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A B S T R A C T   

Phosphorus (P) is a finite resource, and its environmental fate and transport is complex. With fertilizer prices 
expected to remain high for years and disruption to supply chains, there is a pressing need to recover and reuse P 
(primarily as fertilizer). Whether recovery is to occur from urban systems (e.g., human urine), agricultural soil (e. 
g., legacy P), or from contaminated surface waters, quantification of P in various forms is vital. Monitoring 
systems with embedded near real time decision support, so called cyber physical systems, are likely to play a 
major role in the management of P throughout agro-ecosystems. Data on P flow(s) connects the environmental, 
economic, and social pillars of the triple bottom line (TBL) sustainabilty framework. Emerging monitoring 
systems must account for complex interactions in the sample, and interface with a dynamic decision support 
system that considers adaptive dynamics to societal needs. It is known from decades of study that P is ubiquitous, 
yet without quantitative tools for studying the dynamic nature of P in the environment, the details may remain 
elusive. If new monitoring systems (including CPS and mobile sensors) are informed by sustainability frame-
works, data-informed decision making may foster resource recovery and environmental stewardship from 
technology users to policymakers.   

1. Overview 

Phosphorus (P) is essential for all forms of life and food systems. 
Global mass flows of P have been detailed in numerous reviews 
(Brownlie et al., 2021; Chen and Graedel 2016; Cordell and White 
2014), demonstrating the systems-level complexity of P. Mass inflow of 
P to the food supply chain is primarily as fertilizers and agrochemicals, 
from 30 to 50 megatons annually (Mt/a). Once in the system, P flows 
through crop production systems, food production, soils, aquatic sys-
tems, wastewater, and landfills. Among the various forms of P (from 
orthophosphate and its protonated forms to polyphosphates, organic 
species, biomolecules, and xenobiotics), some are directly relevant to 
monitoring via existing sensors, while other forms of P require new 

monitoring technologies. Section 2 highlights specific forms of P that are 
amenable to near-real time (in situ) monitoring. In Section 3, emerging 
sensors and cyber physical systems (CPS) that aim to quantify and better 
manage P are highlighted. In Section 4, this perspective calls for efforts 
in sensor development (molecular scale engineering) that are integrated 
with established sustainability frameworks (human scale) for informing 
next-generation monitoring systems through combinatorial use of mo-
bile sensors and CPS with integrated decision support. 

2. Emergence of cyber physical systems for monitoring P 

Quantifying spatiotemporal dynamics of P is a challenge due to the 
physicochemical complexity (diversity of forms, complex matrices, 
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spatiotemporal heterogeneity) and variety of dynamic human activities 
(e.g., fertilization, sustainable practices). In groundwater or surface 
waters, standard analytical technologies for quantifying P are typically 
designed to target either: total P, dissolved P, dissolved orthophosphate, 
or a specific form of organic P such as an herbicide. Particulate phases 
may also be dominant in surface water (~40–80%) and wastewater 
(~5–30%), including P in cells, P bound to colloids, or P associated with 
organic matter (Froelich 1988; River and Richardson 2018; Ven-
kiteshwaran et al., 2018). In soils, phosphorus cycling in soils is a 
complex phenomenon that is strongly influenced by the nature of the 
inorganic and organic solid phases, forms and extent of biological ac-
tivity, chemistry of the soil solution (e.g., pH, ionic strength, redox po-
tential), and other environmental factors such as soil moisture, and 
temperature. Because soil solution P concentrations are relatively low, 
the amount of P in soil solution at any given time is generally on the 
order of <1 kg ha− 1, or <1% of the total quantity of P in the soil 
(Pierzynski 1991), with the remainder associated with minerals and soil 
organic matter. Soil solution P concentrations typically range from 
<0.01 mg P L− 1 in very infertile soils to 1 mg P L− 1 in well-fertilized soils 
and can be as high as 7 to 8 mg P L− 1 in soils recently amended with 
fertilizers or organic wastes (Pierzynski et al., 2015). While many 
techniques exist for quantifying P in water or soil samples (Alam et al., 
2021), there is a critical need for portable technologies that improve in 
situ P analysis. Emerging mobile sensor technologies that directly 
quantify P in complex matrices facilitate two major outcomes: (i) new 
discoveries about the spatiotemporal behavior of P flows, and (ii) 
development of decision support tools that are based on near real time 
data. As such, an improved understanding of the accuracy of new sensors 
(primarily selectivity and limit of detection) and their embedded 

decision support systems are critical needs. 
Sensors (including detectors and assays) are portable monitoring 

tools that are designed for point of use (i.e., point of need) detection of 
target analyte(s). The working mechanism for a sensor is based on the 
recognition-transduction-acquisition (RTA) triad (Fig. 1, top row). 
When signals are digitized and combined with feedback control systems 
(Fig. 1, bottom row), this is then denoted a cyber-physical system (CPS). 
In general, the intent of portable techniques such as CPS is not to replace 
a gold standard method, but rather to augment monitoring efforts by 
expanding spatiotemporal resolution via in situ ground truthing. Com-
bination of real time ground truth with analytical laboratory techniques 
allows spatiotemporal P dynamics to be quantified. To extend this 
concept, in situ (mobile) P sensors and CPS, if combined appropriately 
with social needs, may provide meaningful real time decision support 
(McLamore et al., 2019; Morgan et al., 2020). 

Sensors are at the heart of CPS and decision support tools. Recent 
reviews summarize the state of the art in P sensing capabilities, focusing 
on inorganic (Duffy and Regan 2017) or organic (Pundir et al., 2019) P. 
A wide array of sensing materials have been explored, from biological 
materials to polymeric membranes. These selecting coating materials 
are integrated with various transduction approaches in the development 
of P sensors (electrochemical, photonic, etc.). Compared to gold stan-
dard analytical techniques, portable P sensors suffer from poor speci-
ficity in complex matrices such as wastewater, soil, surface waters, or 
food processing environments. To circumvent the lack of accuracy, 
sample pre-treatment may be used (Lu et al., 2021). However, this 
approach requires considerable exogenous reagents/acids, complex 
equipment, and/or significant human intervention, thus limiting auto-
mation and sample throughput and applications in near real time 

Fig. 1. Cyber-physical system (CPS) showing sensor working mechanism based on RTA triad (top row) and embedded analytics in cyber domain (bottom row). See 
supplemental Fig. S1 for more details of CPS design theory and a conceptual example of a phosphate CPS coupled with a smart phone for mobile analytics. 
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decision support. To be applicable to emerging CPS monitoring, next 
generation P sensors must, at a minimum, quantify at least one form of P 
in near real time, with no dependence on external reagents. 

CPS for phosphate are beginning to appear in the peer reviewed 
literature. Most CPS are soft sensor systems, which are input-output in 
silico models. Real time data on surrogates (non-phosphorus targets) are 
analyzed using techniques such as principal component analysis or 
machine learning techniques. P concentration is inferred via correlation 
of the model, and data is used for process control. For example, Hong 
et al. (2007) developed one of the first soft sensor systems for monitoring 
a bench-scale sequencing batch reactor for biological nutrient removal. 
More recently, Nair et al. (2020) and Zhang et al. (2022) developed soft 
sensor CPS for predicting P concentration in wastewater bioreactors 
based on real time surrogate sensors (see supplemental Table S1). Other 
examples of soft sensor CPS have been demonstrated in urine monitoring 
and control (Saetta et al., 2019) and in-pipe robotic systems for water 
quality (Kazeminasab and Banks 2022). 

Among CPS for P monitoring, the few examples in the literature that 
propose smart systems with embedded data analytics either demonstrate 
poor selectivity or a lack of validation against gold standard analytical 
testing (Akhter et al., 2022; Harnsoongnoen et al., 2019; Nag et al., 
2019) (Table S1). To date, all CPS have focused on ortho-P in the peer 
reviewed literature, or more accurately soluble molybdate reactive 
phosphorus. There is currently no literature demonstrating direct, 
continuous, quantitative sensing for any of the mass flows identified by 
Cordell and others (organic or inorganic) (Brownlie et al., 2021; Chen 
and Graedel 2016; Cordell and White 2014). 

P sensors and associated CPS have the unique ability to fill data gaps, 
empowering end-users and policymakers via data-informed decision 
support (McLamore et al., 2019). In line with Duffy and Regan (2017), 
we call for the development of in situ CPS for P that can shed light on the 
fate and form of P in water and soil systems. However, we raise caution 
regarding the widespread deployment of P sensors that are not devel-
oped with sustainability as a guiding principle. This caution aligns with 
the recent report by the National Academies of Science in debunking 
infeasible technologies (NASEM (National Academies of Science Engi-
neering and Medicine) 2021), which is important for long term tech-
nology translation and establishment of trust networks. 

3. Sustainability frameworks to guide emerging P monitoring 
systems 

Sustainability is rooted in the triple bottom line (TBL), built on 
environmental, social, and economic pillars (Fig. 2, orange boxes). 
Translation of scientific discovery is driven by adoption/appropriation 
and implementation, all of which have both technological and non- 
technological aspects. At the most granular level, TBL and similar 
frameworks must drive emerging technology development. For 
example, selection of sustainable materials for device fabrication spans 
both affinity coatings in sensors as well as transduction systems for 
signal acquisition (Fig. 2, blue boxes). Sustainability frameworks also 
inform cyber system infrastructure (e.g., data centers) (Fig. 2, purple 
boxes). In the non-technological space, production and consumption 
practices, in general, are facing environmental and social constraints 
(Olivetti and Cullen 2018; Selin 2022). Stakeholder perceptions 
(whether tangible or otherwise; Fig. 2, green boxes), drive practices 
(including knowledge gains, and attitude/behavior change) (Fig. 2, 
yellow boxes). 

3.1. Technological solutions will benefit from TBL frameworks 

Weidenkaff et al. (2021) note that sustainable economies require 
mass production of electronics (chemical batteries, motors, etc.) using 
recycled materials as the source input for manufacturing. If sensors are 
to play a role in future systems at large scale, sensor and CPS developers 
must follow suit. Recent studies have demonstrated development of 
electrochemical or plasmonic sensors using recycled metals (Abdelbasir 
et al., 2018, 2020), polymers (Mohanty et al., 2022), and obsolete solid 
waste such as compact discs (Brown et al., 2022). Earth-abundant 
transition metals and metal-oxides are increasing in popularity for 
electrochemical sensor development (Maduraiveeran et al., 2019), 
which may pave the way toward limiting use of noble metals. Organic 
semiconductors have been synthesized from used rubber tires for elec-
tronic platform fabrication (Zhu et al., 2019). In another example, 
reagent-free sensors based on paper devices have been developed for 
applications in the water and food supply chains (Arduini et al., 2020). 
Sustainable development of sensors and CPS does not end with physical 
device fabrication. Raw data from monitoring technologies has no direct 
value, rather the data must evolve to the information domain where it is 

Fig. 2. Sustainability frameworks (e.g., TBL) 
and technology development efforts span the 
material scale to the human scale. TBL pillars 
support technology development efforts for P 
monitoring systems and CPS. Regulation and 
policy govern technological and non- 
technological solutions. A combination of solu-
tion approaches is required for development of 
advanced P monitoring networks that add value 
to social systems. Decision support systems 
based on CPS are an emerging opportunity to 
fill data gaps between environmental, economic 
and social pillars.   
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accessible to social knowledge networks. Data analytics for CPS depend 
on physical centers capable of supporting storage, analysis, and 
dissemination of structured/unstructured data on demand. 

Development of sustainable data centers has been a global concern 
for decades, and is a component of the UN Sustainable Development 
Goals (United Nations 2019). Sovacool et al. (2022) critically reviewed 
the current status of massive data centers (Nordic region), and the 
associated complexities related to environmental costs and the health of 
local biological systems in the region. In addition to issues of displace-
ment and regional ecosystem damage resulting from new centers, en-
ergy use is a major concern. Predictions of global energy consumption by 
data centers vary from 300 to 3000 billion kWh per year (Hintemann 
and Hinterholzer 2019). The metric for energy efficiency (power use 
effectiveness, PUE) is highly variable amongst data centers, but in 
general is decreasing as infrastructure improvements (Chen et al., 2020). 
Data, one of the hidden layers of CPS, is receiving more attention in the 
last decade. We anticipate this increased attention will illuminate 
emergent opportunities and challenges in CPS development. Key ques-
tions for CPS developers may be: Are we asking the right questions prior 
to development of our technologies? Does every problem require a CPS 
solution? In the next section we summarize how CPS may inform 
non-technological solutions for P management across the waste, water, 
soil and food cycles. 

3.2. Non-technological solutions will benefit from TBL-informed CPS 

CPS informed by sustainability frameworks are well positioned to 
integrate with stakeholders/users. Key actors in the non-technological 
solution space include regulatory bodies and associated practices, as 
well as various stakeholders. For regulators, effective in situ CPS may 
provide more accurate and plentiful data on P flows in the environment. 
For stakeholders in industry, CPS development may represent a new 
product that can be marketed or improvements to an existing product. 
Data on the spatiotemporal concentration of P may empower farmers to 
make faster informed decisions about land management and thus 
improve crop yield without additional inputs. The environment itself 
represents another stakeholder; we may not be able to ask the envi-
ronment its opinion about sensors, but we are nevertheless accountable 
to the interests of environmental protection for future generations. 

Accounting for many and varied stakeholder perspectives presents 
challenges to traditional methods of technology design. For example, 
while regulators may welcome more accurate sensors, more accurate 
and plentiful data may result in policy that requires farmers to change 
practices – and incur more costs – to comply with changes in the regu-
latory regime. Moreover, stakeholders vary in the power and influence 
they can wield in the design process. The pursuit of commodification 
may be salient for industry over other stakeholder interests. Finally, to 
encourage more widespread adoption, sensors should be included in 
existing, familiar technologies to overcome the risk of information 
overload for those who use them. While balancing these demands pre-
sents a challenge, that challenge must be met to promote wider adoption 
and meaningful use. 

4. Challenges and opportunities 

Information on the concentration and speciation of P in agro-
ecosystems (and associated subsystems) is critical for implementation of 
circular resource systems. Understanding the forms, and the flows, of P 
in water and soil systems is critical to recovery and reuse efforts. The 
next generation of P monitoring systems must be rooted in sustainability 
frameworks, with the TBL acting as a minimum for success. Emerging 
systems must account for complex interactions and consider adaptive 
dynamics oriented to informing action. Integration of coupled in-
teractions, particularly those involving societal factors, has been a major 
weakness of other systems-level approaches that involve analytical 
detection (Selin 2022). There is an opportunity to learn from previous 

global monitoring efforts, and also to integrate existing approaches that 
have been largely ignored. Regarding the latter, frameworks rooted in 
citizen science are becoming a popular approach for pollution moni-
toring (Hsu et al., 2014; Mahajan 2022). If applied for P monitoring, 
citizen science and other open science pathways have the potential to 
connect people with data. These connections are critical for interoper-
ability of sensors and decision support systems. 

The necessary transformations for sustainable P sensing (hardware 
and software) must be accompanied by a wide-ranging stakeholder 
engagement process that collects, analyzes, synthesizes, and circulates 
diverse, even conflicting perspectives that inform research agenda. 
Designing and engineering sensor technologies for providing meaning-
ful use (Blumenthal and Tavenner 2010; Thurston 2014) to stakeholders 
avoids the pitfalls of technology over-promise that plague the field of 
sustainability research and development (Kirchherr 2022). 
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