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What is a fundamental ability for cognitive development? Although many

researchers have been addressing this question, no shared understanding

has been acquired yet. We propose that predictive learning of sensorimotor sig-

nals plays a key role in early cognitive development. The human brain is

known to represent sensorimotor signals in a predictive manner, i.e. it attempts

to minimize prediction error between incoming sensory signals and top–down

prediction. We extend this view and suggest that two mechanisms for mini-

mizing prediction error lead to the development of cognitive abilities during

early infancy. The first mechanism is to update an immature predictor. The pre-

dictor must be trained through sensorimotor experiences because it does not

inherently have prediction ability. The second mechanism is to execute an

action anticipated by the predictor. Interacting with other individuals often

increases prediction error, which can be minimized by executing one’s own

action corresponding to others’ action. Our experiments using robotic systems

replicated developmental dynamics observed in infants. The capabilities of

self–other cognition and goal-directed action were acquired based on the

first mechanism, whereas imitation and prosocial behaviours emerged based

on the second mechanism. Our theory further provides a potential mechanism

for autism spectrum condition. Atypical tolerance for prediction error is

hypothesized to be a cause of perceptual and social difficulties.

This article is part of the theme issue ‘From social brains to social robots:

applying neurocognitive insights to human–robot interaction’.
1. Introduction
Human infants acquire various types of cognitive abilities after birth. Although

neonates do not seem to inherently know how to control their body or how to

interact with an environment, their actions become more accurate and purposeful

with increased experience. The ability to communicate with other individuals also

develops through primary social interactions. Young infants, who may not know

with whom to interact (e.g. social versus non-social agents) or how to interact

with them, learn to be engaged in social relationships with the help of their

carers. A big mystery here is the nature of the fundamental ability that leads to

cognitive development. Despite a number of findings from behavioural and

neuroscience studies, the mechanisms underlying cognitive development have

not yet been completely uncovered. One well-known developmental theory is

the dynamical systems approach [1,2], which suggests that motor and cognitive

development appears as a dynamical change within a complex system. For

example, new behaviours are thought to emerge as a result of many decentralized

and local interactions between infants and their environment. This theory pro-

vides a feasible explanation; however, it focuses on the phenomenal aspect

rather than the underlying neural mechanism. It is therefore hard for compu-

tational researchers to break the theory down into mathematical architectures.

An open challenge is to devise a computational unified theory that accounts for

the underlying mechanisms of development.
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Figure 1. Basic architecture for sensorimotor predictive learning that consists
of two modules: a sensorimotor system (the lower box) and a predictor (the
upper box). The predictor works as an internal model of the sensorimotor
system; it learns to estimate sensorimotor signals, ŝ(t þ 1) and â(t þ 1),
at time t þ 1, while the sensorimotor system actually executes an action
a(t) under a sensory state s(t) at t and consequently receives a sensory feed-
back s(t þ 1) from the environment. Predictive learning aims to minimize
prediction error e(t þ 1), which is calculated as the difference between
s(t þ 1) and ŝ(t þ 1). (Online version in colour.)
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Robotics researchers have been addressing the above issue

by synthesizing infant-like development in robots [3–5].

Cognitive abilities that have been successfully reproduced in

robots include self–other cognition [6–8], imitation [9,10],

joint attention [11–14], intrinsic motivation [15,16] and so

on. Their experiments have empirically supported conceptual

theories proposed by psychologists and, moreover, revealed

new perspectives to cognitive development. For example,

sensorimotor contingency, which has been viewed in psychol-

ogy as a core mechanism for development [17,18], enabled

robots to acquire even social behaviours based on non-social

sensorimotor experiences (e.g. [11,14,19]). However, these

studies target only specific cognitive functions such as joint

attention. The extent to which these architectures can account

for cognitive development has not been determined yet.

This paper aims to propose a computational theory that

explains and replicates the diversity and continuity in cogni-

tive development. Inspired by recent evidence from

neuroscience studies, we suggest that predictive learning of

sensorimotor signals plays a key role in early cognitive devel-

opment. It is known that the human brain has an internal

model of the world [20]. Humans are able to simulate the

dynamics of an environment and to purposefully control

their body by employing the internal model. Researchers in

cognitive neuroscience have advocated that predictive

coding accounts for the internal model [21–23]. They suggest

that the brain attempts to match incoming sensory signals

with top–down prediction by minimizing prediction error.

Computational models based on predictive coding have

also been proposed. Rao & Ballard [24] showed that top–

down prediction in a visual cortex model led to the

development of simple-cell-like receptive fields. Tani and col-

leagues [25,26] demonstrated action learning in robots. Their

robots, which were equipped with a recurrent neural net-

work, learned to minimize prediction error and thereby

acquired the ability to manipulate objects. Their close analysis

even revealed that motor behaviours were developmentally

structured in the neural network, the process of which was

analogous to infant development [27,28]. Following these

successful studies, this paper presents a unified compu-

tational account for cognitive development. We suggest that

two mechanisms for minimizing prediction error lead to

the development of cognitive behaviours: updating an imma-

ture predictor to refine own sensorimotor abilities and

executing an action estimated by the predictor in response

to others’ action. Our experiments using robotic systems

demonstrate how cognitive abilities such as self–other cogni-

tion, goal-directed action and helping behaviour develop

based on the above mechanisms.

The remainder of this paper is organized as follows: §2

first presents a basic architecture of predictive learning.

A traditional theory of predictive coding is extended to

more throughly explain cognitive development. Then, our

theory for cognitive development is proposed, where the

advantages of predictive learning over contingency learning

are explained. Section 3 provides case studies of robot exper-

iments. Our computational models reproduce infant-like

developmental dynamics in robots. Section 4 discusses further

potentials of our theory. We suggest that developmental

disorders such as autism spectrum condition (hereafter

ASC) can be explained by atypicality in predictive learning.

Finally, profound discussion and conclusion are given in §§5

and 6, respectively.
2. Predictive learning theory accounting for early
cognitive development

(a) Basic architecture of predictive learning
Figure 1 illustrates a basic architecture of predictive learning

that is modified from [20,29]. The architecture consists of two

modules: a sensorimotor system (the lower box), which inter-

acts with the environment, and a predictor (the upper box),

which simulates the sensorimotor system in the brain.

The first module is the sensorimotor system, which

corresponds to the body. It has the roles of executing

an action a(t) ¼ (a1(t), a2(t), . . . , aNa (t))
T under a certain

sensory state s(t) ¼ (s1(t), s2(t), . . . , sNs (t))
T at time t and of

consequently perceiving a sensory feedback s(tþ 1) ¼
(s1(tþ 1), s2(tþ 1), . . . , sNs (tþ 1))T at t þ 1 from the environ-

ment. Na and Ns indicate the number of action modalities

(e.g. gaze, speech and hand movement) and of sensory mod-

alities (e.g. visual, audio, tactile and proprioceptive senses)

that the body has, respectively. For example, if an infant

extends his arm ai(t) (i = arm movement) towards an object

sj(t) ( j = visual sense), the sensorimotor system receives a tac-

tile signal sk(t þ 1) (k = tactile sense) as well as a visual

feedback sj(t þ 1) when he reaches the object. How to

segment sensory and action modalities and how to discretize

time depend on target scenarios.

The second module is the predictor, which represents the

internal model of the sensorimotor system. The predictor

receives s(t) and the efference copy of a(t) in order to estimate

both a sensory state ŝ(tþ 1) and a motor signal â(tþ 1) at t þ
1, while the sensorimotor system affects the environment. The

aim of the predictor is to accurately simulate the sensorimotor

system by learning to minimize prediction error e(tþ 1),

which is calculated as the difference between the actual

sensory feedback s(tþ 1) and the predicted one ŝ(tþ 1):

e(tþ 1) ¼ s(tþ 1)� ŝ(tþ 1): (2:1)

Note that the predictor can have a hierarchical structure to cal-

culate and minimize many different levels of prediction error,

although figure 1 illustrates the predictor as a box for the sake

of simplicity. The prediction error usually appears to have a

larger value in the early stage of development and is gradually

minimized through sensorimotor learning. We suggest that this



(a) (b)

Figure 2. Examples of cognitive abilities infants acquire in the first few years of life (top) and two mechanisms for predictive learning as underlying mechanisms for
development (bottom). The first mechanism ((a) at the bottom left) is to update the predictor through the minimization of prediction error e(t þ 1), where an
increase in e(t þ 1) is mainly caused by the immaturity of the predictor. This mechanism enables infants to acquire the abilities of self-cognition, self – other
discrimination, goal-directed actions etc. The second mechanism ((b) at the bottom right) is the execution of a predicted motor command â(t þ 1) to minimize
e(t þ 1). In this case, an increase in e(t þ 1) is mainly caused by a lower predictability of others’ actions. Minimization of the error thus leads to emergence of
social behaviours such as imitation and helping actions. (Online version in colour.)
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learning process and the process of executing the predicted

action to minimize prediction error produce various cognitive

behaviours ranging from non-social to social ones.

(b) Cognitive development based on sensorimotor
predictive learning

Figure 2 presents our theory of cognitive development: the top

shows examples of cognitive behaviours to appear during

early infancy, and the bottom illustrates two architectures for

minimizing prediction error. Target behaviours include self–

other cognition, goal-directed action, helping behaviour and

so on, which are assumed to be acquired through sensorimotor

learning. Higher cognitive abilities such as language use and

decision-making are not yet incorporated in our current

theory, which is discussed in more detail in §5. Of importance

here is that despite different abilities appearing in infancy, they

share a common mechanism based on predictive learning. The

first mechanism shown in figure 2a is to update the predictor

by minimizing self-produced prediction error, and the

second mechanism shown in figure 2b is to execute a predicted

action to minimize other-induced prediction error. Note that

the two mechanisms are interlinked during development,

although they are separately illustrated.

(i) Updating the predictor to minimize self-produced
prediction error

The first mechanism of predictive learning aims to update the

predictor through sensorimotor experiences (figure 2a).
Human infants are born with an immature predictor that pro-

duces a higher prediction error e(tþ 1) for all events. Although

they show reflexes and body babbling as inherent abilities, a

primary predictor cannot yet accurately anticipate the sensory

outcomes. For example, infants at this stage would not even

know how sensory signals represent their body (i.e. body

image and body scheme [30,31]) or how the body is segmented

from the environment. Our theory suggests that updating the

predictor through the minimization of e(tþ 1) enables infants

to first recognize their body as sensory signals producing no

or very small prediction error. Neonates, who are not supposed

to have the ability to recognize their body yet, often gaze at

their hands and feet, and even put them into their mouth,

which provides multimodal perceptions of their body. These

experiences allow them to refine the predictor by associating

the executed action a(t) with the resultant state change, i.e.

the change from s(t) to s(tþ 1). Because an infant’s own

body usually reacts to his/her own action in a highly contin-

gent manner, its prediction error e(tþ 1) is expected to

approach zero over learning. Therefore, the ability to recognize

one’s own body is thought to develop through the refinement

of the predictor.

The above process also leads to the development of self–

other discrimination [32–34]. Other individuals are recognized

as weakly predictable entities—but not unpredictable owing to

social relationship—whereas infants’ own bodies are perceived

as highly predictable sensory signals after learning. Of interest

here is that others’ behaviours are slightly beyond prediction

but not too far from prediction in social contexts. Because

they share the same environment with infants, their internal
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models are expected to be similar to those of infants, which

produces moderate prediction error. We suggest that moderate

prediction error continuously motivates infants to communi-

cate with and learn about others to further minimize the

error. Non-social objects, in contrast, exhibit different

dynamics. Their predictability changes more drastically

between predictable and unpredictable. Toys, for example,

become highly predictable while being manipulated, whereas

they are less predictable otherwise, or vice versa depending

on their property. Neuroscience studies support this impli-

cation; the brains of monkeys appear to represent a tool in

manipulation as a part of their body [35,36]. It is presumed

that no or a little prediction error generated by a manipulated

tool allowed monkeys to extend their body representation.

We suggest that infants come to be able to discriminate the

self, other individuals (i.e. social entities) and objects

(i.e. non-social entities) based on their predictabilities.

Other cognitive abilities that develop through the process

of updating the predictor include goal-directed actions

[37–39]. Reaching for an object, manipulating it, and so on

are considered as goal-directed. Piaget [40] proposed six

stages of sensorimotor development, in which the first three

stages illustrate how infants acquire goal-directed actions.

The first stage consists of simple reflexes. Infants from birth

to one month are endowed only with limited capabilities

such as reflexes (e.g. sucking and grasping). Their predictor

cannot yet simulate the sensorimotor system, and thus infants

of this age do not show any goal-directed actions. Reflexes,

however, allow infants to accumulate sensorimotor experi-

ences to refine the predictor. Their behaviour becomes

accurate and intentional during the second and third stages

of development, which correspond to 1–4 and 4–8 months

old, respectively. These stages are named primary and sec-

ondary circular reactions according to Piaget [40], in which

infants start reproducing actions that happened by accident

but brought interesting outcomes. Infants at these stages

seem to actively learn the predictor such that it properly

simulates interesting events caused by their actions. As a con-

sequence of this process, the predictor becomes able to

intentionally produce actions induced by the current sensory

state, which is observed as goal-directed actions.
(ii) Executing an action to minimize other-related
prediction error

The second mechanism of predictive learning is to execute a

motor signal â(tþ 1) estimated by the predictor (figure 2b).

The predictor is employed not only to simulate one’s own

action but also to predict actions performed by other individ-

uals. In this case, the prediction error e(tþ 1) appears as a

higher value even after learning, because behaviours of other

individuals are less predictable as explained before. We

suggest that primary forms of social behaviours emerge as a

result of an execution of â(tþ 1) to minimize e(tþ 1). When

infants observe other individuals performing an action, the

action and its outcome are perceived as s(t) and s(tþ 1),

respectively. In parallel with this, the predictor estimates a sen-

sory state ŝ(tþ 1) and a corresponding motor signal â(tþ 1)

based on s(t). Note that no action is executed by infants at t
(see a(t) with diminished colour in figure 2b). An important

assumption here is the correspondence between the self and

others (i.e. the mirror neuron system) represented in the pre-

dictor. As the predictor is trained through the development
of self–other cognition, it cannot differentiate the self from

others in the early stage of development. The assimilated

representation of the self and others, however, enables infants

to recognize the observed actions performed by others as if

these were their own actions. Executing the predicted action

â(tþ 1) is thus expected to minimize e(tþ 1).

We suggest that primary forms of social behaviours such as

imitation and helping actions emerge based on the above mech-

anism. An increase in e(tþ 1) triggers execution of â(tþ 1) to

minimize e(tþ 1). Imitative behaviours are generated as soon

as infants detect an increase in e(tþ 1). Helping actions are

also produced when infants detect a larger increase in e(tþ 1).

If other individuals fail in achieving a goal, e(tþ 1) starts

increasing because of the discrepancy between the predicted

goal state ŝ(tþ 1) and the actual state s(tþ 1). Therefore, infants

try to minimize e(tþ 1) by executing their own action â(tþ 1),

which results in the predicted goal state ŝ(tþ 1). The infants’

behaviour then looks as if they help others achieve the goal

although the infants do not have such an intention. Our

theory indicates that infants’ social behaviour originates from

the minimization of prediction error (i.e. non-social motivation)

rather than from social motivation.

(c) Predictive learning versus contingency learning
We emphasize advantages of predictive learning over contin-

gency learning. Contingency learning has been suggested to

play an important role in infant development [17–19], and

computational models inspired by this view have been pro-

posed to enable robots to develop like infants (e.g. [11,14]).

We, however, suggest that predictive learning, which extends

the concept of contingency learning, provides a more general

and powerful architecture for cognitive development. Their

differences are illustrated in figure 3, where two advantageous

characteristics of predictive learning are highlighted: multistep
prediction and multimodal prediction.

(i) Multistep prediction
The first advantage of predictive learning is multistep predic-

tion. Whereas contingency learning usually targets single-step

prediction (i.e. t! t þ 1), predictive learning is able to estimate

multistep signals (i.e. t! t þ 1! ...! t þ Dt) by concatenating

single-step prediction. Figure 3a depicts a predictor, where the

predicted signals are recurrently fed back to the predictor and

finally the signals at t þ Dt are obtained as output. A key mech-

anism that achieves this recurrent prediction is the estimation of

motor signals. As the predictor learns to anticipate both the sen-

sory ŝ(tþ 1) and motor signals â(tþ 1), they can be used as the

imaginary input for the next time step t þ 1. The output signals

ŝ(tþ 2) and â(tþ 2) are then used for further prediction,

which results in multistep prediction. By contrast, a contin-

gency learner shown in figure 3b learns to estimate only

ŝ j(tþ 1) but not âi(tþ 1). Sensorimotor contingency was orig-

inally defined as lawful regularities between an executed

action ai(t) and a sensory change from sj(t) to ŝ j(tþ 1)

[41–43]. Although it is possible to extend contingency learn-

ing to deal with multistep prediction (e.g. [43,44]), predictive

learning provides a consistent explanation from non-social to

social sensorimotor development, as described in figure 2.

Developmental studies supporting the importance of

multistep prediction have been reported. For example, older

infants exhibit the ability to predict the goal of others’ action

quicker than younger infants [45,46]. Our computational



(a)

(b)

Figure 3. Predictive learning versus contingency learning. (a) Predictive learning with multistep and multimodal prediction. (b) Contingency learning with
single-step and single-modal prediction. (Online version in colour.)
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study demonstrated that this development can be achieved by

extension of prediction length, which is triggered by improve-

ment in learning accuracy [47,48]. In the early stage of

development, our system made fewer steps of prediction

because of their lower prediction accuracy. Its resultant beha-

viours were thus similar to those observed in younger

infants. The system then gradually increased the concatenation

of prediction as learning progressed, which produced behav-

ioural development as observed in infants. Limited capability

of ASC to interpret others’ intention [49–51] might also be

attributed to their limited capacity for prediction. A detailed

computational account thereof is given in §4.
(ii) Multimodal prediction
The second advantage of predictive learning is multimodal

prediction. As shown in figure 3b, a contingency learner nor-

mally deals with a single-modality signal according to the

original definition [41–43]. A relationship between the i-th
motor signal and the j-th sensory signal is represented in a con-

tingency learner although it can also be extended to deal

with multimodal signals. A predictor, by contrast, can learn

to estimate multimodal signals as depicted in figure 3a,

where (1, . . ., Na) and (1, . . ., Ns) denote action and sensory

modalities, respectively. All the signals are integrated in the

predictor so as to mutually affect their prediction. That is, a

signal ŝ j(tþ 1) is estimated based not only on sj(t) from the

same modality but also on sk(t) (k = j) from different modal-

ities. This mutual prediction occurs between motor and

sensory prediction as well as within each prediction.

The ability of multimodal prediction is also observed in

infants, which is often termed multimodal integration. For

example, infants can associate speech with the mouth move-

ment of a person producing the speech (i.e. audio and visual

integration) [52] and visually recognize an object explored by

their mouth (i.e. visual, tactile and proprioceptive inte-

gration) [53]. The McGurk effect, which is a well-known

phenomenon demonstrating the interaction between hearing

a voice and seeing a person speaking, is also observed in

older infants [54]. This evidence supports the advantage of

multimodal predictive learning.
3. Case studies of computational modelling
for robot cognitive development

This section presents case studies of computational modelling

to support our theory. We previously demonstrated that

robots equipped with predictive learning could acquire the

capabilities of self–other cognition [55,56], goal-directed
actions [57], helping behaviours [58] and so on. The reasons

for choosing these cognitive functions include the high level

of interest that they have generated in developmental psy-

chology, much behavioural evidence to compare with

computational models, and their developmental diversity

ranging from non-social to social cognition. It is also impor-

tant to note that the development of these functions can be

achieved by a common mechanism of predictive learning,

although they seem to be less interconnected at behavioural

levels. The details of these studies are described in papers

[55–58], and only the key ideas and key findings of these

studies are presented here to support out theory. Refer to

the relevant papers for the details.
(a) Development of self – other cognition
The ability to recognize the self and others develops through the

update of an immature predictor, which corresponds to the first

mechanism of predictive learning (figure 2a). One’s own actions

are highly predictable, whereas others’ actions are less predict-

able. Hence, the predictor comes to be able to differentiate the

sensory signals related to own actions and those related to

others based on their prediction error. An important impli-

cation here is that a function such as the mirror neuron

system emerges as a by-product of the above development.

The predictor is expected to acquire the ability to predict not

only one’s own sensorimotor sequences but also motor signals

corresponding to observed actions generated by others.

Figure 4a depicts our computational model proposed in

[55,56]. A robot learned a predictor by associating motor neur-

ons M (bottom) with visual representations V (top) through

interactions with a carer (see the image in figure 4b (left) for

the experimental setting). The model employed associative

learning in order to minimize prediction error. We suggest

that associative learning be regarded as a type of predictive

learning because both architectures acquire regularities in sen-

sorimotor coordination. In the early stage of development, the

robot had lower perceptual acuity similar to infants. Hand

movements produced by the robot and by the carer could

not be differentiated in the visual space despite their inherent

differences with respect to time (i.e. temporal delay) and

space (i.e. position in the robot’s camera image). As seen in

figure 4a (left), visual clusters containing both the robot’s

motion and the corresponding carer’s motion were associated

with the relevant motor neurons because differences between

them were not detectable. In the later stage of development,

the robot improved in visual acuity and therefore differentiated

visual clusters into two: one for the robot and the other for the

carer. As seen in figure 4a (right), differentiated clusters came to

be associated with the same motor neuron because they were



(a) (b)

Figure 4. Development of self – other cognition based on predictive learning (adapted from [55,56]). (a) A computational model for the development of self – other
cognition. Visual representations V are associated with motor neurons M, while the acuity of visual perception improves over development. This development allows
a robot to learn the equivalence between its own motions and others’ motions through sensorimotor predictive learning. (b) An experimental setting (left) and a
result of sensorimotor learning (right). The robot acquired stronger associations between motor neurons and visual representations corresponding to both its own
and others’ motions. These associations serve the function of mirror neuron systems. (Online version in colour.)
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originally contained in the same cluster. This developmental

change from self–other assimilation to self–other discrimi-

nation enabled the robot to acquire a function such as that of

the mirror neuron system. The experimental result shown in

figure 4b (right) supports this. The association between M

(the columns) and V (the rows) exhibited higher values along

the two diagonal axes, which represented the same correspon-

dence between the self and other as that in the mirror neuron

system. Note that this representation was acquired only

when the robot had perceptual development. Perceptual

immaturity in the early stage of development enabled the

robot to detect the self–other correspondence even if the

carer did not always imitate the robot.

Our result sheds light on debates on the origin of the

mirror neuron system. Meltzoff and Moore [59,60], on the

one hand, proposed a hypothesis they termed active inter-

modal mapping. They suggest that infants are endowed

with supramodal representation in their brain, where the

equivalence between the self and others perceived in different

modalities is examined. Heyes and colleagues [61,62], on the

other hand, advocated an associative sequence learning

theory. Their theory does not suppose an inherent ability to

detect self–other equivalence and instead employs postnatal

mapping between one’s own actions and those of others. Our

model, which is based on predictive learning, bridges the gap

between these contradicting hypotheses. It learns postnatally

the correspondence between the self and others while lever-

aging the similarity between them that is emphasized by

perceptual development. We thus suggest that our theory

provides a unified computational account for the emergence

of the mirror neuron system.
(b) Hierarchical development of goal-directed actions
The second example is the development of goal-directed

actions, which also appears through the process of learning

the predictor as shown in figure 2a. Behavioural studies

reported that infants exhibit a hierarchical representation

of actions during imitation [37–39]. If the goal of an

action is salient, infants tend to imitate only the goal

while ignoring the means (i.e. how to achieve the goal).

If the goal state is not underlined or the means are high-

lighted conversely, they reproduce the whole process of

an action. These findings indicate that the goal in most

actions has a higher priority than the means owing to its
saliency; thus, the goal tends to be selectively imitated by

infants.

We hypothesized that differences in prediction error for the

goal and means produce such hierarchical representation of

actions [57]. The goal, which is defined as the difference

between the initial and final states, involves the largest

change in an action; thus, the discrepancy between the goal

and a current state produces the largest prediction error. By

contrast, the means exhibits a smaller prediction error than

the goal. As it corresponds to the sequential states through

the whole action, its discrepancy from the current state appears

smaller than the goal. This gap in the prediction error is

hypothesized to lead to the hierarchical development of

actions. A larger prediction error for the goal would be mini-

mized first, and thus only the goal is imitated in early

infancy. Then, a smaller error for the means is minimized

after the error for the goal becomes small enough, resulting

in the development of the whole action. Although other factors

such as perceptual development in infants might also affect

their performance of imitation, influences of such factors can

consistently be accounted for by prediction error.

To verify the above hypothesis, we designed a reaching

task for a two-link arm robot as shown in figure 5a (left)

[57]. The task was to move the end effector of the robot from

the initial position (init) to a target position (A or B) by follow-

ing one of three predefined trajectories (0: straight trajectory, 1:

sinusoidal curve, 2: sinusoidal curve with double frequency).

There were thus six types of actions as the combinations of the

two goals and three means. For the predictor of the robot, we

adopted a recurrent neural network with parametric bias

(RNNPB), as drawn in figure 5a (right). An RNNPB has the

ability to learn multiple time series of signals by adopting

the parametric bias (PB) [26]. The values for the PB are self-

organized to differentiate multiple sequences through learn-

ing, while the connecting weights of the network are updated

to minimize prediction error. Note that the goal and means

do not need to be separately coded in the RNNPB, but their

relative difference in the prediction error leads to the hierarch-

ical development. For the current experiment, only the joint

angles of the robot (u1(t) and u2(t)) were used as the motor

and proprioceptive signals. Sensory signals from other modal-

ities (e.g. vision) can be integrated as additional input/output

signals, which would not affect our hypothesis. The simplified

setting allowed us to systematically analyse the developmental

process observed in the RNNPB.



(a) (b)

Figure 5. Hierarchical development of goal-directed actions based on predictive learning (adapted from [57]). (a) An experimental setting for a reaching task (left)
and a recurrent neural network used as a predictor (right). A two-link arm robot learned to reach for a target (A or B) by following one of three predefined
trajectories (0: straight, 1: sinusoidal curve, 2: sinusoidal curve with double frequency). The network learned temporal sequences of sensorimotor signals by mini-
mizing prediction error. (b) Analysis of the parametric biases (top) and the output of the network (bottom). After 10 000 iterations of training (left), the network
reproduced only the goals but not the means. Two clusters in the PB space show the internal representation corresponding to the generated actions. Only the
network after 200 000 iterations of training (right) accurately reproduced the actions by properly differentiating parametric biases. (Online version in colour.)
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Figure 5b shows the learning process of the six actions: the

self-organized PB values (top) and the output of the network

(bottom) after 10 000 (left) and 200 000 (right) training iter-

ations. A close analysis of PB values enabled us to investigate

the internal representation of the actions. The most important

finding is that the RNNPB exhibited hierarchical development

of actions, as observed in infants. After 10 000 iterations of

training, the RNNPB differentiated only the goals but not yet

the means. As seen in figure 5b (left), the six circles with a tri-

angle inside separated only into two groups: (A0, A1, A2) on

the right and (B0, B1, B2) on the left. The first group corre-

sponded to the actions directed to the goal A, whereas the

second corresponded to the actions directed to B. The output

of the RNNPB (A0 and A2 as examples) also reproduced

only the goal of the actions but not the trajectories yet. After

200 000 iterations of training, the RNNPB finally differentiated

the six actions as shown in figure 5b (right). The six circles sep-

arated from each other while maintaining the relationship

between the goal-relevant clusters. The output of the network

accurately imitated both the goal and means. This result

suggests that predictive learning reproduces not only resultant

behaviours but also their developmental dynamics observed

in infants.
(c) Emergence of helping behaviour
The third example is the emergence of helping behaviour. In

contrast to the previous two studies, which focused on the pro-

cess of updating the predictor, this experiment demonstrated

how a predicted motor signal can be used to generate primary

social behaviour such as helping (i.e. the second mechanism

shown in figure 2b). Developmental studies revealed that help-

ing action is observed in 14-month-old infants [63,64]. For

example, if an experimenter drops a clothespin on the floor

while hanging a towel, infants spontaneously approach the

clothespin and hand it over to the experimenter. Importantly,

infants show this kind of prosocial behaviour even without

receiving any request (e.g. gesture and speech) or reward for

their help. An open question was what motivates infants to

help others.

We proposed a computational model based on predictive

learning [58]. Our key idea was that the process of minimiz-

ing prediction error by executing a predicted action results in
helping behaviour. Figure 6a shows the experimental setup,

where the robot first learned to push a blue car and to

cover a red marker by itself. Figure 6b depicts the acquired

predictor designed by a probabilistic model. The nodes

A ¼ (A0, A1, . . . , A4) and C ¼ (C1, C2) denote actions and

sensory conditions, respectively. In this experiment, all the

actions (e.g. reach for and push) were predesigned, and the

goals of the actions were defined as the final state of action

sequences. The probabilistic model indicates that the robot

learned to move a car by first reaching for its side (A1) and

then pushing it (A2), and to hide a marker by first reaching

straight for it (A3) and then covering it (A4). Once the predic-

tor was acquired, it could be applied to anticipate others’

actions. If other individuals successfully performed actions,

the prediction error remained small and thus no action was

executed by the robot. Only if they failed to achieve actions

was an increase in the prediction error detected, which trig-

gered an execution of the robot’s action. In the scene shown

in figure 6a, an experimenter tried to push the car by extend-

ing his arm but failed to achieve it as the car was beyond his

reach. Then the robot, which was observing the experimenter,

detected an increase in the prediction error as shown in the

lower right corner of figure 6a and was propelled to execute

its anticipated action to minimize the error, which resulted

in helping the experimenter.

The reason for the robot being triggered to minimize the

error, although the action was originally performed by another

person, is the mirror neuron system. As described before, the

mirror neuron system is hypothesized to develop as a by-

product of predictive learning. Therefore, the robot in the

early development, which cannot yet differentiate the self

from others, tries to minimize prediction error regardless of

the original actor. Such undifferentiated representation, how-

ever, makes it difficult for the robot to take another person’s

perspective. The robot, for example, would pull a car towards

its body instead of pushing it towards a person if the person

tries to pull it towards himself. The issue of perspective

taking has not been addressed in our current model, and it is

known in developmental psychology that this ability develops

later in infancy [65]. Although further studies to address this

issue are necessary, our current result supports our hypothesis

that the development of proto-social behaviour originates in the

minimization of prediction error.



(a) (b)

Figure 6. Emergence of helping behaviour based on predictive learning (adapted from [58]). (a) An experimental setting, in which a robot is pushing a car on
behalf of a person because the car is beyond the person’s reach. An increase in prediction error (shown in the lower right corner) triggers the execution of the robot’s
action to minimize it. (b) A predictor the robot acquired in the setting shown in (a). Two types of actions (i.e. push a car and cover a marker) are represented using a
probabilistic model, where A and C denote actions and sensory states, respectively. (Online version in colour.)
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Psychologists have proposed two hypotheses to account

for possible motivations for infant help [66]. The first hypoth-

esis is called emotion sharing, which assumes infants’ ability

to infer others’ intention and feeling (i.e. unobservable state).

If infants observe failure in other people’s actions, they try to

please them by helping. The second hypothesis is called goal-

alignment, which presupposes infants’ ability to recognize

others’ action and its outcome (i.e. observable state). In this

view, infants would take over someone else’s goal as if it

were the infants’ own goal if the other persons do not pro-

duce an expected result. Our theory based on predictive

learning is analogous to the second hypothesis and moreover

provides a biologically plausible account for the neural mech-

anism. In the future we aim to demonstrate more varieties of

helping behaviours based on this hypothesis.
4. Autism spectrum condition caused by atypical
tolerance for prediction error

The robot experiments have demonstrated the roles of predic-

tive learning in cognitive development. However, they

addressed only typical patterns of development, and behav-

ioural diversity such as developmental disorders has not been

discussed yet. This section presents our current hypothesis to

account for ASC by extending the predictive learning theory.

ASC is a neurodevelopmental disorder, which is character-

ized by difficulties in social communication and preference for

repetitive behaviours [49–51]. People with ASC show weaker

abilities to follow other people’s gaze, to read others’ intention

and emotion, etc. In addition to traditional research focusing on

social behaviour, recent studies have been investigating atypical

perception in ASC [67–69]. Examples of their findings include

hypersensitivity/hyposensitivity [70,71] and local processing

bias [72] in perception, which are viewed as potential causes

for behavioural characteristics of ASC. Frith and Happé

[73,74] and Ayaya and Kumagaya [75,76] hypothesize that

the way of precessing sensorimotor signals differs between

ASC and typical development and thus causes communication

difficulties between them. The brain is supposed to integrate

incoming signals to recognize the world and to interact with

it. It is suggested, however, that individuals with ASC have a

diminished ability to integrate signals and/or a hyper-ability

to process primitive signals, which results in dysfunctions in

higher social cognition [73–75].
Inspired by the above hypothesis, we propose a compu-

tational account for the underlying mechanism of ASC.

Figure 7 illustrates a conceptual model based on predictive

learning. Let us assume that sensorimotor signals denoted by

data points on the graphs are fed into the brain, and the internal

model (i.e. the predictor) represented by lines is acquired by

linear regression for the sake of simplicity. Here, the internal

model includes any type and any level of cognition (e.g.

motor control and perception) and is characterized by multiple

properties such as hierarchy, accuracy, and so on. According to

[75], people with ASC seem to have atypical tolerance for pre-

diction error. Figure 7a shows the internal model of typically

developing (hereafter TD) people. They adopt a proper toler-

ance for prediction error and thus acquire an adequate

internal model to perceive and act in the environment. Note

that the model represented by multiple lines loosely fits the

data points, indicating that TD people can easily adapt to

environmental changes. In contrast, people with ASC obtain

different internal models from those acquired by TD people.

Figure 7b shows two types of atypicality: a lower tolerance

(the upper graph) and a higher tolerance (the lower graph)

for predictive learning. A lower tolerance, on the one hand, gen-

erates a strictly fitting model with less adaptability. People with

a lower tolerance are expected to be very sensitive to environ-

mental changes because they are always surprised by changes

and need to update their internal model to properly perceive

the world. Such a characteristic would appear not only in

their motor control but also in perception, so-called perceptual

hypersensitivity. A higher tolerance, on the other hand,

results in a loosely fitting model with less reactivity. People

with a higher tolerance may not realize small changes in

the environment and thus exhibit seeking behaviours for

stronger stimuli. Their perceptual characteristic is viewed as

hyposensitivity, which is another type of atypical perception.

Similar hypotheses have been proposed in the past few

years. Pellicano & Burr [77] presented a Bayesian explanation

for ASC. Humans are thought to perceive the world as a conse-

quence of inference based on sensory signals and priors. Their

Bayesian account argues that individuals with ASC recognize

the world more accurately and are less biased by previous

experiences because of hypo-priors. This hypothesis was then

interpreted from the viewpoint of predictive coding [78–80].

People with ASC and without ASC share the same mechanism

of predictive learning; however, those with ASC are hypoth-

esized to have less strong prediction and/or higher weight



Figure 7. Potential underlying mechanism for ASC. Typically developing people (left) apply a proper tolerance for the prediction error and thus acquire appropriate
internal models with adaptability (multiple lines in the left graph). People with ASC (right), on the other hand, adopt a lower or a higher tolerance for the
prediction error and thus obtain strictly or loosely fitting models without adaptability or reactivity, respectively (the upper and lower graphs in the right part).
Our hypothesis suggests that such a difference in their internal models causes difficulties in social interaction. (Online version in colour.)
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for prediction error, which results in precise characteristics in

ASC. Our hypothesis, compared to the above, addresses the

two aspects of ASC, i.e. hypersensitivity and hyposensitivity.

The former corresponds to the precision account investigated

intensively in previous studies, whereas the latter is an oppo-

site phenomenon less discussed before. A recent study

suggests that hypersensitivity and hyposensitivity should be

considered as two sides of the same coin [75]. One can exhibit

both hypersensitivity and hyposensitivity simultaneously,

which implies that a coherent explanation that accounts for

contradicting characteristics is necessary. Our hypothesis

takes this point into account and provides a comprehensive

explanation of ASC.

Another important suggestion here is that difficulties in

social communication appear between TD and ASC, but not

within ASC. Because people with and without ASC do not

share internal models, they cannot easily predict each other’s

behaviours or intentions. In other words, TD people exhibit a

lack of theory of mind towards ASC, as people with ASC do

towards TD. This idea provides us with a new perspective;

people are expected to be able to improve communication if

they share internal models with some kind of help. To address

this issue, we have been developing a head-mounted display

system to simulate atypical perception in ASC [81,82]. We

analysed visual experiences of ASC and revealed causal

relationships between audiovisual stimuli from the environ-

ment and atypical visual patterns perceived by ASC (e.g.

higher contrast, lower acuity and dotted noise). Our simulator

reproducing the causal relationships enables TD people to

experience the visual world of ASC and thus share, although

not exactly, internal models with ASC. We also identified

neural and physiological evidence that supports our findings.

Atypical perception seems to be produced not only at sensory

levels but also at signal processing levels in the brain [82].

We aim to investigate our hypothesis further by designing

computational models of ASC.
5. Discussion
Sections 3 and 4 presented case studies of robot experiments

and an extended theory for ASC. They demonstrate impor-

tant roles of predictive learning in cognitive development

but leave some open questions. This section summarizes
our contributions and discusses open issues for further

refinement of the theory.
(a) Neural correlates of predictive learning
Recent studies in neuroscience have reported that multiple

brain areas respond to prediction error detected in sensorimo-

tor signals. Summerfield & Koechlin [83], for example, revealed

that the inferior temporal gyrus shows increased activation in

response to visual prediction error. Apps et al. [84] found

neural activities related to multimodal (visual-tactile)

prediction error in the inferior temporal gyrus and the tem-

poro-parietal junction. They suggest that prediction error

minimization plays an important role in multimodal inte-

gration required for self-cognition [85]. Blakemore et al. [86]

examined neural activities involving action. They found that

the somatosensory cortex activates differently to a self-pro-

duced tickle and to an externally produced one. The tactile

sensation in the former condition is more predictable (i.e.

with lower prediction error) and thus induces weaker neural

activation, whereas the sensation in the latter condition

evokes stronger neural response owing to its lower predictabil-

ity (i.e. higher prediction error). All these findings indicate the

involvement of the sensorimotor cortex in predictive coding.

Our theory and computational models have not specified

brain regions correlated to the predictor. Rather we have

intended to model the predictor as a whole of the sensorimotor

cortex. A reason is our focus on the process of cognitive devel-

opment; our goal is to understand the underlying mechanism

for development during early infancy. It makes us assume that

functions of the infant brain are not yet clearly differentiated,

unlike those in the brain of adults. For example, an imaging

study of newborns shows activation of broader brain areas

induced by tactile stimuli [87]. Although our current models

are very simple, in the future we plan to investigate how func-

tionalities of the brain as well as cognitive abilities develop

through sensorimotor predictive learning.

There is also debate on sensory prediction versus motor pre-

diction as functions of the human brain. Wolpert et al. [20], for

example, suggest the prediction of motor signals as a function

of the brain. Friston et al. [21,22], in contrast, explain the funda-

mental mechanism as sensory prediction. To my knowledge, a

comprehensive conclusion has not yet been reached. Ourcurrent

model involves both sensory and motor prediction, and motor
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prediction plays important roles in explaining the development

of mirror neuron systems and proto-social behaviours. Further

investigations in neuroscience and computational modelling

will be necessary to answer this question.

(b) Developmental origin of predictive learning
How the function of predictive learning per se emerges

based on dynamical neural activities is also an important

question. Although behavioural evidence from young infants

suggests the potential existence of such an ability in their

brain, it is still controversial whether the ability is inherently

embedded or acquired through learning during, for example,

the fetal period. Recent advances in modelling of large-scale

neural networks (e.g. [88]) have a potential to provide

insights into the developmental origin of predictive learning.

Simulating microscopic neural activities allows researchers

to investigate what kinds of neural functions emerge

from the neural dynamics and how sensorimotor experiences

influence the functional development. A dynamic neural

network model embodied in a fetus simulator [89] would

also contribute greatly to uncovering the role of sensorimotor

learning during the fetal period. Our future work includes

integrating their findings into our theory to thoroughly

explain development.

(c) Towards a unified theory for cognitive development
The greatest contribution of our study is to have verified the

key roles of predictive learning in cognitive development. Psy-

chologists have presented many theories and hypotheses to

explain their findings but separately for different behaviours.

To my knowledge, only a few theories exist, such as the dyna-

mical systems approach [1,2], which can consistently account

for infant development. Many existing studies in cognitive

developmental robotics [3–5] have also proposed task-specific

architectures for different behaviours. Although their compu-

tational models nicely demonstrated infant-like development

in robots, the underlying mechanisms for the continuity and

diversity in development have not well been explained. By con-

trast, our approach has partially overcome these problems; we

have demonstrated that multiple developmental phenomena

can be attributed to predictive learning. Besides the case

studies presented in this paper, we have shown how the abil-

ities of intention reading [48,90], emotion sharing [91] and

preferential looking [92] develop based on predictive learning.

A neural network model to verify the hypothesis about

ASC has also been proposed [93]. Our latest results suggest

that modifying model parameters related to the tolerance

for prediction error produces different types of internal

models, which correspond to TD and ASC. Moreover, ASCs

with hypersensitivity or hyposensitivity can be reproduced

with two extremes of model parameters. Nevertheless, we

admit that our theory about ASC is still speculative and

that further studies integrating neuroscience, cognitive psy-

chology and computational modelling are necessary. For

example, questions such as how differently (or similarly)

the brain with or without ASC responds to prediction error,

what types of prediction error the brain detects, and how

differences in the neural activity affect behaviours should

be addressed. Although several studies have addressed

these issues, they show either neural or behavioural evidence

that is not well linked yet. We believe that a computational

approach such as presented in the paper has a potential to
bridge the gap between neuroscience and cognitive psychol-

ogy. Further studies tightly linking these approaches should

be conducted to verify this hypothesis.
6. Conclusion
This paper has presented a computational theory for early

cognitive development. We have emphasized the crucial

role of predictive learning in multiple cognitive functions.

Recent studies in neuroscience and cognitive science suggest

that the human brain codes sensorimotor signals in a predic-

tive manner. We extended this view and proposed two

mechanisms that lead to cognitive development, i.e. updating

an immature predictor and executing a predicted action. Our

experiments using robots clarified the roles of predictive

learning in early cognitive development. The first mechanism

of predictive learning enabled a robot to recognize the self

and other individuals based on their predictabilities, and to

learn to produce goal-directed actions. Importantly, the func-

tion of the mirror neuron system emerged as a byproduct of

this development. The second mechanism enabled a robot to

produce primary social behaviours. By exploiting the mirror

neuron system acquired in the predictor, the robot produced

imitative actions and helping behaviour in response to

actions generated by others.

Our future challenge is to investigate to what extent the

predictive learning theory accounts for cognitive develop-

ment. In terms of diversity of development, we presented

our current hypothesis about ASC. Atypical tolerance for pre-

diction error provides a plausible explanation for their

perceptual and behavioural characteristics. The conceptual

model shown in figure 7 provides a good illustration as to

why people with and without ASC have difficulties in

social interaction. However, there is neural and physiological

evidence regarding atypicality in sensory and brain struc-

tures in ASC (e.g. [94–96]). Our hypothesis cannot yet

explain what neural structures are correlated with atypical

function. It is also controversial whether atypicality in the

sensory and brain structures leads to atypicality in their func-

tion or vice versa. To obtain better insights into the underlying

mechanism, we aim to further investigate the influence of

atypical tolerance on predictive learning.

In terms of continuity of development, we have thus

far addressed cognitive behaviours appearing from the neo-

natal period to early infancy. We do not know yet whether

higher social cognition such as language use and decision

making is also acquired by predictive learning. Our specu-

lation is that such cognitive abilities require hierarchical

representation of sensorimotor signals using symbols. Inhibi-

tory control would also be necessary for explaining actions

that do not always minimize prediction error. Reward-

based learning may give another important criterion

for development. We thus aim at extending our theory to

incorporate higher cognition.
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