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ABSTRACT
Gut microbial b-glucuronidase (GUS) is a potential therapeutic target to reduce gastrointestinal toxicity
caused by irinotecan. In this study, the inhibitory effects of 17 natural cinnamic acid derivatives on
Escherichia coli GUS (EcGUS) were characterised. Seven compounds, including caffeic acid ethyl ester
(CAEE), had a stronger inhibitory effect (IC50 ¼ 3.2–22.2 mM) on EcGUS than the positive control, D-glucaric
acid-1,4-lactone. Inhibition kinetic analysis revealed that CAEE acted as a competitive inhibitor. The results
of molecular docking analysis suggested that CAEE bound to the active site of EcGUS through interactions
with Asp163, Tyr468, and Glu504. In addition, structure–activity relationship analysis revealed that the
presence of a hydrogen atom at R1 and bulky groups at R9 in cinnamic acid derivatives was essential for
EcGUS inhibition. These data are useful to design more potent cinnamic acid-type inhibitors of EcGUS.
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1. Introduction

There is significant crosstalk between the complex microbiota of
the gastrointestinal (GI) tract and the host1,2. The microbiota
strongly affects host physiology2, immunity, brain function, and
metabolism through microbial genes and gene products3,4.

A study revealed that the gut microbiota is associated with sev-
eral diseases, including cancer, obesity, and diabetes5. Moreover,
some drug-induced toxicity in the GI tract was shown to be due to
the reversal of phase II glucuronidation caused by gut bacterial
b-glucuronidases (GUS). For instance, the side effect (diarrhoea) of
the anti-cancer drug irinotecan (CPT-11), is the result of drug
hydrolysis into the toxic form SN-38 by microbial GUS in the GI
tract. In addition, carboxylic acid-containing nonsteroidal anti-
inflammatory drugs (NSAIDs), such as indomethacin and diclofenac,
may cause small intestinal ulcers and inflammation in the presence
of GUS6–9. In this context, drug toxicity is reduced by inhibiting
bacterial GUS, and screening for potent inhibitors of Escherichia
coli GUS (EcGUS) is highly desirable10.

Natural products have received more attention in recent deca-
des, and a wide range of bioactive compounds are in preclinical
and clinical trials for treating different diseases. For instance, the
herbal concoctions Hange-shashin-to, Sairei-to, and Shengjiang
Xiexin are used to treat diarrhoea and acute gastroenteritis and
protect against CPT-11 toxicity11–14. Natural substances derived
from edible herbs and fruits, such as prenylflavonoids and flavo-
noids, also inhibit EcGUS15–17. Moreover, cinnamic acid derivatives
(CADs) are widely found in vegetables, fruits, and medicinal plants
and have multiple biological activities, such as antioxidant and
anti-inflammatory properties18,19. Therefore, these compounds are

potential candidates for developing EcGUS inhibitors. To the best
of our knowledge, this promising area has been little explored.

This study investigated the inhibitory effects of 17 natural CADs
on EcGUS and their structure–activity relationships. In addition,
molecular docking studies were performed to predict the molecu-
lar determinants of CADs against EcGUS.

2. Material and methods

2.1. Chemicals and reagents

p-nitrophenyl-b-D-glucuronide (pNPG), D-glucaric acid-1,4-lactone,
dimethyl sulfoxide (DMSO) (Sigma-Aldrich, St. Louis, MO, USA),
Dulbecco’s phosphate-buffered saline (PBS) (Life Technologies,
Carlsbad, CA, USA), and six commercially available CADs (angoroside
C, cistanoside A, jionoside B1, acetylacteoside, isoforsythiaside, and
forsythoside H) (Shanghai Standard Technology Co., Ltd., Shanghai,
China) were used. Solutions of D-glucaric acid-1,4-lactone (DSL) and
each CAD (10 mM) were prepared in DMSO and stored at 4 �C until
use. All chemicals were of analytical grade (purity >98%), and 11
CADs were isolated from Baobab fruits (Adansonia digitata)20.

2.2. Enzyme preparation

Recombinant E. coli BL21(DE3) harbouring pET28a-EcGUS was pro-
vided by Professor Ru Yan from the University of Macau (Macau,
China). EcGUS was prepared according to our previous study with
a minor modification21.
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2.3. Enzyme inhibition assays

Seventeen CADs were subjected to EcGUS inhibitor screening, and
the inhibitory effect was determined by measuring the amount of
para-nitrophenyl generated from the hydrolysis of pNPG by EcGUS
according to our published method16.

2.4. Inhibition kinetics

IC50 values of CADs against EcGUS were determined in vitro under
the following reaction condition: 10 mL pure enzyme (2 mg/mL), 70
mL PBS buffer (pH 7.4), 10 mL of each test compound (0.001–100
mM), and 10 mL pNPG (250 mM) at 37 �C for 30 min.

The inhibitory activity of the selected substances was investi-
gated by exploring the interactions between substrates, inhibitors,
and EcGUS. The type of inhibition (competitive, non-competitive,
uncompetitive, and mixed-type) was determined by kinetic studies
using different concentrations of pNPG and inhibitors according to
the location of the intercept of regression lines on the Lineweaver-
Burk plot16,22,23. Inhibition constant (Ki) values were calculated as
previously described16.

2.5. Molecular docking

Molecular docking simulations were performed to predict the
molecular interactions of inhibitors with EcGUS according to our
previous study16. The X-ray crystal structure of EcGUS (PDB ID:
3K4D) was retrieved from the Protein Data Bank, and each inhibitor
was docked into the active site (pocket 1) of EcGUS using the tri-
angular matching algorithm. Twenty conformations of each ligand-
protein complex were created according to the docking scores24.

2.6. Statistical analysis

All experiments were performed in triplicate and repeated twice.
Data were calculated as mean ± standard deviation. IC50 values

were defined as the inhibitor concentration necessary to cause 50%
inhibition and were evaluated by nonlinear regression using
GraphPad Prism software version 6.0 (GraphPad Software, La
Jolla, CA).

3. Results

3.1. Screening for potent EcGUS inhibitors

The inhibitory effects of 17 natural CADs on EcGUS were assessed
using pNPG as a substrate. Eight compounds had a stronger inhibi-
tory effect than DSL (positive control) (Figure 1). The substances
with the highest inhibitory action were caffeic acid ethyl ester
(CAEE) (97.1 ± 0.2%) and acteoside (88.0 ± 2.2%) (Table 1). In add-
ition, compared with DSL (48.7 ± 1.2%), the percentage inhibition
rates of martynoside, isoforsythiaside, isoacteoside, acetylacteoside,
forsythoside H, and 1-O-caffeoyl-b-D-galactose were 84.1%, 78.5%,
77.0%, 75.2%, and 67.2%, respectively (Figure 1 and Table 1).

3.2. The inhibitory effects of CADs on EcGUS

IC50 values of promising EcGUS inhibitors relative to DSL (control)
were determined (Figure 2). Seven CADs, including acteoside, ace-
tylacteoside, CAEE, isoforsythiaside, isoacteoside, martynoside, and
orsythoside H, had a strong inhibitory effect against EcGUS, with
IC50 values of 3.2, 6.6, 7.0, 7.6, 8.8, 14.3, and 22.2 mM, respectively,
compared to DSL (IC50 of 67.1 mM).

3.3. Structure–activity relationships of CADs

According to previous results (Table 1, structure A), the structur-
e–activity relationship of the study compounds can be explained
as follows. The inhibitory activity of CADs containing glucosyl and
arabinosyl groups was significantly lower than that of other com-
pounds. For instance, martynoside was more active against EcGUS
than angoroside C (IC50, 14.3 vs. >100 mM), suggesting that an
arabinosyl group at R1 enhanced EcGUS inhibition. Similarly,
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Figure 1. Relative activity of EcGUS in the presence of different compounds at 100 lM. The b-glucuronidase inhibitor DSL (D-glucaric acid-1,4-lactone) was used as a
positive control. All data were expressed as mean ± standard deviation of triplicate reactions.
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caffeic acid had a more potent inhibitory effect than its glycoside,
1-O-caffeoyl-b-D-glucose, demonstrating that a glucosyl group at
R1 increased EcGUS inhibition. In addition, the inhibitory action of
compounds containing a hydrogen atom at position 1, a cinnamic
acid moiety at position 2, a rhamnosyl moiety at position 3, and

small molecules (e.g., CH3CO, CH3) at position 4 or 5 was compara-
tively higher. Interestingly, CAEE had a much stronger inhibitory
effect than caffeic acid (Table 1, structure B), indicating that the
presence of a larger group, except glucosyl and galactosyl groups,
in the R9 position of CADs, was essential for EcGUS inhibition.

Figure 2. Dose-dependent curves of EcGUS inhibitors. (A) Acteoside, acetylacteoside, caffeic acid ethyl ester, and isoforsythiaside; (B) Isoacteoside, martynoside, forsy-
thoside H, caffeic acid, and D-glucaric acid-1,4-lactone. Data were expressed as mean ± standard deviation of triplicate experiments.

Figure 3. Lineweaver-Burk plots of (A) acteoside, (B) martynoside, (C) isoacteoside, (D) acetylacteoside, (E) isoforsythiaside, and (F) caffeic acid ethyl ester as EcGUS
inhibitors. All data were expressed as mean ± standard deviation of triplicate experiments.

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY 1375



3.4. Inhibitory behaviour of CADs on EcGUS

The inhibition action of six CADs against EcGUS was investi-
gated. In Lineweaver-Burk plots, the location of the intercept of
regression lines in the second quadrant for acteoside, martyno-
side, isoacteoside, acetylacteoside, and isoforsythiaside demon-
strated that these compounds were mixed-type inhibitors of
EcGUS, with Ki values ranging from 2.8 to 8.3 mM (Figure 3(A–E)
and Table 1). This result indicates that these molecules bind to
the enzyme at both the allosteric site and active site. In add-
ition, the location of the intercept at the y-axis for CAEE demon-
strated that this compound was a relatively strong competitive
inhibitor, with a Ki value of 2.7 mM, and CAEE and pNPG com-
peted for the same binding site of EcGUS (Figure 3(F) and
Table 1).

3.5. Molecular docking simulations

The molecular interactions of CADs with EcGUS (PDB ID: 3K4D)
were analysed by molecular docking. pNPG, acteoside, and CAEE

fit into the active site (pocket 1) of EcGUS (Figure 4). In contrast,
acteoside bound weakly to the active site. Acteoside bound to
Glu413, which is located at the entrance of the active site, and
this amino acid plays a pivotal role in substrate recognition and
inhibitor interaction. In contrast, CAEE mainly interacted with resi-
dues Asp163, Tyr468, and Glu504, which were located in the bind-
ing area of pNPG; therefore, these two ligands competed for the
same active site. The experimental findings agreed with molecular
docking results, wherein acteoside was a mixed-type inhibitor,
whereas CAEE was a competitive inhibitor of EcGUS.

4. Discussion

Gut bacterial GUS inhibitors are important targets for reducing drug
toxicity and intestinal disorders caused by CPT-11 and NSAID treat-
ment9,25, and natural products help regulate the gut microbiota26.
In addition, recent studies have shown that CADs are promising for
developing EcGUS inhibitors26,27. In this study, the inhibitory
effects of 17 natural CADs on EcGUS were determined, and eight
substances, including CAEE and acteoside, were more active than

Figure 4. Stereoview of the 3D structure of EcGUS and a stereodiagram of pNPG bound to (A) acteoside or (B) caffeic acid ethyl ester in the active site (pocket 1) of
EcGUS. Detailed view of (C) acteoside and (D) caffeic acid ethyl ester in the active site of EcGUS.

1376 X.-N. LI ET AL.



D-glucaric acid-1,4-lactone (positive control). The results of molecu-
lar docking analysis suggested that acteoside bound to an amino
acid residue located at the entrance of the active site of EcGUS,
whereas CAEE strongly interacted with Asp163, Tyr468, and Glu504
at the active site.

It has been shown that phytochemicals, including phenolic acids,
flavonoids, and phenols, can influence the gut microbiota and
improve human health26. For instance, the CAD curcumin modulates
the gut microbiota during colitis and colon cancer and improves
intestinal barrier function26. In the present study, eight CADs were
identified as relatively potent EcGUS inhibitors, which may partially
explain their efficacy in alleviating inflammatory diseases.

The results of structure–activity relationship analysis revealed that
glucosyl and arabinosyl groups at R1 reduced the inhibitory activity of
a CAD (structure A), whereas the presence of bulky groups at R9
increased the inhibitory activity against EcGUS. The presence of a
hydrogen atom at R1 also enhanced this activity. These results allow
designing and developing more potent small-molecule inhibitors
of EcGUS.

EcGUS was frequently observed in mammalian gut and can be
easily prepared, therefore, it was widely used for screening GUS
inhibitors28–31. However, approximately 45% of the microbial species
in the human intestine contain GUS7, and our previous study indi-
cated the need to use a mixture of human gut microbiota for inhibi-
tor screening32. Therefore, further studies are necessary to evaluate
the inhibitory effects of the study compounds on other bacterial
GUS and their in vivo efficacy in reducing CPT-11-induced toxicity.

In conclusion, our study demonstrated that eight CADs were
relatively strong EcGUS inhibitors, and the presence of a hydro-
gen atom at R1 and bulky groups at R9 in CADs was essential for
EcGUS inhibition. These data allow designing and developing
more potent cinnamic acid-type inhibitors of EcGUS.
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