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Abstract

High mobility group protein A1a (HMGA1a) acts as an architectural transcription factor and influences a diverse array of
normal biological processes. It binds AT-rich sequences, and previous reports have demonstrated HMGA1a binding to the
authentic promoters of various genes. However, the precise sequences that HMGA1a binds to remain to be clarified.
Therefore, in this study, we searched for the sequences with the highest affinity for human HMGA1a using an existing SELEX
method, and then compared the identified sequences with known human promoter sequences. Based on our results, we
propose the sequences ‘‘-(G/A)-G-(A/T)-(A/T)-A-T-T-T-’’ as HMGA1a-binding candidate sequences. Furthermore, these
candidate sequences bound native human HMGA1a from SK-N-SH cells. When candidate sequences were analyzed by
performing FASTAs against all known human promoter sequences, 500–900 sequences were hit by each one. Some of the
extracted genes have already been proven or suggested as HMGA1a-binding promoters. The candidate sequences
presented here represent important information for research into the various roles of HMGA1a, including cell differentiation,
death, growth, proliferation, and the pathogenesis of cancer.
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Introduction

High mobility group protein A1a (HMGA1a) participates in a

wide variety of nuclear processes acting as an architectural

transcription factor regulating the expression of numerous genes

[1–3]. This protein influences a diverse array of normal biological

processes, including cell differentiation, death, growth and

proliferation, and is involved in the pathogenesis of cancer via

protein–protein and DNA–protein interactions [1–3]. Therefore,

HMGA1a protein has been described as the central ‘hub’ of

nuclear function [2].

HMGA1a binds AT-rich sequences via its own AT-hook, and

functions in a variety of ways [1–3]. Many previous reports have

demonstrated HMGA1a binding to the authentic promoters of various

genes (for example, human KIT Ligand (hKL) [4], Xeroderma

pigmentosum complementation group A [5], Cox2 [6,7], interferon-b
[8], interleukin-10 [9] and -4 [10], iNos/Nos2 [11], c-Fos and SM22a
[12]) using DNase I protection assays and/or electrophoretic mobility

shift assays (EMSAs). Furthermore, several HMGA1a-regulating genes

and pathways have been suggested by microarray analyses [13].

However, although AT-rich sequences exist within authentic gene

promoters, their affinity for HMGA1a varies from strong to weak to

none at all; even within the same promoter, AT-rich sequences can

have vastly differing affinities for HMGA1a [8,14]. It remains to be

clarified exactly which sequences HMGA1a binds to, and whether and

how co-factors, structures, and the existence of binding regions on the

surface of the DNA-protein complex influence HMGA1a-DNA

binding. Therefore, using an existing SELEX method to study all

known human promoter sequences, we searched for the sequences

with the highest affinity for human HMGA1a.

Results and Discussion

Determination of HMGA1a Recognition Candidate DNA
Sequences in Humans

The ratios of the four bases in the synthesized random

sequences used in this research, which were placed between T7

sequences, were almost uniform, as a result of a direct sequencing

(Figure 1a). When these random sequences of DNA were

analyzed using the SELEX method with E. coli.-expressed

recombinant HMGA1a [15], the ratio of the four bases became

AT-rich, with the frequencies of A and T significantly higher (by

about 40%) than the frequencies of G and C (Figure 1b). This

result shows that the SELEX system selects specific bases; in the

case here, and as reported [1], AT-rich sequences. The relative

levels of bases in regions assumed to be recognition sequences was

as follows: C,G%,A/T (Figures S1 and 1c). The bases A and T

were twice as common, or more, as the bases C and G (Figures

S1 and1c). We propose the sequences ‘‘-(G/A)-G-(A/T)-(A/T)-A-

T-T-T-’’ as HMGA1a-binding candidate sequences (Figure 1d).

Besides being AT-rich, the inclusion of a GG sequence

immediately before the AT-rich sequence is interesting. Indeed,

the existence of such a GG sequence in authentic promoters has

been reported [3,8,10].
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The Candidate Sequences Bound Native Human HMGA1a
Native HMGA1a undergoes various post-translational modifi-

cations [1,2]. Therefore, binding of endogenous HMGA1a from

human cell nuclear extracts to these candidate sequences was

examined by EMSAs (Figures 2A and 2B). Previous reports have

demonstrated that HMGA1a expression is significantly increased

by hypoxia stimuli in human neuroblastoma SK-N-SH cells, but

not in HEK293T or HeLa cells [16,17]. Using the system

described in those reports, binding that was weak under normoxia

(Figure 2A, lane 1) became much stronger following hypoxic

Figure 1. HMGA1a Recognition Candidate DNA Sequences by SELEX. Ratio of bases in synthetic DNA sequences before (A) and after (B)
SELEX assays. (C) Ratio of bases in regions of candidate DNA sequences after SELEX assays. (D) Candidate HMGA1a binding sequences are shown.
doi:10.1371/journal.pone.0008004.g001

Figure 2. Effects of endogenous HMGA1a on binding to the candidate sequences by EMSA. (A) Radiography of EMSA using nuclear
extracts obtained from human neuroblastoma SK-N-SH cells under normoxic (lane 1) or hypoxic (lane 2) conditions, or hypoxia (HMGA1a removal:
lane 3). (B) Densitometric quantitative data from (A) shown as the % of the levels in normoxia.
doi:10.1371/journal.pone.0008004.g002

Human HMGA1 Binding Sequences
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stimulation (Fig. 2A, lane 2 and Fig. 2B). This increase in binding

was prevented by inactivation of HMGA1a in the nuclear extracts

using an antibody against it (Figures. 2A and 2B). Therefore, our

advocated candidate sequence bound native human HMGA1a

from SK-N-SH cells.

The Candidate Sequences in All Known Human
Promoters by FASTA Analysis

There were eight candidate sequences in total: GGAAATTT,

GGATATTT, GGTAATTT, GGTTATTT, AGAAATTT, AG-

ATATTT, AGTAATTT, and AGTTATTT. When all known

human promoter sequences were analyzed by performing a

FASTA on each sequence, 500–900 sequences were hit by each

one (Table S1). It is interesting that two or more candidate

sequences were found in many of the extracted gene promoters,

while the vast majority of human promoter sequences were not hit

by any of the candidate sequences (Table 1). This strongly suggests

that these candidate sequences are genuine. Moreover, it is also

interesting that some of the genes that have already been proven

or suggested to have promoters that bind HMGA1a were

extracted (Table 2).

The functions of HMGA1a are diverse and it is known to have a

role in disease appearance; thus, the possibility of its becoming a

target of treatments has been suggested ([28], Table 3). That is, the

candidate sequences proposed by this study may be a blocker of

the transcription of cancer-related genes (Table 3), as decoy

DNAs. We also reported that a decoy RNA of a specific

HMGA1a-binding sequence prevents cell death [29]. In conclu-

sion, the candidate sequences presented here represent important

information for research into the various roles of HMGA1a.

Materials and Methods

DNA Selection Assay In Vitro (SELEX)
A synthesized DNA (1 pmol) [59-GGTGATCAGATTCT-

GATCCA (N31) TGAAGCTTGGATCCGTCGC-39] molecule

containing a 31-nucleotide random sequence (20.7% A, 22.7% C,

31.5% T, 25.1% G by direct sequencing of 16 clones) was

amplified (seven cycles) by PCR, followed by incubation with E.

coli.-expressed rHMGA1a in incubation buffer [16] for 30 min at

25uC. The reaction solution was then subjected to immunopre-

cipitation with an antibody against HMGA1, followed by

amplification (seven cycles) by PCR. The PCR products were

cloned into a pGEM-T vector and analyzed by direct sequencing.

Gel electrophoresis Mobility Shift Assay (EMSA)
After determining the protein content in the nuclear extracts, an

aliquot containing 5 mg of protein was incubated with 1 mg of poly-

dIdC in incubation buffer; then, 1 mg of 32P-labeled-DNA probe (gcg-

G/A-G-T/A-A/T-ATTTcgc) was added in a total volume of 50 ml,

Table 1. Percentage of repetition in other candidate sequences on the hit gene promoters retrieved using each candidate
sequence.

(a)

Retrieval candidate
sequences 0 (b) 1 2 3 4 5 6 7 (c)

Number of
total hits

GGAAATTT 5.8% 13.3% 20.1% 24.6% 22.0% 10.4% 3.4% 0.48% 618

GGTAATTT 4.9% 14.1% 20.4% 23.5% 20.1% 12.3% 4.2% 0.54% 553

GGATATTT 5.9% 13.2% 21.5% 23.2% 19.9% 11.2% 4.5% 0.59% 508

GGTTATTT 6.4% 13.4% 19.5% 23.2% 21.9% 11.4% 3.5% 0.55% 543

AGTTATTT 6.9% 11.9% 24.5% 22.9% 20.0% 10.0% 3.5% 0.38% 781

AGAAATTT 7.0% 15.0% 21.8% 25.1% 18.2% 9.8% 2.8% 0.35% 859

AGATATTT 5.2% 16.6% 20.1% 23.6% 19.7% 11.3% 3.1% 0.39% 767

AGTAATTT 5.4% 12.7% 20.0% 26.6% 19.1% 12.3% 3.5% 0.45% 661

(a): Number of repetition with other candidate sequences. (b): Only the retrieval sequence. (c): All candidate sequences.
doi:10.1371/journal.pone.0008004.t001

Table 2. List of genes that have already been proven or
suggested to have promoters that bind HMGA1a.

No. Promoters (a) (b) (c) (d) (e) (f) (g) (h) Ref.

EP64001 rag-1 + 2 + + + + + + [19]

EP07113 interferon -gamma
(IFNc)

+ + 2 2 + + + 2 [18]

EP16050 HMG-CoA reductase + 2 + + 2 + + 2 [13]

EP11141 estrogen receptor + + + 2 + + 2 2 [13]

EP73494 CCNB2 (coding for
the cyclin B2 protein)

2 2 + 2 + + + + [23]

EP11104 b-globin 2 + + 2 + + + 2 [26]

EP07112 interferon -beta (IFNb) + 2 2 2 + + + 2 [8]

EP73108 CD44 2 2 + + + + 2 2 [22]

EP07121 MHCII HLA-DRA 2 + + 2 + 2 2 + [27]

EP11145 FOS + 2 + 2 2 2 + 2 [12]

EP47012 Inducible Nitric Oxide
Synthase (iNOS)

+ + 2 2 2 2 2 + [11]

EP59011 elk-1 2 2 2 + 2 2 + + [13]

EP07114 interleukin-2 (IL-2) 2 + + 2 2 2 2 2 [20]

EP15045 ErbB2 (HER2/neu) + 2 2 2 + 2 2 2 [25]

EP15046 ErbB2 (HER2/neu) + 2 2 2 + 2 2 2 [25]

EP25083 rhodopsin 2 2 + + 2 2 2 2 [21]

EP73053 crystallin, alpha B
(CRYAB)

2 + 2 2 2 2 2 2 [24]

EP26038 interleukin-4 (IL-4) 2 2 2 2 2 2 + 2 [10]

(a): GGAAATTT, (b): GGTAATTT, (c): GGATATTT, (d): GGTTATTT, (e): AGTTATTT, (f):
AGAAATTT, (g): AGATATTT, (h): AGTAATTT.
doi:10.1371/journal.pone.0008004.t002
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and the incubation was allowed to continue for another 30 min at

25uC. Bound and free probes were separated by 4% polyacrylamide

gel electrophoresis in buffer (pH 8.5) containing 50 mM Tris, 0.38 M

glycine and 2 mM EDTA at a constant voltage of 11 V/cm for 1.5 h

at 4uC. Dried gels were analyzed by autoradiography.

Supporting Information

Figure S1 Direct sequencing data after SELEX assay.

Found at: doi:10.1371/journal.pone.0008004.s001 (3.58 MB TIF)

Table S1 Hit gene promoters of each candidate gene.

Found at: doi:10.1371/journal.pone.0008004.s002 (0.32 MB

PDF)
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