for

the majority-rule consensus tree to include this edge. However,

there, it has a much longer length than in the posterior mean tree

(by �0.011) because this length is obtained by averaging only the

lengths of this edge when it occurs in the sample, neglecting the

contributions of the alternative edges. Clearly, the shorter edge

length of the posterior mean tree better accounts for the uncer-

tainty, and the consensus tree appears, in contrast, to have over-

estimated branch lengths.
The assessment of reconstruction methods for phylogenetic

trees is notoriously hindered by the ignorance of the true evolu-

tionary history to be uncovered, as the latter is never observed.

Instead, the estimated tree of Figure 3 has been used to generate

50 alignments of length m=50, 100, 250 and 500. For each

generated dataset, 210000 posterior samples were obtained

using one cold Markov chain and three heated chains. The

Fr�echet mean, geometric median and consensus tree of the last

200000 samples were computed. In the whole study, tree topol-

ogies are uniformly distributed a priori, while branch lengths are

distributed according to a Gammað1; 0:4Þ.
Figure 5 shows the distances of the computed estimates to the

generating tree. For alignments of the lengths considered, the

Fr�echet mean and geometric median are generally closer to the

generating tree. A trend appears, from the greatest discrepancy

observed for the shortest alignments, to an almost systematic

agreement for the longest alignments. It should be noted that

even shorter alignments generally result in very broad a posterior

distributions so that all three estimates coincide with a star tree.

At the opposite extreme, large datasets support a clear decision

about the topology of the tree, placing most of the mass of the

posterior distribution in a single orthant, and resulting in mostly

agreeing estimates. One also observes that the geometric median

is in most cases closer to the generating tree than the Fr�echet

mean. This comes at no surprise given the skewness of the

gamma prior on the branch lengths.

The model permits an analytical computation of the marginal

likelihood of an alignment given a phylogenetic tree, thereby

offering an evaluation of how the estimated model generalizes

to novel observations. Using a leave-one-out approach, the aver-

age (unnormalized) posterior value achieved by the estimators

was computed on the remaining 49 datasets of the same length

(see Table 1). For all alignment lengths, the Fr�echet mean and

geometric median show a slightly higher average posterior value

compared with the majority-rule consensus tree. But the differ-

ence is too minor to make any definite statements, as also shown

by the variance of the estimates. Interestingly, however, while the

variance of the mean and median steadily decreases with data

length, the consensus estimate shows an increase in variance for a

data length of 250. A much clearer picture is gained by consider-

ing how often the mean and median have a higher posterior

value than the consensus (see Table 1). The results show that

the consensus tree clearly perfomes worse.
Another quantity of interest is the Fr�echet variance of the pos-

terior distribution, which provides us with a measure of uncer-

tainty. The mean variance is shown in Figure 6 separately for all

four dataset lengths. Similar to the case of normal distributed i.i.d.

random variables, the variance decreases approximately with

1=m. Another, maybe more intuitive statistic, is to compute a

credibility region around the Fr�echet mean t̂ that contains

a given proportion c of the posterior mass. More precisely,

consider the set of trees B= t 2 T n j dðt̂; tÞ � d	
� �

for some d	
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Fig. 5. Distances dð�; �Þ of the Fr�echet mean t̂1, geometric median t̂2 and

consensus tree t̂3 to the generating tree t for alignments of length 50 (a),

100 (b), 250 (c) and 500 (d). The straight line shows the main diagonal
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Fig. 4. Marginal posterior density estimate of two edges e1 and e2. The

edge e1 groups P.nudum with D.antarctica, while e2 groups P.nudum with

T.baccata and A.thaliana. The Fr�echet mean is shown as a vertical line

Lychnothamnus barbatus
Nitellopsis obtusa
Chara connivens
Lamprothamnium macropogon

Taxus baccata
Arabidopsis thaliana
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Dicksonia antarctica
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Marchantia polymorpha
Nitella opaca

Tolypella int prolifera

Fig. 3. Fr�echet mean estimated from the small subunit rRNA gene (SSU

rRNA) from the nuclear genome of eight land plants and six charales.

Edge lengths are plotted in horizontal direction only
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approximately 
,
since 
were 
to


such that
R
B�tjXdt=c. The bound d	 may be called the credibility

radius. Figure 6 shows the results for c=0.68.

4 DISCUSSION

By recognizing the global geometric nature of the space of phylo-

genetic trees, this article shows that the fundamental statistical

notions defined over linear spaces, such as sample mean, median

and variance, can be generalized to more complex spaces such as

the tree space. Besides the sheer recovery of well-defined funda-

mental statistical quantities in the particular setting of phylogen-

etic studies, this study also demonstrates critical differences in the

behavior of the posterior mean and the consensus tree.
The reconstruction of a consensus tree retains splits that occur

in at least half of the samples. This absolute majority rule

prevents the introduction of splits favored by sheer fluctuations,

but also aims to maximize the information extracted from the

sample. The length of the retained edges is indeed often simply

set to the average length of their occurrences in the sample, so

that the lengths of the discarded edges never enter the determin-

ation of the consensus tree. As illustrated on a real dataset by

Figure 4, the neglection of a fraction of the sample results in

biased estimates, where edge lengths are systematically overesti-

mated from the perspective of the geometry of the tree space.
The extent of the bias born by the consensus tree is however

tightly related to the concentration of the posterior distribution,

which decreases the amount of information dropped in the re-

construction process, and the simulation-based study shown

above confirms that the consensus tree and the posterior average

disagree mostly when there exists no compelling evidence for a

single topology. Illustrated on small datasets, the consensus tree

appears dramatically further of the generating tree than the pos-

terior mean, as a result of its neglection of a fraction of the

information brought by the sample.
The proper definition of a variance for a sample of phylogen-

etic trees has consequences that should not be overlooked, and is

believed by the authors to bear even more potential for applica-

tions. Not only is the reporting of the credibility of the Bayesian

estimate made simple by this quantity, but it also opens the way

to the generalization of variance-based studies of samples of

phylogenetic trees, including principal components analysis, a

task already tackled by Nye (2011). Measuring the spread of a

set of trees is a useful tool not only to quantify the posterior

uncertainty. For instance, in a recent study Salichos et al. (2014)

developed an information theoretic measure to quantify the in-

congruence of gene trees.

Funding: This work was supported by the European Research

Council under the European Union’s Seventh Framework

Programme (FP7/2007-2013)/ERC grant agreement no 267087.

Conflict of Interest: none declared.

REFERENCES
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