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Abstract

Cardiac lymphatic vasculature undergoes substantial expansion in response to myocar-

dial infarction (MI). However, there is limited information on the cellular mechanisms medi-

ating post-MI lymphangiogenesis and accompanying fibrosis in the infarcted adult heart.

Using a mouse model of permanent coronary artery ligation, we examined spatiotemporal

changes in the expression of lymphendothelial and mesenchymal markers in the acutely

and chronically infarcted myocardium. We found that at the time of wound granulation, a

three-fold increase in the frequency of podoplanin-labeled cells occurred in the infarcted

hearts compared to non-operated and sham-operated counterparts. Podoplanin immuno-

reactivity detected LYVE-1-positive lymphatic vessels, as well as masses of LYVE-1-neg-

ative cells dispersed between myocytes, predominantly in the vicinity of the infarcted

region. Podoplanin-carrying populations displayed a mesenchymal progenitor marker

PDGFRα, and intermittently expressed Prox-1, a master regulator of the lymphatic endo-

thelial fate. At the stages of scar formation and maturation, concomitantly with the enlarge-

ment of lymphatic network in the injured myocardium, the podoplanin-rich LYVE-1-

negative multicellular assemblies were apparent in the fibrotic area, aligned with extracel-

lular matrix deposits, or located in immediate proximity to activated blood vessels with

high VEGFR-2 content. Of note, these podoplanin-containing cells acquired the expres-

sion of PDGFRβ or a hematoendothelial epitope CD34. Although Prox-1 labeling was

abundant in the area affected by MI, the podoplanin-presenting cells were not consistently

Prox-1-positive. The concordance of podoplanin with VEGFR-3 similarly varied. Thus, our

data reveal previously unknown phenotypic and structural heterogeneity within the podo-

planin-positive cell compartment in the infarcted heart, and suggest an alternate ability of
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podoplanin-presenting cardiac cells to generate lymphatic endothelium and pro-fibrotic

cells, contributing to scar development.

Introduction

The cardiac lymphatic system is crucial for the control of intra-myocardial pressure and pre-

vention of swelling, lipid transport, and balanced regulation of tissue inflammation (reviewed

in [1–4]). Although little is known about the distribution and activity of cardiac lymphatic ves-

sels (CLVs), there is a documented link between lymphatic malfunction and cardiovascular

diseases, including post-MI edema, fibrosis and scarring, and the evolution of congestive heart

failure [3, 5–9].

Based on the hitherto reported data, the adult cardiac lymphatic vasculature consists of a

network of sub-epicardial and sub-endocardial vessels and a plexus of myocardial capillaries of

various diameters and variable concentrations in the different regions of the heart [2–4, 10,

11]. By employing immunohistochemical labeling of proteins preferentially expressed in lym-

phatic endothelial cells, such as lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1),

membrane glycoprotein podoplanin, prospero homeobox-1 (Prox-1) transcription factor, or

vascular endothelial growth factor-3 (VEGFR-3), it was established that the localization and

morphology of CLVs are substantially altered in pathological conditions [7–9, 11–15]. Acutely

after MI, the density of CLVs increases in the early phases of wound granulation and is further

elevated at later stages of tissue repair, superseding the number of blood vessels (BVs) in the

scar [9, 12–15]. The post-MI lymphangiogenesis in the human heart is mostly apparent in the

scar, infarct border zone (BZ) and reactive pericarditis [9]. Likewise, in murine models of MI,

the development of new CLVs is primarily detected in severely damaged myocardium and the

adjacent BZ [13–16]. There is evidence that CLVs are involved in adverse ventricular remodel-

ing [13], potentially promoting the maturation of fibrosis and formation of a stable scar [12,

16]. Yet, experimentally-induced impairment in cardiac lymph flow leads to exacerbated and

prolonged inflammation after MI [1, 5], and promoting post-MI lymphangiogenesis is sug-

gested to facilitate structural and functional recovery of the mouse [14] and rat [15, 17] hearts.

Thus, lymphangiogenic processes in the infarcted heart may have pleiotropic effects on the

fibrogenic responses and scar maintenance.

Importantly, the cellular sources of the CLVs in the healing MI remain to be revealed. In

order to recognize putative cell populations participating in post-MI lymphangiogenesis and

fibrosis during different phases of wound repair, we performed characterization of the distri-

bution of an established lymphendothelial epitopes, podoplanin, LYVE-1, Prox-1 and

VEGFR-3, along with the analysis of cell phenotypic markers associated with angiogenic and

fibrogenic responses, including CD34, platelet-derived growth factor receptor (PDGFR) α and

PDGFRβ, vimentin, and α-smooth muscle actin (α-SMA). Our data point to an unexpected

heterogeneity in the podoplanin-positive cardiac cell compartment, which might be significant

for the processes of CLV growth after injury, development of fibrosis and scar maintenance.

Materials and methods

Myocardial infarction

Experiments were conducted according to the NIH Guide for the Care and Use of Laboratory

Animals and were approved by the Brigham and Women’s Hospital Institutional Animal Care

and Use Committee (IACUC). C57BL/6 mice (Charles River Laboratories) and BDF1 Kit/GFP
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transgenic mice [18] (bred in house) behaved similarly and were used interchangeably with

identical results. We have elected to employ female mice to reduce biological variability related

to the sex of animals. In this regard, previous studies have documented that female mice

exhibit better survival and succumb less to heart failure after myocardial infarction (MI) com-

pared to male mice [19, 20]. Future investigations will establish whether lymphatic vessel

growth and fibrogenic responses in the ischemic heart are comparable in male and female ani-

mals. MI was induced at 2–3 months of age as follows: animals were anesthetized with isoflur-

ane 1.5% and ventilated; under sterile conditions the thorax was opened via the third costal

space, the atrial appendage elevated, the left coronary artery located, and a silk braided suture

(6–0) was inserted and tightened around the vessel near the origin. Then, the chest was closed

and pneumothorax reduced by negative pressure, and the animals were allowed to recover.

Sham-operated (SHAM) mice were subjected to an identical surgery procedure, with the

exception that the suture was not tightened around the artery. Non-operated (NO) mice served

as additional controls. At the time of sacrifice, with the animals under deep anesthesia, bilateral

thoracotomy was performed, the hearts were removed and either fixed and processed for his-

tological analysis, or enzymatically digested [21] for single-cell assessment by flow-cytometry,

as described below.

Immunohistochemistry of thin cardiac sections

Hearts were perfused with 10% formalin, fixed and embedded in paraffin. Cardiac tissues

were cut into 4 μm-thick sections. Following deparaffinization, rehydration, and heat-

induced antigen retrieval (pH 6.0), samples were indirectly immunolabeled with commer-

cially-available primary antibodies and corresponding fluorophore-conjugated secondary

reagents; a complete list of antibodies is provided in the S1 Table. Nuclei were counterstained

with Hoechst 33342 (Life Technologies) or 4’,6-diamidino-2-phenylindole dihydrochloride

(DAPI; Sigma-Aldrich). Multiple sections from the hearts of at minimum 4 mice for each

time point after MI and 3 mice per sham-operated group were examined, and representative

micrographs are included in the figures. Images were acquired with Olympus FluoView

FV100 laser scanning confocal microscope equipped with CCD camera (Bio-Rad), using

20X, 40X and 60X objectives. Optical sections (ΔZ = 0.5 to 1 μm) spanning the sample thick-

ness were projected into a single plane for each color channel and merged using Adobe Pho-

toshop (Adobe) or Imaris (Bitplane) software. Alternatively, the sections were blocked with

hydrogen peroxide and indirectly immunolabeled with MOMA-2 or F4/80 antibodies (see

S1 Table), followed by the development with diaminobenzidine (DAB) substrate kit (Vector)

and counterstaining with hematoxylin and eosin (Poly Scientific R&D Corp.). Images were

acquired using Olympus BX63 light microscope (Olympus Scientific Solutions Americas)

with 20X and 40X objectives and assembled in Adobe Photoshop. Quantitative image analy-

sis was performed with NIH ImageJ by scoring multiple imaging fields of 0.4 mm2 (20X

objective) and 0.045 mm2 (60X objective) for every indicated time point after MI in the scar

and border zone (BZ) and remote area (RA) as follows: Podoplanin labeling was measured as

% area above binary threshold of positive pixels out of total area populated by cells. Podopla-

nin co-labeling with LYVE-1, CD34 and VEGFR-3 was calculated using JACoP (Just

Another Colocalization Plugin) to determine the degree of co-localization (ranging from the

minimum of “0” to maximum of “1”) by Manders overlap coefficient, i.e., the fraction of

intensity in a channel of interest located in the pixels displaying above a threshold signal in

the podoplanin channel. The occurrence of Prox-1, PDGFRα or PDGFRβ staining in podo-

planin-positive cells was assessed by counting the % of double-labeled cells from the total

number of podoplanin-positive cells in the imaging field.

Podoplanin-expressing cells in the infarcted heart
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Immunolabeling of thick cardiac sections

Hearts were perfused with 4% paraformaldehyde and stored at 4˚C. Sections of 75 to 250 μm

were prepared using Leica VT1200 vibrating blade microtome (Leica Biosystems), and indi-

rectly immunolabeled employing the reagents detailed in the S1 Table, and Alexa Fluor

647-conjugated isolectin GS-IB4 (Life Technologies). Images were acquired with Olympus

FluoView FV100 laser scanning confocal microscope using 10X and 20X objectives. Optical

sections (ΔZ = 1.5 to 2.5 μm) were projected into a single plane for each color channel, and

merged using Adobe Photoshop or Imaris software. Representative micrographs are included

in the figures.

Flow-cytometry analysis of isolated cardiac cells

Infarcted (MI) and sham-operated (SHAM) C57BL/6 mice were euthanized at 2 days after sur-

gery, as described above. Non-operated (NO) age-matched animals were used as controls. The

hearts were excised and extensively washed in phosphate buffered saline. The cardiac tissues

were minced and subjected to repetitive rounds of enzymatic digestion with collagenase type 2

(Worthington Biochemical Corp.) until complete dissociation. Larger cells, such as mature

myocytes, were precipitated, and the supernatants containing small cell populations were fil-

tered through 40 μm cell strainers. High cell viability after isolation (~98%) was confirmed by

flow-cytometry based on 7-AAD (BD Biosciences) exclusion. Samples were then either imme-

diately stained with podoplanin and VEGFR-3, or fixed in 4% paraformaldehyde and immu-

nolabeled for podoplanin only, or podoplanin in conjunction with either LYVE-1, PECAM-1,

CD34, Ly6C, CD11b, F4/80, PDGFRα or PDGFRβ. Prox-1 labeling was performed after the

incubation of unfixed cells with podoplanin antibody, using fixation and permeabilization

reagents from the transcription factor staining buffer set (affymetrix eBioscience) according to

manufacturer’s instructions. The antibodies used for flow-cytometry are listed in the S1 Table.

Non-immune normal goat, rabbit, syrian hamster and rat IgGs and isotype controls (detailed

in the S1 Table) were employed as negative controls for the respective antigen-specific labeling.

Similar procedures for mouse cardiac cell isolation and antibodies for the detection of podo-

planin, LYVE-1, F4/80 or PDGFRα by flow-cytometry, were recently reported by other groups

[22, 23]. Samples were acquired with BD FACSCantoII (BD Biosciences) and analyzed using

FlowJo software (Tree Star Inc.). Single cells were gated using FSC-A/SSC-A followed by

FSC-H/FSC-W and SSC-H/SSC-W in all experiments. Compensation settings, gating of posi-

tive populations and calculations of % positive cells were performed based on non-immune

and isotype IgGs and fluorescence minus one controls.

Statistical analysis

Data were presented as values for individual mice and means. Statistical analysis was per-

formed with two-tailed t-test or one-way ANOVA and Tukey’s post hoc test for multiple com-

parisons using GraphPad Prism (GraphPad Software).

Results

Time-dependent increase in podoplanin expression in the infarcted heart

To examine changes in the expression pattern of the lymphatic endothelial cell and mesenchy-

mal markers in acutely and chronically infarcted myocardium, we implemented immunohis-

tochemical analysis of the tissue sections obtained from non-operated mouse hearts, as well as

cardiac samples at 4 and 8 hours (< 1 day), 2 days, 2 weeks and 1 month after coronary artery

ligation, and sham-operated animals. We observed that at the time of coagulation necrosis and
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early stages of tissue granulation [12, 24], as illustrated by 8 hours after MI, there was a slight

decrease in podoplanin-labeled structures in the necrotic area when compared to a corre-

sponding myocardial region in non-operated hearts (Fig 1A), which is in agreement with pre-

vious findings in humans [12]. Unexpectedly, at 2 days after MI, there was a more than a

6-fold rise in the podoplanin immunoreactivity in the infarct BZ relative to earlier time points

after MI (< 1 day) or myocardial area remote to infarction (RA) (Figs 1A, 1B, 1E and 2A and

S1 Fig Panels A-C and S2 Fig Panels A,B; 2 days).

By flow-cytometry evaluation of isolated cardiac cells, we established that the frequency of

podoplanin was relatively low in non-operated and sham-operated non-infarcted hearts (Fig

1C). Of note, a recent study, combining immunohistochemical and flow-cytometry assessments

of the mouse cardiac cellular composition, similarly reports that in homeostatic conditions, the

podoplanin-positive cells are rare, constituting less than 5% of the myocardial endothelial cell

population [23]. We next documented that in line with immunohistochemical findings on the

podoplanin accumulation in the infarct BZ, flow-cytometry analysis determined that in the

total heart, MI was associated with more than a three-fold increase in the occurrence of podo-

planin-expressing cells versus non-operated and sham-operated counterparts (Fig 1C).

In the infarcted myocardium, similarly to remote areas and sham controls, the LYVE-1

labeling coincided with podoplanin almost exclusively in the vessel endothelium (Fig 1E–1H).

It is well-documented that lymphangiogenesis in the infarcted heart is peaking with the devel-

opment of fibrosis and commencement of scar maturation [12–15, 25]. Accordingly, during

early inflammatory responses to tissue damage [24], there were no noticeable differences in

the presence of LYVE-1-positive CLVs in proximity to the injured area (Fig 1E and S1 Fig; 4

and 8 hours). In contrast, at the time of the appearance of podoplanin-positive cells at 2 days

after MI, the co-labeling of LYVE-1 with podoplanin in the infarct BZ was substantially dimin-

ished (Fig 1E and 1F and S1 Fig Panels A-E; 2 days). We observed that the expansion of podo-

planin-positive compartment shortly after MI was manifested by robust accumulation of

interstitial LYVE-1-negative cells in the infarct BZ (Fig 1E and 1F, and S1 Fig Panels A-E; 2

days), and, to a much lesser extent, the RA (Fig 1G and S1 Fig Panels F,G; 2 days). Quantita-

tively, as compared to RA, in the infarct BZ there was more than a 30-fold decrease in the pro-

portion of podoplanin-positive structures displaying the co-staining with LYVE-1 (Fig 1F,

graph; 2 days). In support, flow-cytometry suggested that a much smaller fraction of podopla-

nin and LYVE-1 double-positive cells resided in the heart after MI compared to non-operated

and sham-operated conditions (S3 Fig Panel A). Similarly, the co-labeling with a pan-endothe-

lial determinant PECAM-1 was significantly reduced after MI in the cohorts of podoplanin-

presenting cells (S3 Fig Panel B, PECAM-1), further demonstrating that a large share of podo-

planin-bearing cells appearing after infarction in the myocardial interstitium did not display

markers of mature endothelium.

Subsequently, at 2 weeks after MI, at the maturation phase of wound healing, the density of

podoplanin-labeled cells and CLVs was further elevated in the scar and BZ: there was an addi-

tional 1.7-fold increase in the podoplanin-labeled tissue area relative to 2 days, and a 10-fold

rise relative to inflammatory stage (< 1 day) (Fig 1B and 1D–1F and S1 Fig Panels A-E; 2

weeks), or the remote RA (Fig 1B and 1G and S1 Fig Panels F,G) and non-operated myocar-

dium (Figs 1A and 2A and S2 Fig Panels A,B; NO). In the healing scar, podoplanin immunore-

activity was apparent in LYVE-1-negative cell cords (Fig 1E and 1F and S1 Fig Panels A-E; 2

weeks). The proportion of podoplanin-positive cells co-labeled with LYVE-1 at 2 weeks after

MI was almost 15 times lower than in the RA (Fig 1F, graph; 2 weeks). These podoplanin-pre-

senting LYVE-1-negative cells were aligned with the extracellular matrix (Fig 3A; 2 weeks) and

formed capillary-like structures, which occasionally expressed CD34 (Fig 3B). The co-labeling

of podoplanin with CD34 was more readily detectable at the time of scar maturation at 2

Podoplanin-expressing cells in the infarcted heart

PLOS ONE | https://doi.org/10.1371/journal.pone.0173927 March 23, 2017 5 / 24

https://doi.org/10.1371/journal.pone.0173927


Fig 1. Podoplanin expression in the infarcted and non-infarcted hearts. (A) Thin cardiac sections from non-operated

(NO) mice and animals at the indicated times after MI were indirectly immunolabeled with podoplanin (red). Nuclei, blue.

Areas neighboring the necrotic myocardium are shown for the infarcted hearts. Note the increase in podoplanin

immunoreactivity at 2 days after MI. (B) Quantitative image analysis of the changes in podoplanin immunolabeling in thin

cardiac sections in the infarcted myocardium at the indicated times after MI. RA, remote area. Data represent mean and

SD of % area stained with podoplanin; n = 6–10 image fields per group. By one-way ANOVA, *P < 0.02 for 2 days vs. RA, 2

weeks, or 1 month; **P = 0.0017 for 2 days vs. < 1 day; ***P < 0.0001 for RA vs. 2 weeks or 1 month and for < 1 day vs. 2
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weeks compared to an earlier stage of acute injury at 2 days (Fig 3B), with a 3-fold increase in

the co-localization coefficient relative to 2 days (Fig 3C, graph). Indeed, as evaluated by flow

cytometry, shortly after MI there were no significant changes in the proportion of CD34-posi-

tive cells within podoplanin-presenting populations versus sham-operated controls (S3 Fig

Panel B, CD34). Intriguingly, the podoplanin-expressing cells also frequently encircled BVs in

the fibrotic region and neighboring myocardium (Figs 1F, 3D and 4; 2 weeks), which might

point to their origin from perivascular cells or the cells recruited from circulation.

In the heart with a mature scar at 1 month after MI, the podoplanin labeling in the infarcted

area and BZ remained high with no significant changes versus 2 weeks after MI (Fig 1B and

1D–1F). As expected [12–16], the presence of LYVE-1- and podoplanin-positive CLVs was

prominent (Figs 1D–1F, 1H and 2B, S1 and S2Figs Panel C; 1 month), supporting the notion

that lymphatics, once formed, persist in the scarred tissue [12, 13, 15, 26]. The co-staining with

CD34 was also simialr to that in a maturing scar at 2 weeks (Fig 3B; 2 weeks and Fig 3C; 1

month, and Fig 3C, graph), with an almsot 5-fold rise in podoplanin co-localization coefficient

with CD34 relative to 2 days after MI (Fig 3C, graph). Correspondingly to the earlier stages of

scar maturation, the podoplanin-expressing population in the mature scar was dominated by

the LYVE-1-negative multicellular assemblies (Fig 1E and 1F and S1 Fig Panels A-E; 1 month),

which were observed aligned with fibronectin deposits in the scar (Fig 3A; 1 month) and at the

outline of small and large blood vessels (Fig 4; 1 month). In contrast, there was no such accu-

mulation of the podoplanin-labeled cellular aggregates in the RA not affected by the infarction

(Fig 1F, graph, RA, and Fig 1G and S1 Fig Panels F,G; 1 month). Quantitatively, there was

more than a 10-fold decrease in the podoplanin and LYVE-1 co-localization in the chronic

scar and BZ compared to RA (Fig 1F; 1 month). Collectively, these findings point to a correla-

tion between the presence of podoplanin-expressing LYVE-1-negative cells at different stages

of cardiac healing and the development of CLVs and fibrosis after MI.

Of interest, the growth of CLVs and appearance of podoplanin-positive interstitial cells

were not detected in the sham-operated animals (Fig 1H and S1 Fig Panel H; 1 month SHAM).

Likewise, there were no significant differences in the frequency of podoplanin between the

sham- and non-operated hearts at 2 days after surgery (Fig 1C). These data underscore a spe-

cific effect of the MI-induced injury on the podoplanin expression and lymphangiogenesis.

Variable manifestation of the lymphatic endothelial cell markers Prox-1

and VEGFR-3 in the podoplanin-positive cardiac population

In order to assess the lymphangiogenic potential of the podoplanin-bearing cells in the

infarcted myocardium, we evaluated the presence of a lymphatic endothelial cell-specific

weeks or 1 month; ns, non-significant for < 1 day vs RA, and for 1 month vs. 2 weeks. (C) Flow-cytometry analysis of the

frequency of podoplanin-positive cells in the hearts of non-operated (NO), and the sham-operated (SHAM) and infarcted

(MI) mice at 2 days after surgery. Graph depicting data from individual animals (upper row) and representative flow-

cytometry scatterplots (lower row) are shown. n = 10–20 animals per treatment; mean values are represented by the red

line on the graph. By one-way ANOVA, *P < 0.0001 for MI vs. SHAM or NO; ns, not significant for SHAM vs. NO. (D-H)

Thin cardiac sections obtained at the indicated times after MI were indirectly immunolabeled with antibodies that recognize

podoplanin (D-H; red), LYVE-1 (E-H; green), and PECAM-1 (E and H; grey). Nuclei, blue. Corresponding single channel

images (E-H) are included in S1 Fig. Areas affected by ischemia are depicted in D-F; Remote area (RA) is shown in G.

SHAM, sham-operated in H. In F, the arrowheads in representative images (upper panels) point to the examples of

podoplanin-positive LYVE-1 negative cells. Note the accumulation of LYVE-1-positive CLVs (red and green) as well as

podoplanin-expressing cells lacking the LYVE-1 labeling (red only) in the infarcted myocardium as opposed to RA and

SHAM. Quantitative image analysis (lower panel) of the podoplanin co-labeling with LYVE-1 is included in the graph. Data

represent mean and SD of the co-localization coefficient measured at indicated times after MI and the remote area (RA);

n = 5–10 image fields per group. By one-way ANOVA, *P < 0.0001 for RA vs. 2 days, 2 weeks or 1 month; no significant

changes between 2 days and 2 weeks and 1 month.

https://doi.org/10.1371/journal.pone.0173927.g001
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Fig 2. CLVs in the forming and mature scar. Thick cardiac sections were indirectly immunolabeled with the mix of LYVE-1

and podoplanin antibodies (A,B; red) and α-SMA antibody (B; grey), and co-stained with isolectin GS-IB4 (A,B; green). NO,

non-operated. Time after MI is indicated. Corresponding single channel images are included in S2 Fig. CLVs are recognized

by the staining with podoplanin and LYVE-1. In A, note the changes in the abundance and distribution of the vessels and

LYVE-1 and podoplanin immunolabeled cells at different stages of infarct healing. In B, α-SMA-positive cells are apparent in

the fibrotic tissue and the coating of large vessels.

https://doi.org/10.1371/journal.pone.0173927.g002
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Fig 3. Phenotype of podoplanin-positive cells in the fibrotic tissue. Thin cardiac sections were indirectly immunolabeled with

antibodies that recognize podoplanin (red) and either fibronectin and vimentin (A; green and grey, respectively), VEGFR-2 and

CD34 (B and C; green and grey, respectively), or α-SMA (D; grey). Nuclei, blue. Time after MI is indicated. Areas in rectangles are

shown at higher magnifications in the adjacent images for each color channel. Note that vimentin (A) or α-SMA (D) labeling is

rarely detectable in podoplanin-expressing cells (examples are pointed by yellow arrowheads). In B and C, the podoplanin-

presenting cells show minimal VEGFR-2 labeling. At 2 days after MI, the podoplanin-bearing cells mostly do not co-stain with

CD34 (exemplified by yellow arrowheads). Starting 2 weeks after MI, the CD34 staining is present in irregular capillary-like

Podoplanin-expressing cells in the infarcted heart
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transcription factor Prox-1 [27–29] in this population. We noted that at different times after

MI, along with the expected localization in the nuclei of the endothelium of CLVs (Fig 5A–5C,

arrows), Prox-1 staining was detectable in the podoplanin-positive cells not organized into ves-

sel-like structures (Fig 5A–5C, white arrowheads). By flow-cytometry, the frequency of Prox-1

structures (examples are indicated by white arrows). In C, quantitative image analysis demonstrating changes in the podoplanin

co-labeling with CD34 at indicated times after MI is included in the graph (lower panel). Data represent mean and SD of the co-

localization coefficient; n = 5–6 image fields per group. By one-way ANOVA, *P < 0.02 for 2 weeks vs. 2 days; **P < 0.0001 for 1

month vs. 2 days; ns, not-significant for 1 month vs. 2 weeks.

https://doi.org/10.1371/journal.pone.0173927.g003

Fig 4. Perivascular localization of the podoplanin-expressing cells. Thin cardiac sections were indirectly

immunolabeled with podoplanin (red) and VEGFR-2 (green) antibodies. Nuclei, blue. Time after MI is

indicated. Areas in rectangles are shown at a higher magnification in the adjacent images for each color

channel and merged. Note the podoplanin-positive cells encircling the VEGFR-2-labeled BVs.

https://doi.org/10.1371/journal.pone.0173927.g004
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Fig 5. Variable expression of Prox-1 and VEGFR-3 in podoplanin-positive cells in the infarcted heart.

Thin cardiac sections were indirectly immunolabeled with antibodies that recognize podoplanin (red) and

either Prox-1 (A-D; green) or VEGFR-3 (E-H; green). Nuclei, blue. Time after MI is indicated. Areas in

rectangles are shown in the adjacent images for each color channel and merged. White arrows indicate

examples of Prox-1 or VEGFR-3 labeling in the lymphatic endothelial cells of CLVs, and white arrowheads

point to the examples of Prox-1 or VEGFR-3 staining in podoplanin-expressing interstitial cells. Yellow

arrowheads exemplify instances of podoplanin-positive cells in which Prox-1 or VEGFR-3 expression was

undetectable. Note the consistent detection of Prox-1 and VEGFR-3 in CLVs, and the heterogeneity in Prox-1

Podoplanin-expressing cells in the infarcted heart
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in podoplanin-positive cells was diminished at 2 days after MI as compared to sham-operated

hearts (S3 Fig Panel B, Prox-1). These data are consistent with the findings on a lower presence

of LYVE-1 and PECAM-1 in the podoplanin-expressing cell cohorts, thus corroborating the

assumption that a large proportion of podoplanin-bearing cells appearing acutely after injury

do not possess a differentiated lymphatic endothelial phenotype.

The occurrence of Prox-1 in the infarcted myocardium was generally high at the later stages

of wound repair (Fig 5B and 5C; 2 weeks and 1 month). However, there was no direct correla-

tion between the incidences of podoplanin and Prox-1 in these cell cohorts (Fig 5B and 5C, yel-

low arrowheads). Despite a major rise in the abundance of podoplanin-presenting cells in the

scarred tissue (Fig 1B and 1D–1F; 2 days versus 2 weeks and 1 month), we observed that the

percentage of podoplanin-labeled Prox-1-postive cells in the injured area remained similar at

all the time points after MI (Fig 5C, graph), supporting the notion that many of the newly-

appearing podoplanin-expressing cells in the fibrotic area are Prox-1 negative.

VEGFR-3 is another characteristic marker of the lymphatic endothelial cell activation and

differentiation [30–32]. In the infarcted myocardium, VEGFR-3 was discontinuously

expressed in CLVs (Fig 5E–5G, white arrows), but only occasionally found in the podoplanin-

positive cells populating the infarct BZ shortly after MI (Fig 5E and 5G; 2 days). By flow-

cytometry, the frequency of VEGFR-3 co-staining with podoplanin was not affected by acute

myocardial injury as compared to non-operated and sham-operated animals (S3 Fig Panel B,

VEGFR-3). The level of VEGFR-3 immunolabeling was augmented at the later phases of

infarct healing at 2 weeks and 1 month, and the co-staining of VEGFR-3 with podoplanin was

intensified at these stages (Fig 5F and 5G, white arrowheads). Quantitatively, more than a

5-fold elevation in the co-localization of podoplanin with VEGFR-3 was found at the time of

scar formation and maturation relative to 2 days after MI (Fig 5G, graph). Yet, VEGFR-

3-expression was frequently lacking in podoplanin-presenting cells (Fig 5F and 5G, yellow

arrowheads). The appearance of Prox-1 or VEGFR-3 in a subset of podoplanin-expressing

cells suggests their commitment to the lymphatic endothelial cell fate. At the same time, the

absence of lymphendothelial epitopes in a large group of podoplanin-positive cells might sig-

nify an alternative differentiation pathway.

In contrast to VEGFR-3, the presence of VEGFR-2 was rarely detected in podoplanin-bear-

ing interstitial cells and CLVs in the infarcted heart (Figs 3B and 3C and 4). This is in agree-

ment with previous reports demonstrating that in the mouse, VEGFR-2 is restricted to the

activated blood endothelium [32].

Temporal changes in the mesenchymal markers PDGFRα and PDGFRβ
in podoplanin-positive cardiac cells

In the infarcted myocardium, the heightened expression of PDGFRα, PDGFRβ and their

PDGF ligands coincides with angiogenesis and inflammatory and fibrogenic responses, indi-

cating a role in wound repair processes [33, 34]. We found by flow-cytometry analysis of car-

diac cells from acutely infarcted hearts (S4 Fig), and immunohistochemistry assessment of

and VEGFR-3 labeling intensity in podoplanin-stained cells not organized into vessels. In C, quantitative

image analysis (graph, lower panel) of the fraction of podoplanin-expressing cells co-labeled with Prox-1 is

shown at indicated times after MI. Data represent mean and SD of the % double-positive cells out of all

podoplanin-positive cells in the imaging field; n = 6–9 image fields per group. By one-way ANOVA, no

significant changes between the groups. In G, quantitative image analysis (graph, lower panel) of the

podoplanin co-labeling with VEGFR-3 is shown. Data represent mean and SD of the co-localization coefficient

measured at indicated times after MI; n = 4–7 image fields per group. By one-way ANOVA, **P = 0.002 for 2

weeks vs. 2 days; *P = 0.009 for 1 month vs. 2 days; ns, not-significant for 1 month vs. 2 weeks.

https://doi.org/10.1371/journal.pone.0173927.g005
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myocardium at the different times after MI (Fig 6A–6C, white arrowheads, and Fig 6C graph),

that the podoplanin-presenting cells in the infarcted heart were distinctly PDGFRα-positive.

Since PDGFRα expression is associated with the properties of immature mesenchymal cells

[35–39], the concordance of PDGFRα and podoplanin staining suggests that cardiac podopla-

nin-positive cells contain a population with progenitor cell capabilities.

Unlike PDGFRα, PDGFRβ was infrequent in the podoplanin-presenting cells early after MI

(Fig 6E; 2 days, yellow arrowheads, Fig 6G, graph; 2 days, and S4 Fig). However, we noticed

that the level of PDGFRβ expression and co-staining with podoplanin were strongly elevated

at the later stages of infarct healing and in the mature scar (Fig 6F and 6G; 2 weeks and 1

month, white arrowheads), reaching ~100% co-labeling of the podoplanin-positive cells with

PDGFRβ (Fig 6G, graph; 2 weeks and 1 month).

PDGFRβ is a marker of pericytes and perivascular cells with fibrogenic potential [40–42].

In the infarcted myocardium, PDGFRβ labeling was abundant in the CLVs and BVs (Fig 6I).

Surprisingly, we noticed Prox-1 expression in the nuclei of podoplanin-negative cells of the

BVs (Fig 6I, arrows). Interestingly, a recent lineage-tracing analysis shows that PDGFRβ-posi-

tive endothelium contributes to the CLV formation during embryonal development [14],

implying that upon severe tissue injury, blood endothelial cells acquire the lymphatic endothe-

lial cell phenotype. Such endothelial cell plasticity has been previously described in cultured

cells and for the tumor vasculature [43–45].

Of note, although the expression of PDGFR α or β is often related to the fibrogenic behavior

and associated with the myofibroblast phenotype of cells [35–38, 40], we found that the podo-

planin-positive populations in the scar seldom exhibited fibroblast markers vimentin (Fig 3A,

yellow arrowheads) or a myofibroblast protein α-SMA (Fig 3D, yellow arrowheads). This sug-

gests that the podoplanin-labeled cells in the heart do not generate fully-differentiated fibro-

blasts, or the podoplanin expression is lost in the maturing fibrogenic cells.

Evidence for the role of inflammation in the recruitment of podoplanin-

expressing cells

Inflammation-induced lymphangiogenesis is a well-established phenomenon implicated in

wound healing responses [26, 46, 47]. Granuloma is a form of inflammatory reaction described

for several diseases. It is noted that nodules of granulomas in different tissues are characterized

by the presence of podoplanin-positive cells and lymphatic vessels of heterogeneous and atypi-

cal morphology, which frequently express PDGFRβ [42, 48, 49], resembling the podoplanin-

labeled cells in the chronically infarcted heart (Fig 6G; 1 month).

In the present study we also examined few cases of granulomas that developed near the

insertion of a suture thread within the myocardium. We found a high density of podoplanin

labeling in the granuloma nodules in the heart (Fig 1D–1F, S1 Fig Panels A-E and Fig 3A and

3C; 1 month/granuloma), but not in the RA of the same samples (Fig 1G and S1 Fig Panels F,

G; 1 month/granuloma). Additionally, the frequency of podoplanin-positive cells that express

Prox-1 or VEGFR-3 was increased in the scar and BZ in the cardiac samples with MI and gran-

ulomas as compared to MI only (Fig 5C and 5G; 1 month and Fig 5D and 5H; 1month/granu-

loma). Although the lymphangiogenic responses in the infarcted myocardium with

granulomas were apparently amplified relative to MI only (Fig 1D), the phenotypic features of

podoplanin-labeled cells in the hearts with granulomas, including vascular markers (Fig 3C; 1

month/granuloma) and PDGFRα and PDGFRβ (Fig 6D and 6H; 1month/granuloma), were

similar to the ones observed in the absence of granuloma (Figs 3C and 6C and 6G; 1 month).

This suggests that the surge in podoplanin expression following acute MI is at least partly

driven by inflammation.
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Fig 6. Expression of PDGFRα and PDGFRβ in podoplanin-positive populations. Thin cardiac sections

were indirectly immunolabeled with podoplanin (red) and either PDGFRα (A-D; green), PDGFRβ (E-H;

green), or PDGFRβ and Prox-1 (I; green and grey, respectively) antibodies. Nuclei, blue. In A-H, time after MI

is indicated. Areas in rectangles are shown in the adjacent images for each color channel and merged. In A-D,

podoplanin is frequently co-stained with PDGFRα at every time point; examples are indicated by white

arrowheads. In E, podoplanin-positive cells are mostly PDGFRβ-negative, as exemplified by yellow

arrowheads. In F-H, PDGFRβ distinctly co-stained with podoplanin. In C and G, quantitative image analyses

(graphs, lower panels) of the fraction of podoplanin-expressing cells co-labeled with PDGFRα (C) or PDGFRβ
(G) are shown at indicated times after MI. Data represent mean and SD of the % double-positive cells out of
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The inflammatory reaction to myocardial injury is evident by a time-dependent accumula-

tion of immune effectors, including macrophages. In murine embryos and pathological condi-

tions, cells that exhibit traits of macrophages display characteristics of lymphatic endothelial

cells and localize in the regions of lymphatic vessel growth, serving as a source of lymphangio-

genic factors, and potentially integrating into newly-formed vessels [50–53]. We did not detect

the presence of monocyte-macrophage markers MOMA-2 (Fig 7A), F4/80 (Fig 7B), or CD11b

and Ly6C (S5 Fig) in the infarcted myocardial areas that were characterized by the accumula-

tion of podoplanin-positive cells (Fig 1). Furthermore, by flow-cytometry analysis we docu-

mented that at 2 days after MI on average only 20% of podoplanin-positive cells in the

infarcted heart were labeled with either F4/80, CD11b (Fig 7C) or Ly6C (S5 Fig) antibodies.

These data indicate that the podoplanin-expressing pools in the heart in majority do not corre-

spond to maturing macrophages, although, as discussed below, their hematopoietic origin can-

not be excluded [54].

Discussion

In the present work we studied potential cellular mediators of the lymphangiogenic and fibro-

genic responses associated with the different stages of myocardial wound repair after

infarction.

We established that shortly after MI, at the time corresponding to the later phases of granu-

lation of the necrotic tissue in the infarcted myocardium, there was more than a six-fold

increase in the podoplanin labeling at the areas neighboring the infarction as compared to

remote area, and a three-fold increase in the frequency of podoplanin-positive cells in the

whole heart relative to non-operated and sham-operated controls. These newly-appearing

podoplanin-presenting cells not organized into vessel-like structures were predominantly

LYVE-1-negative and exhibited a heterogeneous phenotype in terms of various markers of

mesenchymal and endothelial fates. The immunolabeling profile of podoplanin-expressing

cells at the different stages of infarct repair is summarized in Table 1.

The presence of podoplanin-bearing cells was mainly prominent in the areas of future lym-

phangiogenesis at the infarct BZ. The abundance of podoplanin was further elevated almost

two-fold in the healing and maturing scars but not the RA, concomitantly with the previously

reported increase in LYVE-1 and VEGFR-3-positive CLVs [12–16] and the buildup of fibro-

nectin deposits [24–25]. The expansion of podoplanin-positive compartment and CLVs was

not noticeable in the myocardium of sham-operated animals.

We also found that the accumulation of podoplanin-labeled multicellular assemblies was

intensified in vicinity of myocardial granuloma nodules, exhibiting similarities to encapsulat-

ing peritoneal sclerosis [48] and pulmonary sarcoid granulomas [49]. Therefore, inflammatory

processes might play a significant role in the recruitment of podoplanin-bearing LYVE-1-neg-

ative cells to the site of myocardial repair or the activation of podoplanin expression in respon-

sive cell cohorts. Indeed, homing of circulating cells is proposed to contribute to the lymphatic

vessel formation under inflammatory conditions [54–56], with evidence that rare bone mar-

row-derived podoplanin-positive cells express Prox-1 and function as lymphatic endothelial

progenitors [56]. In addition, inflammation and neoplastic growth alter the podoplanin level

in various cell types, impacting their differentiation status and migratory behavior [57, 58].

total podoplanin-positive cells; n = 5 image fields per group. By one-way ANOVA for PDGFRβ, *P < 0.0001

for 2 days vs. 2 weeks or 1 month; ns, not-significant for 1 month vs. 2 weeks. In I, arrows point to the

examples of Prox-1 staining in the nuclei of PDGFRβ-positive podoplanin-negative BVs.

https://doi.org/10.1371/journal.pone.0173927.g006
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Fig 7. Low expression of monocyte-macrophage markers in the populations of podoplanin-positive cells in

the infarcted myocardium. (A,B) Thin cardiac sections were indirectly immunolabeled with MOMA-2 (A) or F4/80

(B) antibodies and counterstained with hematoxylin and eosin. Time after MI is indicated. Spleen sections were

included as positive controls. Areas in rectangles with the corresponding numbers are shown at a higher

magnification in the adjacent insets. Note the presence of cells immunoreactive for MOMA-2 or F4/80 (arrows) in

the inflamed epicardium (2 days, insets 2), myocardial interstitium (2 weeks, insets 2) and spleen, but not in the BZ

of necrotic myocardium (2 days, insets 1) or the maturing scar (2 weeks, insets 1). (C) Flow-cytometry analysis of
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Although the podoplanin-mediated signaling pathway is not sufficiently understood, the

expression of podoplanin is cognate to lymphatic endothelial cells; and inflammatory lym-

phangiogenesis is attenuated if podoplanin activity is lacking [59–61]. Podoplanin deficiency

impairs cardiac development [59], while continuous expression of podoplanin into adulthood

is required to maintain functional lymphatic vasculature [57, 62, 63]. Accordingly, we detected

the presence of canonical lymphendothelial markers Prox-1 and VEGFR-3 within the cohort

of podoplanin-positive LYVE-1-negative cells (Table 1), which might be indicative of their dif-

ferentiation into lymphatic endothelial cells of CLVs. Additionally, a hematoendothelial epi-

tope CD34 was observed in podoplanin-presenting cells, and its expression was augmented

with time after MI (Table 1). CD34 labeling may signify a hematopoietic origin of these cells.

Moreover, CD34 upregulation distinguishes lymphatic endothelium in tumors [64]. Hence the

presence of CD34 in podoplanin-expressing cells and vessels of the chronically infarcted heart

might point to their activated diseased state.

Nevertheless, a considerable fraction of the podoplanin-presenting cells, which was seem-

ingly indistinguishable from the above cell group in terms of morphology and tissue location,

did not exhibit the markers associated with endothelial commitment, namely Prox-1, VEGFR-

3, CD34 (Table 1). These differences might be caused by a transient nature of expression of the

the F4/80 or CD11b expression in the podoplanin-positive cohorts populating the hearts of non-infarcted (NO),

sham-operated (SHAM) and infarcted (MI) mice at 2 days after surgery. Graphs displaying individual values and the

respective means (left), as well as representative scatterplots (right) are shown. Data represent frequency of

double-positive cells within podoplanin-labeled populations (calculated as % cells in gate 2 out of the sum of cells in

gate 1 and gate 2).

https://doi.org/10.1371/journal.pone.0173927.g007

Table 1. Summary of the observed immunolabeling profile of podoplanin-expressing cells at different stages of infarct repair (a),(b),(c),(d).

Time after MI 2 days 2 weeks 1 month

Myocardial region BZ(§) BZ RA(*) scar and BZ scar and

BZ

RA(*) scar and BZ scar and

BZ

RA(*)

Relative location of

podoplanin-positive

cells

(1)interst. and

perivas.

(2)lymph.

vessels

(2)lymph.

vessels

(1)interst. and

perivas.

(2)lymph.

vessels

(2)lymph.

vessels

(1)interst.

and perivas

(2)lymph.

vessels

(2)lymph.

vessels

Podoplanin co-

labeling with:

LYVE-1 - + ++ - + ++ - + ++

Prox-1 -/+ ++ + -/+ ++ + -/+ ++ +

VEGFR-3 - + + -/+ + + -/+ + +

CD34 - - - -/+ -/+ -/+ + -/+ -/+

PDGFRα ++ ++ -/+ ++ ++ -/+ ++ ++ -/+

PDGFRβ - -/+ - ++ ++ - ++ ++ -

α-SMA - - - - - - - - -

(a) - designates that < 20% cells are co-labeled
(b) -/+ designates that 20–50% cells are co-labeled
(c) + designates that > 50% cells are co-labeled
(d) ++ designates that all the cells are co-labeled
(§) no scar was formed at 2 days
(*) interstitial and perivascular cells were seldom detected in the RA
(1) interst. and perivas. designates interstitial and perivascular cells; comparisons pertaining to interstitial and perivascular podoplanin-positive cells are

shaded
(2) lymph. vessels designates cells organized in lymphatic vessels

https://doi.org/10.1371/journal.pone.0173927.t001
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factors governing the growth and differentiation of lymphatic endothelium [65]. Alternatively,

our findings imply that podoplanin-positive compartment in the infarcted myocardium con-

stitutes an inhomogeneous population, consisting of cells with a variable potency to adopt the

lymphatic endothelial or other cell fates. For instance, it has been documented that interstitial

stroma cells acquire podoplanin expression after organ injury and in pathological conditions

accompanied by fibrosis in the skin, skeletal muscle and peritoneum [35, 48, 66].

Furthermore, we documented for the first time that a mesenchymal marker PDGFRα was

highly represented in podoplanin-positive cells in the wounded heart (Table 1). PDGFRα-

expressing cells are proposed to function as mesenchymal progenitors, which in response to

injury and inflammation reveal plasticity regarding their ability to differentiate into endothe-

lium or act as profibrotic cells [35, 36, 38, 40]. The predisposition towards the fibrogenic phe-

notype is influenced by the presence of pathologies and with aging, and can be antagonized to

reduce scarring and improve angiogenesis [67]. Thus, the high expression of PDGFRα, along

with irregular occurrences of Prox-1 and VEGFR-3 (Table 1), might signify an alternative abil-

ity of podoplanin-bearing cells to generate lymphatic endothelial cells or fibroblasts, impacting

the outcome of the myocardial repair process. Likewise, in the human liver, podoplanin dis-

criminates disparate categories of progenitor and stromal cell subsets, which display cell fate

plasticity, population growth, and alterations in the relative distribution under conditions of

chronic inflammation and fibrosis [68].

PDGFRβ is also linked to the fibrogenic activity of mural cells [40, 41]. Inflamed and

fibrotic tissues are characterized by the abundance of podoplanin-presenting cells of mesen-

chymal morphology, which often co-express PDGFRβ [42, 48, 49]. Of interest, granuloma

nodules in the heart showed similar accumulation of podoplanin and PDGFRβ co-presenting

cells. In the infarcted myocardium with no granulomas, the high occurrence of PDGFRβ in

podoplanin-bearing cells was apparent as well, albeit at the later stages of wound repair, con-

comitantly with the scar development (Table 1). Disruption of the PDGFRβ signaling impairs

post-MI angiogenesis and BV maturation, and decreases collagen content in the wound, desta-

bilizing the scar [69]. Therefore, the acquisition of PDGFRβ by podoplanin-positive cells in

the chronically infarcted myocardium might reflect their active role in lymphangiogenesis,

fibrotic responses and scar maintenance.

Yet, the markers of fibroblast, such as α-SMA, were rarely detected in podoplanin-positive

cells residing in the fibrotic areas (Table 1). Although this observation does not exclude the

fibrogenic potential of the podoplanin-presenting population in the infarcted heart, it suggests

a lack of full transformation into myofibroblasts. Analogous type of PDGFRα-positive progen-

itors, which acquire fibrogenic behavior due to a partial endothelial-mesenchymal transition

but do not become myofibroblasts, has been reported in the injured muscle [35, 38].

The growth of lymphatic network in adult organs is believed to occur as a result of the pro-

liferative expansion and/or sprouting of new lymphatic vessels from pre-existing lymphatics

[26, 46, 70]. These processes are seemingly conditioned by the type of stimulus: whereas

VEGFR-2 activation mainly induces vessel enlargement, VEGFR-3 signaling promotes sprout-

ing [30, 31]. Notably, VEGFRs, as well as VEGF-C and -D ligands, are up-regulated in the

peri-infarcted region [12, 14, 15, 71]. Administration of a selective VEGFR-3 agonist to the

infarcted heart induces strong and sustained lymphangiogenesis [14, 15]. VEGFR-3 signaling

is enhanced by mechanical stretch [72], which may explain the development of the lymphatic

vasculature when interstitial pressure is elevated. Intriguingly, activation of podoplanin on the

lymph node reticular cells diminishes their contractility, altering organ shape and stiffness

under inflammatory conditions [73]. Thus, podoplanin-positive cells in the infarcted myocar-

dium might affect local tissue tension, indirectly impacting VEGFR-3-stimulated CLV growth,

extracellular matrix deposition and scar remodeling.
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In conclusion, our detailed spatiotemporal analysis of the acutely and chronically

infarcted myocardium shows that podoplanin expression in the heart identifies structurally

and phenotypically diverse cell categories, displaying epitopes of fibrogenic and endothelial

commitment. Further studies are warranted to determine whether cells with lymphangio-

genic or profibrotic potentials can be recognized within the heterogeneous podoplanin-pre-

senting populations and utilized to promote the CLV growth and attenuate the development

of fibrosis after MI.
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PDGFRβ are shown. Calculated as % cells in gate Q6 out of the sum of the gates Q5 and Q6.

Samples labeled with non-immune IgGs (IgGs) and podoplanin only, or PDGFRα or PDGFRβ
only (PDGFR only), were used to determine the gates and calculate background.

(PDF)
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S5 Fig. Low expression of myelo-monocytic markers in the podoplanin-positive interstitial

cells. (A) Thin cardiac sections 1 month after MI were indirectly immunolabeled with podo-

planin (red) and a combination of CD11b and Ly6C (green) antibodies. Nuclei, blue. Area in

rectangle is shown at a higher magnification in the adjacent images for each color channel and

merged. (B) Flow-cytometry analysis of the podoplanin co-expression with Ly6C in cardiac

cells from the infarcted (MI) mice at 2 days after surgery. Isolated cells were co-stained with

podoplanin and Ly6C antibodies. Representative scatterplots (left) and the graphs displaying

individual values with the respective mean (right) are shown. Samples labeled with non-

immune IgGs (IgGs) and podoplanin only or Ly6C only were used to determine the gates and

calculate the background. Data showing frequencies of double-positive cells within podopla-

nin-labeled populations in each heart (n = 4) was calculated as % cells in gate 2 out of the sum

of % cells in gate 1 and gate 2.

(PDF)
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