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Plants rapidly respond to environmental fluctuations through coordinated, multi-scalar
regulation, enabling complex reactions despite their inherently sessile nature. In particu-
lar, protein post-translational signaling and protein–protein interactions combine to
manipulate cellular responses and regulate plant homeostasis with precise temporal and
spatial control. Understanding these proteomic networks are essential to addressing
ongoing global crises, including those of food security, rising global temperatures, and
the need for renewable materials and fuels. Technological advances in mass spectrom-
etry-based proteomics are enabling investigations of unprecedented depth, and are
increasingly being optimized for and applied to plant systems. This review highlights
recent advances in plant proteomics, with an emphasis on spatially and temporally
resolved analysis of post-translational modifications and protein interactions. It also
details the necessity for generation of a comprehensive plant cell atlas while highlighting
recent accomplishments within the field.

Introduction
Since the early 2000s, mass spectrometry-based proteomics has undergone rapid evolution. Increased
ionization and ion transfer efficiencies, fragmentation options, and resolving power have made mass
spectrometers more powerful than ever before [1–9]. Coupled with enhanced high-resolution liquid-
based separation techniques, protein identifications, dynamic range, and reproducibility have markedly
improved [10–14]. Biological investigations with increased depth and breadth have revealed protein
networks as well as unveiled the exquisitely complex circuity of regulation via post-translational modi-
fications (PTMs) [15–18]. Method development advances continuously expand the biological rele-
vance and necessity of proteomic analysis in the understanding of metabolic functions; while the
genome is static, the proteome rapidly responds to external stimuli to regulate the epigenome, tran-
scriptome, and metabolome to maintain cellular homeostasis [19–23]. In plants, this is even more
essential, as their sessile nature mandates rapid, multiscalar responses to survive fluctuating environ-
ments [24–30]. While identification, quantification, and characterization of proteomic responses
allows for robust, hypothesis driven studies of fundamental processes in plant biology (recently
reviewed: [31–36]), improvements in temporal and spatial specificity must be leveraged to capture the
dynamic landscape of the plant proteome [31, 37–39].
Proteomics is essential for the understanding of major biochemical signaling pathways involved in

plant adaptations, including those affected by biotic and abiotic stressors, requisite symbiosis, climate
change, and optimization for desired characteristics (e.g. biofuels, agriculture, etc.) [36, 40–42].
Although mRNA abundance is often used as a proxy to understand lifespan and turnover of proteins,
only modest correlation between mRNA expression levels and protein levels has been demonstrated
[37, 43–46]. RuBisCo, the most abundant protein on earth, exemplifies this discrepancy in correlation,
with 10–100× greater protein expression levels than would be predicted from transcript abundance
[47]. Additionally, while transcriptomes respond to stressors/stimuli, the proteome generates metabolic
responses and shifts the metabolome through protein folding, turnover, enzymatic activity, and
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substrate specificity via coordinated modulation of protein abundance, PTMs, protein–protein interactions, and
conformational changes [48–55]. Thus, proteome-level investigations are required to understand the spectrum
of dynamic intracellular metabolic states [50, 56–64].
Despite these advances, plant proteomics has historically lagged behind its mammalian counterpart.

Although plant science is crucial to address critical global concerns, research funding for plant science has long
trailed that of biomedical research and innovative bioanalytical techniques are likewise hyper focused on mam-
malian disease models [65]. This too has extended to proteomics; for instance, in the most well characterized
model plant species, Arabidopsis thaliana, it is estimated that only 5% of its proteome has been experimentally
characterized to distinguish function, localization, and biological significance [47, 66, 67]. In addition to
funding disparities, plants incur unique challenges relative to mammalian systems including a recalcitrant cell
wall that hinders protein extraction without intense denaturing methods [35, 68]. Plants also have low cytoplas-
mic volume relative to cell mass as well as high protease and phosphatase abundance, making it more challen-
ging to accurately assess the proteome without artifactual modifications caused by the stress of cell lysis and
sample processing [69–71]. Additionally, plant proteomes vary in dynamic range over 6–8 orders of magnitude,
precluding detection of low abundance proteins in shotgun proteomic approaches [72]. This is particularly
influenced by the highly abundant photosynthetic apparatus, as >20% of expressed protein in photosynthetic-
ally active plant tissue is derived from the chloroplast alone [62, 73]. Furthermore, despite the high biodiversity
of plants (>300 000 species of land plants, alone), genome sequencing in plants lags behind its mammalian
counterparts; with less than 600 full genome sequences available, proteomic investigations across the plant
kingdom are inherently limited [74]. Despite these inherent challenges, comprehensive understanding of plant
pathways is necessary to address the most pressing issues of modern times, including food security, rising
global temperatures, and the need for renewable plastics and fuel sources. As such, the plant science commu-
nity has called for the generation of a ‘plant cell atlas,’ through which multiple lines of data can be integrated
to extensively profile plants on the basis of species and cell type [75]. This review outlines the progress and bar-
riers to comprehensively mapping the plant proteome.

Advances in post-translational modifications
Quantitative mass spectrometry-based proteomics has revolutionized our understanding of PTMs and their
functions across the plant proteome [76–79]. While the low ratio of modified to unmodified proteoforms pre-
vents thorough examination via a shotgun approach, enrichment strategies have been optimized to allow site-
specific identification and quantification of a diverse repertoire of modifications in plants, including those for
phosphorylation, oxidation, acetylation, and ubiquitination [80]. Furthermore, characterization of PTMs in iso-
lated cell types as well as organelles has provided increased depth of coverage and a broad framework for inves-
tigating the relationships between PTMs and cell/organelle function [81–85]. When combined with shotgun
approaches, enrichment techniques enable unparalleled discovery and accurate quantification of PTM events.

Phosphorylation and Cys oxidation: star-crossed modifications
The most well-characterized plant PTM is phosphorylation, due in part to the disproportionately high level of
kinases encoded by plant genomes; approximately 5% of the Arabidopsis genome encodes protein kinases,
nearly double that of mammals [86]. These critical genomic differences in highly conserved eukaryotic path-
ways yield significant alterations in intracellular regulation that delineate the need for robust proteome analysis
across the plant kingdom. Discovery-based proteomics has thus revealed divergent post-translational signaling
networks across phosphorylation pathways, including those in the highly conserved target of rapamycin (TOR)
and mitogen-activated protein kinase (MAPK) regulatory networks, indicating the presence of novel regulatory
proteins and functions not present in the animal kingdom (Table 1) [87, 88]. Still yet, functional determination
of phosphorylation sites is complicated by the abundance of phosphorylated proteins paired with the low stoi-
chiometric ratio of phosphorylated to non-phosphorylated residues, as well as the spatial and temporal specifi-
city of signaling networks. Recent work employed immobilized metal affinity capture (IMAC) to quantify
43 000 phosphosites in Arabidopsis, with phosphorylation present on 47% of the proteome [73]. Furthermore,
by separating the plants into 30 distinct tissue types, it was revealed that phosphorylation forms distinct tissue-
dependent patterns throughout the plant, further supporting the need for comprehensive, tissue-specific delin-
eation of PTM signaling networks. Studies have also shown differential phosphorylation is regulated by the cir-
cadian rhythm, with protein phosphosites involved in photosynthesis, translation, metabolism and cellular
transport changing in abundance based on the plant’s diurnal cycle [89, 90]. Further studies could build upon
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established workflows for spatial proteomic analysis by combining with temporally resolved studies for tissue-
specific analysis of the diurnal phosphoproteome.
While mammalian cells primarily generate ROS in the mitochondria, photosynthetic eukaryotes generate

ROS from both the mitochondria and the chloroplasts [28]. The mitochondria, chloroplasts, and (to a lesser
extent) the peroxisomes combine to form an intricately coordinated regulatory system that uses ROS for rapid
intracellular signaling. As such, oxidative modifications have been increasingly scrutinized as advances in redox
proteomics have unveiled reversible oxidative signaling to have a substantial role in all areas of plant metabol-
ism including photoregulation, effector-triggered immunity, and nutritional sensing and regulation [57, 91–93].
Oxidative signaling networks cross-talk with phosphorylation, SUMOylation, and other PTMs to comprehen-
sively regulate plant metabolism [28, 61, 83, 94–96]. However, the analysis of redox-modified proteoforms is

Table 1 Online repositories containing data on post-translational modifications of various plant species

Repository PTMs Plant Species Website

dbSNO S-nitrosylation Arabidopsis
thaliana

http://dbsno.mbc.
nctu.edu.tw/

Functional Analysis
Tools for
Post-Translational
Modifications

Acylation, Lys-acetylation, N-glycosylation,
O-GlcNAc, Phosphorylation, S-nitrosylation,
SUMOylation, Ubiquitination

Arabidopsis
thaliana

https://bioinformatics.
cse.unr.edu/fat-ptm/

PhosPhAt 4.0 Phosphorylation Arabidopsis
thaliana

http://phosphat.
uni-hohenheim.de/

Plant Protein
Phosphorylation
database

Phosphorylation Arabidopsis
thaliana
Brassica napus
Glycine max
Medicago
truncatula
Nicotiana tabacum
Oryza sativa
Solanim
tuberosum
Vitis vinifera
Zea mays

http://www.p3db.org

Plant Proteome
DataBase

Amino acid substitution, Deamidation,
Hydroxylation, N-terminal acetylation,
N-terminal formylation, Oxidation,
Phosphorylation, Propionylation

Arabidopsis
thaliana
Zea mays

http://ppdb.tc.cornell.
edu/

Plant PTM viewer Carbonylation,
Lys-2-hydroxyisobutyrylation,
Lys-acetylation, Lys-malonylation,
Lys-methylation, Lys-succinylation,
Lys-SUMOylation, Lys-ubiquitination,
N-glycosylation, N-terminal acetylation,
N-terminal myristoylation, N-terminus
proteolysis, O-GlcNac, Oxidation,
Phosphorylation, S-glutathionylation,
S-nitrosylation, Ubiquitination

Arabidopsis
thaliana
Chlamydomonas
reinhardtii
Oryza sativa
Triticum aestivum
Zea mays

http://www.psb.
ugent.be/
PlantPTMViewer

PTMcode 2 Acetylation, Carboxylation, Hydroxylation,
N-glycosylation, Methylation, O-GlcNac,
O-GalNAc, Parlmitoylation,
Phosphorylation, S-nitrosylation,
Ubiquitination

Arabidopsis
thaliana

https://ptmcode.embl.
de/

The Ubiquitination Site
tool

Ubiquitination Arabidopsis
thaliana

http://bioinformatics.
psb.ugent.be/
webtools/ubiquitin_
viewer/
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limited due to challenges in sample preparation and enrichment, both of which can generate artifactual oxida-
tion. Further, oxidative modifications, particularly those of cysteine thiols, incorporate diverse chemical groups
and instigate varying functions, and it is currently not possible to both assess for the overall oxidation state
while simultaneously differentiating between the diverse repertoire of oxidized modifications (e.g. glutathionyla-
tion, S-nitrosylation, disulfide bonds, sulfonic acid, etc.). Like phosphorylation, the low abundance of oxidized
proteoforms (methionine and cysteine make up only 4.3% of all amino acids in Arabidopsis, combined), often
necessitates the use of enrichment strategies for meaningful analysis. Furthermore, the occupancy of oxidative
modifications occurs on a spectrum, introducing heterogeneity into data analysis that is challenging to over-
come [97, 98].

Technological advances for distinguishing PTM-specific proteomes
Traditionally, phosphoproteomic studies have focused on phosphohydroxyamino acids formed from serine,
threonine, and tyrosine residues. Commonly used enrichment strategies include immobilized metal ion affinity
chromatography (IMAC), metal oxide affinity chromatography (MOAC), and polymer-based metal ion affinity
capture (PolyMAC), all of which selectively bind the negatively charged phosphate groups under acidic condi-
tions (Figure 1). Material selection in each method has a marked impact on the peptides enriched, with differ-
ent methods showing preferential binding of mono- or multi- phosphorylated peptides, increased/decreased
affinity for acidic residues, and other biases for the analysis of serine, threonine, and tyrosine residues.
However, phosphorylation also occurs on six other amino acids, including histidine, lysine, arginine, cysteine,
and aspartic and glutamic acid, all of which are prone to hydrolysis under acidic conditions that prevents trad-
itional phosphoproteomic analytical methods [99]. Additionally, the polyphosphorylation of serine and lysine,
known as pyrophosphorylation, adds further analytical complexity to an already elaborate network [100, 101].
Recent work has sought to improve phosphopeptide enrichment of non-hydroxyamino acids through the syn-
thesis of novel affinity matrices and chemical probes, with improved detection through electron transfer/higher
energy collisional dissociation fragmentation [102–105]. Additionally, strong anion exchange is a promising
strategy for non-biased phosphopeptide enrichment, revealing 1/3 of the total basal human phosphoproteome
to occur outside of hydroxyamino acids [106]. Although the field of labile phosphoproteomics is still in its
infancy, non-canonical phosphorylation has already been implicated in the regulation of chlorophyll biosyn-
thesis and cytokinin signaling, demonstrating that these modifications are likely implicated in essential plant
pathways [107, 108]. Extending the technological advances used in mammalian systems has the potential to
unveil critical and biologically significant phosphorylation networks across plant taxons.
Detection of oxidized cysteine thiols can be divided into direct and indirect approaches [109] (Figure 2).

Indirect approaches block free sulfhydryl groups (i.e. thiols reduced in vivo) during protein extraction using an
alkylating agent, primarily via the irreversible addition of iodoacetamide (IAM) or N-ethylmaleimide (NEM)
[110]. Following the blocking of free thiols, reversibly oxidized cysteines are then nonspecifically reduced via a
strong reductant (e.g. DTT, TCEP), or selectively reduced for the enrichment of particular modifications, such
as the use of ascorbate to selectively reduce S-nitrosylation [97, 111–117]. The use of a strong reductant, while
lacking modification specificity, enables the simultaneous probing of the full reversibly oxidized redoxome,
unveiling critical oxidation targets that could be otherwise overlooked [56, 57, 61, 91, 118]. Recent work has
progressively increased the strength of the reducing agent and labeled with isobaric tags to multiplex for the
simultaneous analysis of distinct modifications [119, 120]. The development of isobaric thiol tags has also
enabled high-throughput site-specific quantification of redox occupancy, allowing for robust quantification of
heterogeneously oxidized proteoforms [121]. Further still, the use of concentration-dependent reactive probes
following blocking and reduction allows for the determination of relative reactivity of cysteine thiols, with
reactivity correlating with relative biological importance. Quantitative thiol reactivity profiling, while a
recent technique, has already been successfully implemented in Arabidopsis and Chlamydomonas reinhardtii
[122, 123].
Direct approaches for analyzing cysteine oxidation require fewer sample preparation steps and thus are less

likely to generate artifactual oxidation; however, modification-specific chemical probes require a distinct label-
ing reagent for each oxidized derivative (e.g. S-sulfonation, S-nitrosylation, S-glutathionylation, etc.) [124–126].
Novel probes have enabled direct quantification of diverse redox modifications, including sulfonic acids, disul-
fide bonds, and nitrosylation [124, 125, 127, 128]. Most probes use an acetyl moiety connected to a preferen-
tially binding functional group, such as the benzothiazine-based probe used to map over 1500 S-sulfenylation
sites on over 1000 proteins in Arabidopsis [127]. Recent work has also transformed Arabidopsis with a tagged
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proteinaceous probe that specifically reacts with sulfenic acids and traps them through an irreversible mixed
disulfide bond [93]. This in vivo trapping unveiled sulfenylated cysteines in over 1000 proteins, 45% of which
had not been previously identified in the Arabidopsis redoxome, while preventing the problematic oxidation
that occurs ex vivo. However, innate challenges in the genetic transformation of plants will prevent widespread
use outside of a few model species. Furthermore, the use of a proteinaceous tag is analogous to crosslinking
mass spectrometry and therefore increases the difficulty in identifying peptides (see section below).
PTM analysis is challenging due to their sub-stochiometric abundance, labile nature, and the tendency of

artifactual modifications. While sample preparation methods can successfully enrich for modified proteins/pep-
tides with great success, there are still challenges in data processing that prevent thorough analysis of PTM cas-
cades. Fragmentation advances enable thorough mapping of peptide/protein sequences, yet specific fragments
to localize PTMs are not guaranteed. Scoring algorithms embedded in database searching software somewhat

Figure 1. Overview of common mass spectrometry-based strategies for the analysis of canonical and non-canonical

phosphorylation.
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address the limitations [129–131], but in most situations users are required to pre-select expected variable mod-
ifications. As the number of possible variable modifications increases, the search space increases exponentially,
thereby increasing both search time and the probability of false matches. Recent advances in tools for open
modification searches has sought to decrease search time while increasing identification of modifications [132–
137].

Plant interactomes reveal functional significance
While the identification and stoichiometry of proteoforms is crucial to understanding protein signaling, the
latter is achieved through protein interactions and spatial specificity. To this end, the last decade has benefited
from improvements in sample preparation techniques enabling subcellular localization of the chloroplast, mito-
chondria, and nuclear proteome, among others [58, 60, 138–142]. Additionally, mass spectrometry is employed
to enhance the understanding of interactions that reveal the importance of intracellular spatial orientation of
protein networks [143–146] (Figure 3). Protein–protein interactions inform the functions of genes and

Figure 2. Representative mass spectrometry-based strategies for the direct and indirect analysis of reversible cysteine

oxidation.

Both approaches can be facilitated using peptide-level enrichment as well; however, recent work has favored protein-level

enrichment due to the decrease in artifactual oxidation.
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individual proteins and provide critical analysis of cellular processes [147]. While over 48 000 interactions have
been characterized in Arabidopsis, the wide range of plant effectors and subsequent metabolic responses is still
largely uncharacterized [148]. However, interactomic techniques are challenging in plant systems due to their
diverse metabolic pathways, complex and/or poorly annotated/uncharacterized genomes (particularly in non-
model species), and the reliance of plants on symbiotic interactions with outside effectors [149]. Additionally,
interactomic methods have historically utilized genetic manipulation, which can be challenging in plant
systems, particularly among polyploids [150]. Increased implementation of differential interactomics is essential
for the generation of a comprehensive plant cell atlas.

Chromatography-based interactomics
Genetic and/or antibody approaches for interactomics (such as AP-MS) rely on the sequence availability of the
target organism and/or genetic transformation, both of which face inherent challenges in plant systems due to

Figure 3. Common strategies for mass spectrometry-based interactomics that have been employed in plant systems.

Many of the approaches can be applied together for complementary analysis of protein networks.
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low transformation efficiency, lack of model organisms, and polyploidy. Size-exclusion chromatography (SEC)
circumvents these obstacles to allow for non-biased separation of protein complexes in both sequenced and
non-sequenced organisms. While SEC was originally paired with gel electrophoresis to allow for global analysis
of the interactome in Arabidopsis, blue-native polyacrylamide electrophoresis (BN-PAGE) uses one dimensional
fractionation to create size-distribution profiles in a single step, decreasing experimental complexity while still
enabling characterization of >3000 proteins in a single experiment [151–153]. When paired with other organ-
elle fractionation (often achieved through differential separation and Percoll gradients), it is possible to analyze
low abundance complexes with both spatial specificity and unparalleled depth of coverage [152, 154–157].
However, this approach is challenging to use for quantitative analysis, in part due to proteins being present in
an average of 17 fractions. To remedy this, clear-native (CN) PAGE uses customized R scripts to deconvolute
elution peaks, resulting in 74% of identified proteins existing in one single fraction and increasing the probabil-
ity of correct partner assignments [158].
Similar to PAGE-based complex separations, cofractional (CF) MS uses non-denaturing SEC to identify

physical associations between proteins [159]. While this has been highly successful in characterizing protein
complexes in Arabidopsis, false negatives can arise from coincidental co-elution in small experiments [160–
163]. However, by using repeated coelution across multiple, distinct separations, the statistical power is
increased, generating lower false-discovery rates and increasing the utility. Recent work employed CF-MS to
characterize protein complexes across 13 plant species spanning the evolution of Viridiplantae, from single-
celled Chlamydomonas reinhardtii to the vascular broccoli and Arabidopsis [47]. This work revealed, not sur-
prisingly, that highly conserved eukaryotic protein functions are carried out in plant complexes containing
divergent proteins compared to the mammalian counterparts, further indicating the necessity of enhanced
plant proteomics. However, this work stopped shy of tissue-specific differential interactomics, the next step in
generating a thoroughly characterized plant cell atlas. The identified interactomes could be used for a recently
developed semi-targeted complex-centric approach, wherein data-independent acquisition (DIA) is used for
precise differential quantification with temporal and spatial specificity [164].

Affinity purification mass spectrometry
Affinity purification combined with mass spectrometry (AP-MS) is a powerful and unbiased technique through
which the soluble protein–protein interactions of plants have been extensively characterized [165]. AP-MS has
been traditionally used to reveal components of protein complexes, such as the subunits of the evening
complex, an essential complex for circadian regulation, in Arabidopsis [165–167]. However AP-MS can also
identify transient binding partners, such as the relationship between cytosine methyltransferases and superoxide
dismutases in moss, a discovery which revealed a previously unknown cross-regulatory role for methylation in
redox homeostasis [168]. This is improved through computational tools that increase confidence in identifica-
tions [169–173]. However, while AP-MS has facilitated the characterization of protein complexes and binding
partners from plants, it is less robust than in mammalian cell systems that benefit from the extensive availability
of commercial antibodies. Although transgenic affinity tags have been used to a large degree of success, these
can potentially change binding sites on proteins or change expression levels within the biological system [174–
179]. Further still, both false positives and false negatives are common in AP-MS, requiring robust statistical
testing and well characterized positive and negative controls to effectively discern positive identifications [180,
181]. Plants, particularly non-model species, are therefore more challenging to probe. Recent work has com-
bined AP-MS with label-free quantitative proteomics to resolve the dynamic nature of the strigolactone
pathway in Arabidopsis, demonstrating its potential for temporal resolution of interchanging protein partners
[182]. AP-MS will therefore likely continue to be play a prominent role in determining plant protein interac-
tions, something that will be expanded as further plant species are sequenced.

Proximity-dependent labeling
Proximity-dependent labeling (PL) employs engineered enzymes, usually ligases or peroxidases, to generate
reactive radicals to covalently tag neighboring proteins with enrichable sidechains [144, 146, 183–186]. PL was
first demonstrated in planta in Arabidopsis using BirA*, a mutated bioengineered biotin ligase derived from
Escherichia coli, for proximity-dependent biotin identification (BioID) of interaction networks, where it enabled
facile identification of 500 interacting proteins in planta [187]. Similarly, TurboID uses the same biotin ligase
as BioID but has enhanced activity, through which it can label an equivalent amount of diverse enzymes in
<1% of the time it takes BioID [188]. In a combined study of Arabidopsis and Nicotiana benthamiana, BioID
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revealed low abundant protein networks in both species as well as the nuclear proteome of stomatal guard cells
[189]. Furthermore, the combination of TurboID and cell-specific enrichment was highly successful, enabling
the differentiation of 34 previously non-localized guard-cell specific nuclear proteins and providing a critical
framework for future differentially resolved spatial interactomic studies [190, 191]. While only benchmarked in
plants in 2019, TurboID has uncovered the putative E3 ubiquitin ligase responsible for regulating the
nucleotide-binding leucine-rich repeat immune receptor following exposure to Tobacco mosaic virus (TMV) as
well as over 300 targets of the GSK3-like kinase, BIN2 [192, 193]. Its utility in determining TMV targets
demonstrates TurboID’s capacity to play a key role in differentiating the defense and symbiotic response net-
works established by plant pathogens, a critical area of research [27, 194, 195].

Crosslinking mass spectrometry
Crosslinking mass spectrometry (XL-MS) uses hetero- or homo-bifunctional tags to covalently modify amino
acids, linking them to other residues within the defined distance of the spacer arm [196–198]. These highly
reactive tags are only confined by the specificity for the functional group, enabling non-biased global analysis
of both protein interactions as well as the spatial delineation of complexed proteins [199, 200]. Advancements
in XL-MS have substantially accelerated in the last five years [201]. This has been assisted by the advent of
MS-cleavable crosslinkers, some of which are also enrichable, as well as the ability to use MS3 workflows to
increase confidence in crosslinked identifications through the use of reporter ions [202–207]. Despite these new
crosslinkers, data analysis remains one of the most significant challenges of XL-MS, as the linking of two pep-
tides increases the potential search space by n2. Over 20 algorithms have been developed for analyzing XL-MS
data, with varying expertise needed for usage and interpretation (reviewed: [207]).
In order to discern the spatial proximity of proteins in vivo, the chemical crosslinker must have high mem-

brane permeability. While XL-MS has been employed extensively in mammalian systems, its application to
plants is complicated by the recalcitrant cell wall and has been limited. However, recent increases in the chem-
ical repertoire has enabled investigations in planta, with highly permeable azide-tagged, acid-cleavable disucci-
nimidyl bis-sulfoxide crosslinkers leading the charge [208, 209]. Quantitative in planta XL-MS analysis of the
Arabidopsis proteome was achieved through the use of azide-tag modified disuccinimidyl pimelate (AMDSP), a
biotin-enrichable tag that facilitated the identification of 354 unique crosslinked peptides [209]. Further still, in
vitro crosslinking was recently combined with phosphoproteomic analysis to spatially resolve 244 substrates of
the Arabidopsis TOR pathway [210]. Integration of XL-MS with PTM analysis is an exciting step toward
mapping essential signaling networks of plant systems.

Toward a spatially and temporally resolved future
Plant proteomics is an essential line of evidence in the construction of the proposed plant cell atlas [75].
Although advances in PTM analysis and in planta and in vitro interactomics have been leveraged, future work
must incorporate the integration of spatial and temporal proteome dynamics. Rapid innovations can be lever-
aged via incorporation of technologies shown successful in mammalian systems, such as localization of organ-
elle proteins by isotope tagging after differential ultracentrifugation (LOPIT-DC) for detailed analysis of
spatially resolved proteomes [211]. By combining LOPIT-DC with an enrichable, isotopically labeled and MS-
cleavable crosslinker (e.g. cyanurbiotindipropionylsuccinimide (CBDPS)), it may be possible to further extend
the subcellular localization of LOPIT-DC to allow for quantitative analysis of protein conformations with cell-
type and temporal specificity [206, 212]. Furthermore, as evidenced by the delineation of TOR signaling
through the combined phosphoproteomic enrichment with AP-MS and XL-MS, the integration of multi-modal
proteomic techniques is essential for comprehensive understanding of the plant proteome [210].
Another lagging line of evidence in plant proteomic analysis is the incorporation of imaging-MS (IMS) tech-

nologies; while IMS has been used for metabolomics in plants, it has only sparingly been employed for spatial
protein analysis [213–217]. This is due in part to the inherent challenges for higher molecular weight com-
pounds. The incorporation of high resolving power mass spectrometry (such as that achieved through 15T
FTICR) had led to enhanced intact protein analysis for proteins [218]. Recent work has also benefited from the
incorporation of ion mobility and/or on tissue enzymatic digestion to increase the sensitivity and dynamic
range of spatial protein analysis, both of which could be applied in plant systems with minimal optimization
[219–221]. While further increases in protein identification has occurred through pairing with LC-MS/MS, this
approach requires bulk extraction to ensure sufficient sample size for analysis [222]. However, incorporating
laser capture microdissection for sample preparation with automated nanodroplet processing, as has been
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applied with great success to mammalian tissues, could potentially be used for the relative quantitation of
spatial proteomes across plant tissues [223]. Finally, the advancement of three dimensional quantitative IMS in
mammalian systems also points toward a promising future in the spatial analysis of plant systems [224]. This
has been successfully applied to the petals of Bellis perennis (daisies), where an autofocusing MALDI system
enabled a lateral resolution of ≤10 mm [225]. However, more optimization is needed to integrate three dimen-
sional IMS with protein detection to allow for spatial protein analysis.

Summary
• Plant proteins are the direct effectors of external stimuli, making proteomic analysis critical for

understanding plant stress and homeostasis.

• Innovations in the quantitative analysis of phosphorylation and cysteine oxidation have
revealed distinct signaling pathways across conserved protein networks, underscoring the
need for further plant-focused investigations.

• Diverse interactomic techniques allow complementary data integration for both targeted and
non-biased analysis of both protein interactions as well as quantitative complex dynamics.

• Future work must aim to further integrate proteomic techniques to enhance spatial and tem-
poral resolution.
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