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ABSTRACT: Stroke is a leading cause of disability and mortality worldwide, resulting in substantial economic 

costs for post-stroke care each year. Neuroimaging, such as cranial computed tomography or magnetic resonance 

imaging, is the backbone of stroke management strategies, which can guide treatment decision-making 

(thrombolysis or hemostasis) at an early stage. With advances in computational technologies, particularly in 

machine learning, visual image information can now be converted into numerous quantitative features in an 

objective, repeatable, and high-throughput manner, in a process known as radiomics. Radiomics is mainly used 

in the field of oncology, which remains an area of active research. Over the past few years, investigators have 

attempted to apply radiomics to stroke in the hope of gaining benefits similar to those obtained in cancer 

management, i.e., in promoting the development of personalized precision medicine. Currently, radiomic analysis 

has shown promise for a variety of applications in stroke, including the diagnosis of stroke lesions, early 

prediction of outcomes, and evaluation for long-term prognosis. In this article, we elaborate the contributions of 

radiomics to stroke, as well as the subprocesses and techniques involved in radiomics studies. We also discuss the 

potential challenges facing its widespread implementation in routine practice and the directions for future 

research. 
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Stroke is a vascular event characterized by a sudden onset 

of focal neurologic deficits in the relevant part of the 

central nervous system, including ischemic stroke, 

intracerebral hemorrhage (ICH), and subarachnoid 

hemorrhage (SAH) [1]. Globally, it represents a leading 

cause of mortality and disability, and there were an 

estimated 80 million stroke survivors in 2016, resulting in 

substantial economic costs for post-stroke care [2, 3]. 

Despite the declining age-standardized mortality rates 

over the past 2 decades, the absolute number of incident 

stroke, disability-adjusted life-years lost due to stroke, 

and stroke-related deaths is increasing [3]. Along with 

population growth and aging, the burden of stroke is likely 

to increase further. 

Medical imaging, such as X-ray computed 

tomography (CT) or magnetic resonance imaging (MRI), 

promotes the development of personalized diagnosis and 

treatment in cancer, by complementing with genomic, 

proteomic, and metabolomic technologies [4, 5]. 

Neuroimaging as a part of imaging protocols, plays a vital 

role in stroke analytics in both clinical practice and trials. 

In acute ischemic stroke (AIS), the results from recent 

clinical trials with imaging features as criteria for 

selection of subjects for therapy confirmed the improved 

efficacy of endovascular thrombectomy compared to 

standard medical care with intravenous alteplase [6, 7]. 

Additionally, the perfusion-diffusion mismatch 

determined by advanced neuroimaging has shown good 

potential for delayed interventions, wherein thrombolytic 

treatment for target-penumbra can be undertaken beyond 

the 4.5 h time point [8]. In acute ICH, some randomized 

clinical trials (e.g., ATACH, INTERACT, or SPOT-
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AUST) have been performed, with the goal of improving 

prognosis for patients with a high risk of early hematoma 

growth using baseline neuroimaging markers [9-12].  

During the past decade, advances in computational 

technologies, particularly in machine learning, have 

placed medical imaging in an increasingly central role in 

patient-specific management. This progress makes it 

possible to convert subjective visual interpretation into an 

objective assessment that is driven by image data. 

Radiomics has emerged in this context. It is a computer-

aided process, in which a profuse number of quantitative 

features (e.g., shape, intensity or texture) can be extracted 

from biomedical images in an objective, reproducible, and 

high-throughput manner [13-15]. This process is 

motivated by the concept that digitally encrypted images 

contain biologic information related to the 

pathophysiology of certain diseases, and this information 

can be exploited via quantitative image analyses [16]. In 

the oncology field, the potential of radiomics arises from 

its ability to allow quantitative assessment of intratumor 

heterogeneity that reflects phenotype and/or 

microenvironment, which may not be visually perceived 

[17, 18]; radiomic data, in combination with other medical 

information such as demographic, clinical, histologic or 

genomic data, can be used for clinical-decision support 

systems to improve treatment decision-making and 

accelerate advancements toward precision medicine in 

cancer [5, 16, 19, 20].  

Radiomics has also shown promise for a variety of 

applications in stroke, facilitating its personalized 

management at an early stage. In this review, we describe 

the workflow of radiomics as well as its basic techniques. 

We also outline the main contributions of radiomics to 

stroke, with an emphasis on the diagnostic, predictive, and 

prognostic value of radiomics during post-stroke care. 

Finally, we discuss the potential challenges facing the 

widespread implementation of radiomics in routine 

clinical practice and the directions for future research. 

 

1. Radiomic workflow and techniques 

 

Radiomics is a high-throughput process, during which a 

quantitative relationship can be established between 

multimode data sources by converting medical images 

into numerous radiomic features. This quantitative 

relationship is expected to address a clinically relevant 

problem in certain diseases, such as early diagnosis or 

accurate prognosis prediction, thereby improving 

treatment decisions. Regardless of the lesion type and 

clinical purpose, the workflow of radiomics is similar. 

Radiomic analysis involves a spectrum of continuous 

subprocesses, including image data acquisition, 

segmentation, feature extraction, exploratory analysis, 

and modeling (Fig. 1). 

 

 
 
Figure 1. Flowchart shows the typical process of radiomics in stroke neuroimaging. (A) Example CT image of an intracerebral 

hemorrhage and (B) example MR image of a patient with ischemic stroke.  

1.1 Image data acquisition 

 

The process of radiomics begins with digital imaging. 

Radiomic analyses can be applied to all imaging 

modalities (i.e., CT, MRI, PET, and ultrasound), but CT 

is the most commonly used technique. This is particularly 

useful in stroke, as non-contrast CT (NCCT) can rapidly 

determine the presence of an intracranial hemorrhage 

[21]. Sufficient imaging data sources are beneficial to 

statistical inference, but heterogeneity in imaging 

protocols may cause unexpected effects on both the 

quality of the extracted features and the radiomic models 

[22, 23]. For CT images, several studies have recently 

shown that the majorities of radiomic features are highly 

affected by image acquisition and reconstruction 

parameters and thus may be nonreproducible [24-26]. 
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Results from a phantom study have shown that diverse 

scanners made by different manufacturers could cause 

variability in radiomic feature values [27]. Additionally, 

slice thicknesses as well as bin width of gray-level 

discretization also cause such variation [28].  

Efforts are ongoing to enhance the stability of 

radiomic features via preprocessing techniques, such as 

normalization of the gray-level and voxel size or 

resampling of the pixel size to minimize feature 

dependency on voxel size [29, 30]. Nevertheless, progress 

has been limited to certain diseases or imaging modalities 

of the disease. To date, there is still a lack of evidence 

regarding the stability and reproducibility of radiomic 

features obtained from CT in either ischemic or 

hemorrhagic stroke. It should be noted that the robustness 

of radiomic features and comparability between radiomics 

studies can only be achieved through extensive disclosure 

of standardized imaging protocols [20]. 

 

1.2 Segmentation 

 

Segmentation is the act that isolates a lesion of interest 

from the surrounding normal tissue. This represents the 

most critical step during radiomic workflow because it 

determines which region within an image is to be analyzed 

further and from where the radiomic feature is generated. 

This step involves variations in the selection of regions of 

interest (ROIs) and segmentation techniques. 

Generally, the segmentation of ROIs is performed in 

3 dimensions (3D)—that is, the entire lesion is extracted 

and analyzed, although 2D analysis at a single slice can 

also be carried out [31]. It is unknown how much lesion 

information should be harnessed to conclude robust 

results in radiomic analysis. Intuitively, 3D-radiomics 

could provide more information, particularly for lesions 

that are spatially heterogeneous and large in volume. 

However, volumetric assessment is time- and labor-

intensive, and more importantly, increases the risk of 

radiomic feature instability due to segmentation of ROIs 

from multiple image slices [32]. Although 3D-radiomics 

appears to be more valuable for evaluating tumor 

heterogeneity in patients with colorectal cancer [33], in 

those with other disorders, including stroke, there is little 

evidence to indicate that 3D-ROI outperforms 2D-ROI. 

Considering the pros and cons of both schemes, more 

attention should be paid to efficiency during the process 

of segmentation. 

 

 

 
 

 

 

Figure 2. Texture in radiomics. (A) A stylized gray-

level image (5 x 5 pixels) with grey values ranging 

from 0 (black) to 5 (white) and its derived gray-level 

co-occurrence matrix (GLCM) in horizontal (B), 

vertical (C), and oblique (D) directions. Row and 

column numbers in the GLCM represent 

corresponding gray values, while cells in white contain 

the number of times corresponding gray values occurs 

adjacent to each other in three directions. For example, 

the frequency of gray values of 0, 2, and 3 (red arrows 

on the gray-level image) is then mapped onto 

corresponding cell of GLCM (red circles) each time 

they occur adjacent to each other in particular 

direction. In texture analysis, GLCM represents spatial 

interrelationship between pixels within a digital image. 

Segmentation techniques include manual, semi-

automatic, and fully automatic methods. Manual 

segmentation is time-consuming, which requires a trained 

observer to minimize the impact of inter-operator 

variability. In some cases, manual segmentation can be 
applied multiple times to ensure accuracy and 

reproducibility, particularly if the border of the lesion is 

unclear or if multiple focal lesions are observed at the 

same slice. Semi- or fully automatic segmentation is 

appealing, since each represents a more reproducible and 

faster way to enable observation of robust features from a 

given ROI. The Ischemic Stroke Lesion Segmentation 

(ISLES) challenge, a public competition that aims to 
explore the optimum segmentation method for stroke 

lesions, to some extent, promotes the development of 

tools for automation (www.isles-challenge.org/). 
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Segmentation of the infarction core or peripheral 

penumbra on MR images can now be performed in a semi- 

or fully automated fashion in the context of machine 

learning [34-37]. For an ICH on CT images, automated 

segmentation algorithms based on random forest and 

open-source software (i.e., 3D-Slicer) have shown 

improved accuracy for determining hematoma volume 

over that of the conventional ABC/2 formula [38, 39]. 

Currently, the addition of manual curation to computer-

aided edge detection is considered an ideal segmentation 

method with high reproducibility [16]. 

 

1.3  Feature extraction 

 

Vast arrays of quantitative features can be extracted from 

multimodal images, which are broadly categorized as 

semantic metrics and agnostic metrics [16, 40]. Semantic 

metrics refer to a set of features that can be captured by 

the naked eye and are commonly used in the radiology 

lexicon to describe the lesion’s appearance 

characteristics. For example, “round”, “oval”, and 

“lobulated” are semantic descriptors of shape, which can 

help radiologists determine the irregularity of the lesion. 

Other semantic descriptors include size, location, and 

vascularity.  

  Agnostic metrics are calculated by mathematical 

algorithms and constitute the main body of radiomic 

features. Unlike semantic features, they cannot be 

obtained through visual interpretation. Agnostic metrics 

typically comprise first-, second-, and high-order 

statistical measures. First-order statistical measures 

describe the distribution of gray-level frequency from the 

pixel intensity histogram in a given ROI, without 

accounting for spatial interrelationships between pixels 

(e.g., maximum, median, skewness, and uniformity). 

Second-order statistical measures, that is, texture features, 

take into account both pixel intensity and statistical 

interrelationship in space (distance or orientation). They 

are the most widely used features in radiomics (Fig. 2) 

because texture analysis readily allows quantification of 

the heterogeneity within a lesion [32, 41, 42]. Texture 

features include co-occurrence matrix-based entropy, 

homogeneity, dissimilarity, correlation, etc. High-order 

statistical descriptors, such as busyness, contrast and 

coarseness, are calculated on matrices that consider 

relationships between 3 or more pixels.  

In addition, radiomic analysis also employs a series 

of high-order statistical methods based on image 

filtration. Wavelet-transformed and Laplacian of 

Gaussian bandpass filters are the 2 most commonly used 

techniques [42, 43]. The former approach can convert 

spatial information into frequency and/or scale 

information in the direction of linear or radial waves 

(wavelet features) [44] , while the latter allows extraction 

of texture features with different coarseness levels from a 

prescribed ROI while denoising and enhancing the edge 

of the images [45]. Several radiomics studies on 

neuroimages have used these filtration techniques to 

distinguish stable hematomas from those prone to 

enlargement [46-49].  

 

1.4 Exploratory analysis and modeling 

 

By making full use of various extraction techniques, the 

quantity of radiomic features is endless, in theory. 

However, the increased risk of redundancy among 

features may lead to overfitting, reducing the 

generalization and robustness of the model. Hence, an 

exploratory analysis should be performed before 

modeling. 

 

Feature selection 

 

The core work in exploratory analysis is feature selection. 

For the internal feature-selection method, clustering 

analysis can be used as a first step. This method enables 

highly correlated radiomic features to be simplified into 

archetypal features per cluster, thus revealing the general 

distributive tendencies of the data. When multiple sets of 

data are available (two or more), the intraclass correlation 

coefficient (ICC) is usually used to detect stable features 

(ICC > 0.8) and exclude those that are susceptible to the 

variation of ROI segmentation [17]. In the external-

selection process, radiomic data should be analyzed along 

with other pertinent clinical data in a prediction model 

with a well-defined endpoint. Radiomic features that are 

highly correlated with clinical features cannot provide 

additional information and should be excluded before 

modeling. According to the clinical endpoint, univariate 

filters such as Student's t test or Mann‒Whitney test, can 

sort features by quality [50]. The least absolute shrinkage 

and selection operator (LASSO) is a method commonly 

used for dimensionality reduction and allows the selection 

of several informative features for modeling [47]. In 

radiomic analysis, it is necessary to combine the internal 

and external feature-selection methods to avoid 

redundancy and overfitting as much as possible.  

 

Modeling 
 

The ultimate goal of radiomics is to establish a practical 

and accurate model for predicting clinical outcomes (e.g., 

post-stroke death). In order to mine the full potential of 

existing datasets and explore the optimal model, clinical 

data should be added to the modeling process along with 

radiomic data. In addition, several machine-learning 

based modeling techniques can be employed. 
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Table 1. Scopes and Specifications of Radiomic Studies in Stroke. 

 

 

Reference Study Design Image Modality No. of 

Patients 

No. of Features (Type) Statistical 

Method 

Clinical Utility  

Ischemic Stroke 

Oliveira et 

al [56] 

Retrospective 

Single-center 

Non-contrast CT 10 4 (texture) Univariate 

analysis 

Diagnosis of acute 

stroke lesions 

Peter et al 

[57] 

Retrospective 

Single-center 

Non-contrast CT 139 18 (texture) Machine 

learning 

Diagnosis of acute 

stroke lesions 

Sikio et al 

[58] 

Retrospective 

Single-center 

T2W MRI 30 4 (texture) Univariate 

analysis 

Diagnosis of chronic 

stroke lesions 

Ortiz-

Ramon et al 

[59]  

Prospective 

Single-center 

MRI  

(FLAIR, T1W and 

T2W) 

100 114 (texture and 

wavelet) 

Machine 

learning 

Diagnosis of chronic 

stroke lesions 

Kassner et 

al [60] 

Retrospective 

Single-center 

Postcontrast T1W 

MRI 

34 6 (intensity and texture) Logistic 

regression  

Prediction of 

hemorrhagic 

transformation 

Qiu et al 

[61] 

Retrospective 

Single-center 

Non-contrast 

CT/CTA 

67 326 (shape, size, 

intensity and texture) 

Machine 

learning 

Prediction of early 

recanalization 

Tang et al 

[62] 

Retrospective 

Multi-center 

MRI  

(CBF and ADC) 

155 

(84+71) 

456 (shape, intensity 

and texture) 

LASSO 

algorithm 

Evaluation of functional 

outcomes (7d/3M) 

Cui et al 

[63] 

Retrospective 

Single-center 

MRI 

(DWI and PWI)  

70 (40+30) 251 (intensity, texture 

and high-order) 

Machine 

learning 

Evaluation of functional 

outcomes (3M) 

Betrouni et 

al [64] 

Prospective 

Multi-center 

T1W MRI 160 11 (intensity and 

texture)  

Machine 

learning 

Evaluation of cognitive 

impairment (6M) 

ICH 

Zhang et al 

[66] 

Retrospective 

Single-center 

Non-contrast CT 261 

(180+81) 

576 (shape, intensity, 

texture, wavelet and 

high-order) 

Machine 

learning 

Diagnosis of AVM-

related hematomas 

Barras et al 

[70] 

Prospective 

Multi-center 

Non-contrast CT 81 5 (intensity) Logistic 

regression  

Prediction of early 

hematoma expansion 

Shen et al 

[46] 

Retrospective 

Single-center 

Non-contrast CT 108 

(81+27) 

12 (texture and high-

order) 

Logistic 

regression  

Prediction of early 

hematoma expansion 

Ma et al 

[47] 

Retrospective/ 

Multi-center 

Non-contrast CT 254 

(149+105) 

576 (shape, intensity, 

texture, wavelet and 

high-order) 

LASSO 

algorithm 

Prediction of early 

hematoma expansion 

Li et al [48] Retrospective 

Single-center 

Non-contrast CT 167 1227 (shape, size, 

intensity, texture, 

wavelet and high-order) 

Machine 

learning 

Prediction of early 

hematoma expansion 

Xie et al 

[49] 

Retrospective/ 

Single-center 

Non-contrast CT 251 

(177+74) 

1942 (shape, size, 

intensity, texture and 

high-order) 

LASSO 

algorithm 

Prediction of early 

hematoma expansion 

Yao et al 

[31] 

Retrospective 

Single-center 

Non-contrast CT 120 

(80+40) 

300 (Not Specified)  Machine 

learning 

Prediction of early 

edema area 

SAH 

Kanazawa 

et al [71] 

Retrospective 

Single-center 

Non-contrast CT 40 4 (intensity)  Logistic 

regression  

Prediction of functional 

outcomes at discharge 

Data in parentheses behind total number of patients indicates the quantities assigned to the training and validation cohorts in radiomics studies. ICH, 

intracerebral hemorrhage; SAH, subarachnoid hemorrhage; CTA, computed tomography angiography; CBF, cerebral blood flow; ADC, apparent 
diffusion coefficient; DWI, diffusion-weighted imaging; PWI, perfusion-weighted imaging. LASSO, least absolute shrinkage and selection operator. 

 

 

Machine learning algorithms, such as support vector 

machines, artificial neural networks, and random forests, 

are supervised learning approaches that need to predefine 

a clinical label within a large number of training samples 

to train the model. Subsequently, the trained model is 

introduced to a testing set for performance evaluation. In 

contrast to supervised learning, unsupervised learning 

approaches (e.g., k-means clustering) can construct a 

model without clinical labels and using a limited sample 

size. Nevertheless, the performance of this model is 

limited by insufficiently labeled data. As a trade-off 

between high performance and low sample requirements, 

a growing number of semi-supervised learning models 

have recently been developed [18]. This method divides 

the modeling process into a supervised model training 

phase and an unsupervised feature learning phase, thus 

creating a balance between supervised and unsupervised 

learning. The choice of modeling techniques in radiomic 
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analysis is important, in that different techniques may 

introduce discrepancies in model performance [51]. 

Therefore, multiple machine learning algorithms should 

be used for data mining, followed by the use of the 

optimal algorithm for modeling.  

Validation is an indispensable step when constructing 

a prediction model for clinical applications. This could be 

carried out in either an internal or an external dataset. An 

externally validated model is considered more credible 

than an internally validated model, since independently 

obtained data can strengthen the validation [52]. Model 

performance is typically characterized by 2 attributes: 

discrimination and calibration [53]. Discrimination refers 

to how well the model distinguishes between those who 

are at high risk of a clinical event and those who are at low 

risk, and is often measured by means of receiver operating 

characteristic (ROC) curves, of which the area under the 

curve (AUC), sensitivity, and specificity are the 3 most 

commonly used indices. Calibration is a measure of 

agreement between the model’s predicted risk and 

observed risk, which can be reported in the manner of 

visuals (calibration curve) or statistical tests (e.g., the 

Hosmer‒Lemeshow test). A reliable and applicable model 

should have both favorable discrimination and calibration 

and should exhibit statistical consistency between the 

training and validation datasets. 

 

2. Applications of radiomics in stroke 

 

With the advent of radiomics, additional information 

provided by quantitative image analysis has become an 

important supplement to traditional radiologic 

characteristics, accelerating the development of precision 

diagnosis and treatment in oncology [18]. Over the past 

few years, researchers have attempted to apply radiomics 

to stroke in the hope of gaining benefits similar to those 

obtained in cancer management. Radiomic data are 

expected to improve early decision-making for post-

stroke patients. Currently, some progress has been made 

in both fields of ischemic and hemorrhagic strokes, and 

these applications seem to fall into 3 aspects: diagnosis of 

stroke lesion, prediction of early outcome, and long-term 

prognosis evaluation (Table 1).  

 

2.1 Applications in ischemic stroke 

 

To distinguish ischemic stroke from transient ischemic 

attack, an updated definition of ischemic stroke is an acute 

episode of neurologic deficit lasting longer than 24 h, or 

the presence of any imaging evidence (CT and/or MRI) of 

infarction directly related to the symptoms [1]. Ischemic 

stroke is the primary subtype of stroke that accounts for 

approximately 85% of all cases, and one-third of stroke 

patients will be permanently disabled [54]. 

Diagnosis of stroke lesions 

 

Clinically, NCCT remains the first choice for patients 

with suspected stroke because it is efficient, non-invasive, 

and low in cost. Thrombolytic treatment with tissue 

plasminogen activator (tPA) in ischemic stroke patients 

benefits markedly from intravenous administration within 

4.5h after symptom onset [55], which relies on early 

identification of stroke lesions by NCCT scans. In the 

acute phase, however, the changes in the ischemic area on 

NCCT images are often too subtle to be captured visually. 

In a study of 10 sex-and age-matched subjects (5 patients 

and 5 controls), Oliveira et al. [56] performed a 

quantitative texture analysis to distinguish healthy tissue 

from regions affected by AIS. They found that the gray-

level co-occurrence matrix (GLCM)-based tissue texture 

parameters were significantly different between patients 

and controls, and the most discriminative feature was 

angular second moment. In another study of 139 patients 

with hyperacute ischemic stroke (< 8 h), the authors 

identified 6 texture features from NCCT images that could 

differentiate ischemic lesions from their contralateral 

normal tissue [57]. The classification model, constructed 

by 3 supervised machine learning algorithms (i.e., support 

vector machine, decision trees, and adaboost) achieved an 

average AUC of 0.82. In addition, they found that the size 

of the stroke lesion and classifier type did not affect the 

model performance.  

   Two other studies have investigated the diagnostic 

value of radiomics in stroke lesions using MR images. 

Sikio et al [58] evaluated 30 patients with chronic right 

hemisphere infarction and found that GLCM texture 

features derived from T2-weighted MR images were 

capable of revealing changes in both ischemic lesions and 

the ipsilateral structure outside the lesion (i.e., centrum 

semiovale). The ischemic region had lower homogeneity 

texture parameters than the unaffected side, but with 

relatively high values of complexity and randomness. 

Additionally, they found a close association between 

texture and diffusion tensor imaging (DTI) parameters 

(Pearson’s r > 0.5) in the ipsilateral mesencephalon and 

thereby concluded that texture analysis might be a useful 

tool for assisting the DTI method in the detection of 

chronic ischemic lesions. Ortiz-Ramon and colleagues 

[59] used multimodal MRI data of different brain tissues 

(i.e., white matter and subcortical structures) from 100 

elderly individuals to explore whether radiomic analysis 

could distinguish patients who had a prior ischemic stroke 

from a healthy population that was stroke-free. They 

found that radiomic features, including texture and 

wavelet, could robustly identify the presence of previous 

stroke lesions with favorable discrimination (AUC > 0.7), 

irrespective of MRI sequence used, tissue type, and stroke 

subtype. 
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Prediction of early outcomes 

 

The extra benefit of intravenous tPA for AIS comes from 

exclusion of patients with a high risk of secondary 

intracranial hemorrhage, which is a serious complication, 

primarily due to damage of the blood‒brain barrier. 

Kassner et al [60] conducted a comparative study to assess 

the predictive ability for early hemorrhagic 

transformation after AIS (< 72 h) between texture 

parameters and visual enhancement score in postcontrast 

T1-weighted MR images. Texture features (contrast and 

correlation) were found to be more predictive of 

hemorrhagic transformation than visual evidence of 

enhancement (AUC < 0.6), with an AUC > 0.75. This 

result is promising, because texture analysis may help 

select eligible patients who are most likely to benefit from 

thrombolytic treatment. For thrombus in the internal 

carotid artery and M1 middle cerebral artery segment, 

recanalization with thrombolytics within these proximal 

intracranial arterial segments is rare. Qiu et al [61] 

performed a radiomic analysis to predict early 

recanalization after proximal occlusion in large vessels in 

67 AIS patients administered intravenous alteplase. They 

concluded that the combination of radiomic features from 

NCCT, CTA, and radiomic changes (i.e., CTA-NCCT) 

was more predictive of early recanalization (AUC = 0.85), 

compared with solely conventional thrombus imaging 

characteristics, such as length, volume, or permeability. 

 
Evaluation of long-term prognosis 

 

Accurate identification of a salvageable penumbra 

promises to improve decision-making during post-stroke 

management and extend the therapeutic time window. A 

multicenter study (n = 155) conducted by Tang et al [62] 

applied radiomic analysis to quantify the penumbra and 

core area from both the apparent diffusion coefficient and 

cerebral blood flow maps in patients with AIS (< 9 h). In 

the external dataset, the constructed radiomics nomogram 

could strongly predict favorable clinical outcomes at 7 

days and at 3 months, with AUCs of 0.88 and 0.77, 

respectively. Thus, researchers concluded that radiomics 

has the potential to select patients for thrombolysis 

beyond the current time window. Another study based on 

multimodal MR images of AIS patients confirmed the 

prognostic value of radiomic features in predicting 3-

month outcomes using a feature selection strategy 

combining redundancy reduction and informative degree 

evaluation [63].  

  Betrouni et al [64] found that texture features of MR 

images (i.e., kurtosis and inverse difference moment) in 

the hippocampus and entorhinal cortex at 72 h after stroke 

onset were significantly different between patients with 

and without 6-month cognitive impairment (CI). The 

prediction model built using a support vector machine 

showed excellent discrimination ability for CI (AUC > 

0.9). This result was further confirmed in a rat model of 

middle cerebral artery transient occlusion, in which there 

was a significant correlation between texture features and 

neural density in the hippocampus contralateral to the 

ischemic region. These associations are based on the 

hypothesis that the mild neuron loss involved in post-

stroke CI could be captured at an early stage by measuring 

changes in image gray values. The results of this study are 

relatively reliable because of synthesized clinical and 

preclinical evidence and indicate that the MR texture 

features may be an early imaging marker for screening of 

long-term CI in patients with AIS. 

 

2.2 Applications in hemorrhagic stroke 

 

Hemorrhagic stroke subtypes include ICH and SAH, both 

of which are not caused by trauma. Although hemorrhagic 

stroke accounts for only a small proportion of stroke cases 

(ca. 15%), its associated disability and mortality are high. 

It is reported that ICH alone has a fatality rate of 40% at 

1 month [65].  

 
Diagnosis of stroke lesions 

 

In clinical scenarios, the diagnosis of ICH caused by 

arteriovenous malformation (AVM) relies to a large 

extent on the CTA technique, since AVM-related 

hematomas are difficult to distinguish on NCCT images 

from those triggered by hypertension or cerebral amyloid 

angiopathy. However, angiography entails a large 

investment of time and resources, and may not be widely 

available or routinely performed in primary medical 

institutions. Early and accurate diagnosis of AVM-related 

hematomas is crucial for guiding treatment decisions, for 

instance, deciding whether or not to embolize the nidus to 

avoid rebleeding. Zhang and colleagues [66] performed a 

radiomics study to differentiate between acute ICH (< 6 

h) of diverse etiologies on NCCT. The hypothesis driving 

this research is that AVM-related hematomas embedded 

in malformed vasculature are more heterogeneous in 

composition and could be identified through quantitative 

radiomic analysis. After integrating optimal feature 

selection and modeling algorithms, the established NCCT 

radiomics model could accurately diagnose AVM-ICH in 

the validation cohort (n = 81), with an AUC of 0.95, 

sensitivity of 88%, and specificity of 93%. In addition, 

radiomic analysis showed superior diagnostic 

performance to subjective assessment by interventional 

radiologists with different levels of work experience. 

 

Prediction of early outcomes 
 



Chen Q., et al                                                                                                               Radiomics in Stroke Neuroimaging 

Aging and Disease • Volume 12, Number 1, February 2021                                                                              150 

 

Hematoma expansion (HE) following ICH reflects an 

active bleeding process, which is strongly associated with 

early neurological deterioration and poor long-term 

prognosis and is an appealing treatment target in clinical 

trials [67, 68]. In addition to the currently available 

clinical and radiologic risk factors [69], a growing body 

of evidence in radiomics has shown promise for 

predicting HE [46-49, 70].  

In 2013, Barras et al [70] conducted the first 

radiomics study on NCCT images of acute ICH patients 

(< 3 h) and identified a histogram intensity feature (i.e., 

coefficient of variation) most relevant to HE. In 2018, 

Shen et al [46] used the Laplacian of Gaussian bandpass 

filter to extract a series of coarse to fine texture features 

from images to predict early HE, with AUC reaching 0.92. 

Recently, the favorable performance of the radiomics 

model for HE was confirmed in a multicenter study (n = 

254) [47], wherein ICH data from 4 independent medical 

centers were analyzed. In another comparative study 

evaluating 251 patients with acute ICH, the radiomics 

model was found to be superior to the radiological model 

that incorporates conventional NCCT markers (AUC, 0.9 

versus 0.8) [49]. Notably, the interpretation of results 

among these studies is limited by different HE definitions 

(> 6 mL, > 12.5 mL, or > 33%) and the non-standardized 

follow-up NCCT timing for HE detection. Besides the 

predictive value of ICH growth, radiomic signature has 

also been reported to be highly predictive of the edema 

area around the basal ganglia hematoma at an early stage 

[31].  

 
Evaluation of long-term prognosis 

 

Clinical data regarding the evaluation of prognosis in 

hemorrhagic stroke using radiomic analysis are scarce. 

However, recently, a pilot study conducted by Kanazawa 

et al [71] explored the feasibility of quantitative texture 

analysis of NCCT images in predicting clinical outcomes 

in 40 patients with aneurysmal SAH. They found that the 

mean CT value of subarachnoid bleeding at the level of 

the basal cisterna was the only texture feature 

independently associated with delayed cerebral ischemia 

and prognosis at discharge. At the optimal cutoff value of 

53 HU, this parameter could predict poor functional 

outcomes (mRS ≥ 3) with a high specificity of 91.7%. Due 

to their qualitative nature, radiological markers such as the 

Fisher, Hijdra, and SEBES grading systems for measuring 

SAH severity, are susceptible to interobserver variability 

[72, 73]. This work is an initial step toward the 

development of a quantitative radiomics tool for the 

assessment of SAH prognosis on NCCT images. For 

ischemic and hemorrhagic stroke applications, the 

difference between CT- and MRI-radiomics is presented 

in Table 2. 
 

 

Table 2. Comparison of CT- and MRI-radiomics in Stroke Application. 

 

Neuroimaging Technique Study Population Research Objective Pros and Cons 

CT Non-contrast CT 

CTA 

Acute ischemic 

stroke 

Intracerebral 

hemorrhage 

Subarachnoid 

hemorrhage 

Diagnosis of acute 

stroke lesions 

Prediction of early 

outcomes 

Convenient for image data acquisition and 

transformation 

Difficulty in ROI segmentation of acute 

ischemic stroke 

Limited source of radiomics information 

from lesions 

More interpretable for radiomic features 

 

MRI T1W/T2W/FLAIR 

Postcontrast T1W 

DWI (ADC) 

PWI (CBF) 

Acute ischemic 

stroke 

Chronic ischemic 

stroke 

Diagnosis of chronic 

stroke lesions 

Evaluation of long-

term prognosis 

Inconvenience in archiving and 

communication caused by relatively large 

image data 

Accurate 3D-ROI delineation of ischemic 

lesions 

Entail resampling intensity values for 

multimodal images 

Lack of interpretability of radiomic features  
 

CTA, computed tomography angiography; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; PWI, perfusion-weighted imaging; 

CBF, cerebral blood flow; ROI, region of interest. 

3. Challenges and Future Directions  

 

Several challenges currently exist around radiomics, 

facing its widespread use in stroke management. One of 

the most critical challenges is the lack of reproducibility 

among extracted radiomic features, which arises primarily 

from the variability in radiomic workflow. Since 

radiomics studies can be performed either on open-source 

software platforms (e.g., MaZda or IBEX) or with in-

house developed tools in the MATLAB environment, the 

pre- and post-processing techniques, the segmentation 

method for the ROI, and the type and quantity of extracted 
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radiomic features are significantly different among these 

investigations. This contributes to difficulties in 

reproduction and comparisons between studies, as well as 

in the integration of results for meta-analysis. To 

normalize the reporting process and improve 

repeatability, investigators have proposed the radiomics 

quality score (RQS) to help ascertain whether a radiomics 

study conforms to best-practice procedures [20]. More 

recently, the image biomarker standardization initiative 

(IBSI) has also been put forward, offering a standardized 

general image processing workflow for quantitative 

radiomic analysis [74]. Future radiomics studies need to 

be carried out in the light of these reporting guidelines. 

  As mentioned earlier, imaging protocols highly 

affect the stability of radiomic features and, thus, may be 

another factor that introduces non-reproducibility in 

radiomics. It has recently been reported that CT image 

acquisition and reconstruction parameters could cause 

variation in the values of a considerable number of 

features [22, 25, 26]. This is understandable, considering 

that a greater slice thickness may increase the error in ROI 

delineation due to the partial volume effect. Although 

some efforts have been made to improve the robustness of 

radiomic features, such as the use of preprocessing 

techniques of filtration or gray-level normalization, 

achievements are extremely limited, particularly in stroke. 

The Quantitative Imaging Network (QIN) is a cooperative 

project initiated by the National Institutes of Health (NIH) 

in an effort to develop new quantitative imaging tools and 

methods for cancer management in clinical trials; one of 

its goals is to promote the standardization of quantitative 

imaging protocols in cancer [75]. For radiomics studies of 

stroke, there is a pressing need to develop standardized 

MRI and CT scanning protocols that are widely 

acceptable in the research community. 

While NCCT-based radiomic features have the 

ability to identify acute infarcted tissue, the information 

they capture is confined to a part of the lesion in a single 

slice (2D-radiomics) [56, 57]. It is challenging to perform 

a volumetric assessment for stroke lesions that cannot be 

visually perceived. Although MR diffusion and perfusion 

imaging perform well in this regard, NCCT is increasingly 

favored in routine practice because of its speed, low cost, 

and lack of contraindications. Therefore, future research 

should focus on developing semi- or full-automatic 

segmentation tools for acute stroke lesions on NCCT 

images. Interestingly, 3D-volumetric measurements in 

ICH and SAH have achieved automatic segmentation 

with the aid of machine learning [39, 76]. The next step is 

to determine the best way to integrate radiomic data from 

multiple hemorrhage lesions. For example, it remains 

unclear whether radiomic features derived from blood 

clots in different cerebral cisterns or at multiple locations 

(e.g., brain stem and cerebellum) should be summed, 

averaged, or weighted. This issue exists widely in the 

radiomic analysis of other lesion types, and thus, the 

solution is of great significance.       

Another major challenge in radiomic analysis is the 

need for large-scale data. Statistically adequate radiomic 

data are conducive to generating a classifier model with 

high robustness and generalization. However, the creation 

of databases is time-consuming because of the collection 

of medical images and 3D-ROIs segmentation. Although 

deep learning algorithms based on convolutional neural 

networks can automatically extract features from an 

unsegmented image, the requirements for expensive 

hardware and immense volumes of annotated data have 

limited their applicability [77-79]. Consequently, data 

sharing among different research organizations and 

medical centers is crucial in radiomics [13, 16]. Currently, 

most of the available radiomic evidence regarding stroke 

is derived from retrospective and single-center studies, 

which leads to an unstable association of radiomic 

features with clinical events, due to selection bias. For 

instance, the type of radiomic features that could predict 

early HE of acute ICH differed markedly across studies 

[47-49]. Shared databases consisting of radiomic data and 

other pertinent medical information (e.g., clinical or 

demographic data) from multiple centers, after removing 

the data management hurdle, may serve as an external tool 

for validating the credibility of existing results and 

eventually promote the standardization of radiomics 

research in stroke around the world. 

 

4. Conclusions 

 

With advances in computational technologies, radiomic 

analyses of stroke neuroimages have been applied 

successfully to NCCT and MRI scans. The derived 

radiomic signature could potentially be used to diagnose 

stroke lesions, predict early transformation, and evaluate 

long-term prognosis after stroke onset. Despite these 

promising results, various challenges need to be addressed 

before its widespread use as a clinical tool. These 

challenges seem to arise from the reproducibility of study 

results, standardization of protocols in radiomic 

workflow, and data sharing among different medical 

institutions. By mining the full potential of radiomics in 

the field of stroke, it is expected to optimize secondary 

prevention strategies and facilitate the development of 

personalized precision medicine in post-stroke patients. 
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