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Toughness amplification in copper/
epoxy joints through pulsed 
laser micro-machined interface 
heterogeneities
Edwin Hernandez   1, Marco Alfano 2, Ditho Pulungan   1 & Gilles Lubineau   1

This work addresses the mechanics of debonding along copper/epoxy joints featuring patterned 
interfaces. Engineered surface heterogeneities with enhanced adhesion properties are generated 
through pulsed laser irradiation. Peel tests are carried out to ascertain the effect of patterns shape 
and area fraction on the mechanical response. Experimental results are evaluated with the support of 
three-dimensional finite element simulations based on the use of cohesive surfaces. Results discussion 
is largely framed in terms of effective peel force and energy absorbed to sever the samples. It is shown 
that surface heterogeneities act as sites of potential crack pinning able to trigger crack initiation, 
propagation and arrest. Surface patterns ultimately enable a remarkable increase in the effective peel 
force and dissipated energy with respect to baseline homogeneous sanded interface.

Interfaces play a significant role on the overall mechanical performance of bonded structures in aerospace, elec-
tronics, construction and energy industries1–6. There has been a tremendous research effort in the area of surface 
modification strategies to improve interfacial adhesion in multi-material components and structures. While a sig-
nificant body of published literature elucidated adhesion at homogeneous interfaces7–10, recent works focused on 
the effect of surface patterning (e.g. texturing) and demonstrated the beneficial effect on the overall joint strength 
and bond toughness11–16.

Surface modification strategies which enable the generation of surface patterns include bottom-up and 
top-down approaches. Bottom-up approaches include chemical or physical deposition of surface coatings and/
or the generation of surface patterns where the patterning scale being possible is as small as the nanoscale level. 
Chan et al.17 analyzed the effect of surface patterns generated by means of template assisted silane treatments and 
conventional UV lithography. The results indicated an improved peel strength of soft elastomeric/glass interfaces. 
Guan et al.18 employed physical vapor deposition for the fabrication of a patterned copper layer on aluminum 
substrates. Mechanical tests have shown a strong effect on front propagation and an overall increase in the work of 
separation. Xia et al.12–14 analyzed the peeling behavior of polyester thin films from polydimetylsiloxane (PDMS) 
substrates and demonstrated that the proper arrangement of pinning sites with large adhesion energy (i.e. ink 
pattern on PDMS) can optimize the effective resistance of the system at the macro-scale. Cai and Dauskardt15 
increased the adhesion of organic PMMA to silicon oxide thin films in diffusion barriers by means of interfacial 
nanostructures (i.e. cylindrical pillars) obtained through standard lithographic techniques. Mode I delamination 
tests indicated that the improvement was associated to pillars pullout. In similar fashion, Su et al.16 addressed the 
strength of PEO electrolyte/V2 O5 electrode interface in solid state lithium-ion batteries and analyzed the effect of 
pillars across the interface. Crack shielding arising from the pillars bending deformation was shown to decrease 
the stresses at the delamination front and resulted in increased overall interfacial peeling resistance.

Top-down approaches, unlike the bottom-up ones discussed above, are based on material removal from an 
initial surface and are potentially much flexible and amenable to large-scale applications. The dimensional capa-
bility depends on the tool used to modify the surface. Chung and Chaudhury19 analyzed crack propagation along 
silicone elastomer small-scale patterned thin films. Lateral, longitudinal and crosswise interfacial incisions were 
made using a sharp razor blade. They demonstrated that crack blunting induced by the incisions could lead 
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to substantial adhesion improvements. Interfacial debonding occurred in an intermittent manner involving 
sequential events of initiation, propagation and arrest. Noori et al.20 employed grinding and knurling mechanical 
pre-treatments in order to tailor the adhesion at the interface between steel substrates and polymeric thin films. 
The results demonstrated that surface patterns enabled an increased plastic energy dissipation and an higher 
peeling resistance. Cordisco et al.21 analyzed failure along sinusoidal interfaces fabricated through wire EDM. The 
results indicated delayed crack initiation, intermittent crack propagation and an improved toughness because of 
the increase area available for bonding. More recently, Maloney and Fleck22 analyzed the response of architected 
adhesive joints. Metal substrates with square-wave patterned interfaces, obtained using water-jet cutting, were 
bonded with an adhesive. Their work demonstrated that, compared to the baseline planar interface, the patterns 
modify the development of damage within the adhesive layer and lead to increased energy dissipation.

Although much labor intensive, molding techniques have been also deployed on polymeric substrates. 
Pendergraph et al.23 analyzed the adhesion of elastomeric fabric composites through the use of topographical sur-
face patterns and observed an increased shear strength with respect to the flat baseline interface. Yukimoto et al.24 
generated step-shaped micro-patterns on CFRP pre-pregs using in-mold surface preparation. Mixed mode frac-
ture tests carried out on adhesive bonded joints highlighted the efficiency of the patterns in elevating the fracture 
toughness. Matsuzaki et al.25 developed a roll-imprinting process to introduce mechanical interlocking through 
micro-patterns on polypropylene plates. An increased strength, as determined in butt joint tests, demonstrated 
the effectiveness of the method.

The analysis of previous related works highlights the beneficial effect of either planar or non-planar surface 
patterns on interfacial strength and bond toughness. The aim of this study is to extend the scope of these works 
by using an alternative top-down patterning technique, which leverages on the use of pulsed laser irradiation. 
Pulsed laser sources can induce significant melting, re-solidification and vaporization of the target material 
thereby enabling the simultaneous modification of surface topography and chemistry26. Moreover, current lasers 
are provided with high precision beam positioning systems which ensure the ability to engrave surface patterns 
with accurate geometrical control and, as a result, to generate interfaces with heterogeneous surface properties. 
It follows that unlike previous methods (e.g. template assisted treatments, machining and molding), laser irradi-
ation may allow the tailored introduction of local toughening sites across the interface. However, there is a need 
to unravel the relationships between the shape and area fraction of laser treated material and the corresponding 
mechanical behaviour. Here we analyze the effect of laser micro-machined planar patterns with different shape 
and area fractions on the bond toughness of CuZn40/epoxy joints. This is an inherently brittle material system 
which entails scientific and engineering interest because of its widespread use for photovoltaics, flexible electron-
ics, integrated circuits, to list a few2,10,27–29. Laser process effectiveness is strongly related to the characteristics of 
the laser beam, e.g. laser wavelength, pulse energy and duration. From this standpoint, nanosecond pulsed fiber 
lasers have been successfully used to machine several engineering materials (e.g. aluminum, steel, copper, tita-
nium, carbon fiber reinforced laminates) and have been proven to deliver surfaces which enable efficient adhesive 
bonding and increased fracture toughness7–9,30. In the present work, surface patterns were engraved on copper 
through nano-second pulsed Yb-fiber laser irradiation. Substrates were subsequently bonded with structural 
epoxy adhesive and loaded under peel in a displacement-controlled experiment. The results discussion is largely 
framed in terms of effective peel force and absorbed energy needed to sever the sample. Finally, the mechanistic 
analysis of crack growth across the patterned interfaces required an associated computational effort. We propose 
herein an approach based on the use of 3D finite element simulations with cohesive surface elements.

Results
Local morphology and chemistry of patterned interfaces.  Mechanical tests were carried out using 
the T-peel test coupon31 whose overall dimensions are given in Fig. 1. Four pattern types were engraved over 

Figure 1.  Schematic depiction of the (a) epoxy bonded T-joint and (b) corresponding patterned interface 
featuring the relevant geometrical key parameters (L = 60 mm; B = 15 mm; λn = 15 mm; t = 0.5 mm;  = 80 mm). 
A thin epoxy layer (thickness 250 μm) supplied the resisting forces during mechanical tests. The T-joint was 
pulled apart at one end at a displacement rate of 5 mm/min. (c) Schematics of the patterns and corresponding 
radius (r). Laser processing was carried out in the x-direction. The distance h quoted in the figure indicates the 
minimum distance between the outmost points of two laser treated areas.
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the baseline sanded copper substrates represented by arrays of circles (C), ellipses (Ea and Eb) and rhombs (R). 
The radius r of each treated area as a function of the area fraction is given in Fig. 1(c). The local replacement of a 
weak sanded interface by one of much stronger adhesion enables the introduction of crack pinning sites. The area 
fraction of laser treated material (Af) was equal to 50%. However, two distinct sets of samples of type C were also 
included in the analysis to ascertain the effect of Af, i.e. 25% and 75%. The obtained patterned interfaces feature a 
periodic variation of both surface topography and chemistry which were investigated by means of XPS and SEM 
analyses.

SEM images are shown in Fig. 2(a) and (b). Sanded surfaces are characterized by a random distribution 
of ridges and grooves that can promote an increase in surface area and roughness. Laser treated surfaces are 
inherently textured and provided with sub-micron scale morphological features, including characteristic sharp 
asperities and cavities in the recast material. The resulting interface may be able to retain the adhesive and resist 
debonding through micro-scale mechanical interlocking. Surface oxidation was also ascertained by means of 
XPS analyses. Figure 2(c) shows the survey spectrum for Cu 2p. The largest peak signal was identified to be 
metallic copper, although the peak is also compatible with cuprous oxide, i.e. Cu2O; indeed, as noted in32 the two 
compounds have very similar binding energies and are difficult to distinguish. Moreover, cupric oxide, CuO, and 
copper hydroxide, Cu(OH)2, were also identified. The appearance of the satellite peak signals corresponds to Cu2+ 
and suggests the presence of CuO. In order to investigate surface oxidation, the O 1 s survey spectra were also 
evaluated and are given in Fig. 2(d). The peak on the right hand side corresponds to CuO while the one on the left 
to Cu(OH)2. As a result of laser irradiation the relative intensity of the two peaks is modified and the CuO peak 
prevails. Copper hydroxide is presumably removed by laser irradiation. It has been reported that the formation of 
CuO exerts a beneficial effect on the strength of adhesive joints. It improves wettability and, in turn, increases the 
degree of interfacial contact with the adhesive33.

The surface patterning strategy proposed herein modifies the fracture energy landscape across the interface 
giving rise to a toughness contrast. Indeed, the modifications of surface chemistry and topography elevate substan-
tially the fracture toughness. It has been shown in previous work by the authors9 that while the average fracture 
toughness of homogeneous sanded interface was equal Gc,s = (0.12 ± 0.03) kJ/m2, laser irradiation could provide 
an enhancement up to Gc,l = (2.07 ± 0.63) kJ/m2.

Analysis of global responses.  We firstly analyze the effect of area fraction of circular inclusions on global 
response and dissipated energy required to sever the samples. Typical steady state peeling forces versus applied 

Figure 2.  SEM images of (a) sanded and (b) laser treated substrates. The baseline sanded surface is 
characterized by multiple micro-scale asperities, while the laser treated features trench-like surface patterns in 
the x-direction, i.e. perpendicular to the crack growth direction. The inserts show schematics of the locations 
taken for SEM imaging. Corresponding survey spectra of (c) Cu 2p and (d) O 1 s obtained using XPS analyses.
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displacement are reported in Fig. 3(a). The top and bottom dashed straight lines indicate the average steady 
state load measured in samples with laser treated and sanded interfaces, respectively. Both values have been 
determined in a previous work where the behavior of homogeneous copper/epoxy joints (i.e. no pattern) under 
peel loading was analyzed9. The fluctuation of the remote applied peel load for the patterned samples reflects 
the occurrence of crack initiation, propagation and arrest (i.e., crack pinning) which are required in order to 
accomplish crack growth past a laser treated area. The wavelength of the global responses (λm), that is the distance 
between two consecutive peak or valley points, was essentially equal to twice the corresponding nominal wave-
length (λn) of interfacial patterns. The excellent agreement suggests the attainment of a global steady state peeling 
regime in which the opening displacement is globally (as average over one cycle) twice the crack advance31.

When the front approaches the tougher region the applied load increases until it reaches a peak (pinning 
regime). The peak force is also referred to as effective peel force14, that is the remote load required to advance fur-
ther the crack. Front pinning is reflected by the rising portion of global response (a c ) in which two slopes can 
be apparently identified and which are separated at point b. It is speculated that these slopes are associated to 
initial front pinning and subsequent crack penetration within the tougher region. The remote applied load then 
reaches a peak and gradually decreases before dropping suddenly to a lower bound ( c d). The results obtained 
at the lowest area fraction represent an exception since a direct abrupt load transition to a lower bound was 
observed.

Effect of pattern area fraction.  The results reported in Fig. 3 also show that reducing the area fraction of 
laser treated material the minimum load achieved within a period of crack growth decreases accordingly. It 
should be noted that while the minimum peel load corresponds to crack growth within the weak sanded interface, 
it does not match the force needed for peeling from a homogeneous sanded interface. This an indication of the 
occurrence of rate effects which, in turn, may depend on the spacing between consecutive inclusions, i.e. the 
distance h shown in Fig. 1(c). It is indeed in that area of the interface that, because of the toughness decrease, the 
crack speed increases. In particular, h is approximately equal to 6.5 mm at Af = 25%, 3.0 mm at 50% and 0.34 mm 
at 75%. It is apparent that the minimum load is reduced consistently as h increases. It is also noted that the applied 
peel load drops more quickly when Af decreases, i.e., when the radius of the circular features decreases. The steep-
est load drop (c d ) was observed at the lowest area fraction and it is likely associated with the excess of elastic 
energy which becomes available when the front is leaving the tougher interfacial region. These results suggest that 
the mechanism of failure shifts toward a more unstable behavior at lower Af or, in other words, when the spacing 
between the tougher regions increases. It also suggests that the details of the global responses will be strongly 
affected not only by the area fraction but also by the pattern shape or distribution of laser treated material.

Figure 3.  (a) Experimental load-displacement traces recorded in peel tests. The sudden load increase is 
associated to crack trapping within the laser treated area. The highlighted portion of the global response 
indicates a typical load fluctuation observed when the crack traverses a single period of the pattern. The insert 
shows the estimated initial and final position of the front. The dashed lines indicates the average peel forces 
of homogeneous (unpatterned) laser (top) and sanded (bottom) interfaces which were obtained by averaging 
the steady state values over the crack growth. (b) Work of separation needed to sever the samples. The dashed 
line show the prediction obtained using the rule of mixture. Normalization is done with respect to the energy 
dissipated in baseline sanded samples.
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In order to compare the results obtained in mechanical tests, the total dissipated energy or work of separation 
(WOS) was elected as performance metrics. The WOS is given by the area under the force-displacement curve 
and includes (i) the micro-scale contribution arising from the fracture process zone (Wf), i.e. breakage of the 
intrinsic adhesion forces and irreversible deformations/fracture of the adhesive, (ii) the macro-scale dissipation 
associated to plastic bending of copper substrates (Wp) and (iii) the non-recoverable elastic energy (We). The 
WOS is reported in Fig. 3(b) as a function of Af and the quoted values are normalized with respect to the baseline 
sanded interface (i.e., no patterns). The WOS of patterned samples at 25% and 50% area fractions are, respectively, 
four and six time higher than the baseline sanded interfaces. This is a remarkable increase in the overall dissipa-
tion. However, the increase displays a non linear trend and levels out at 75%. Overall, the dissipated energy does 
not scale linearly with the area fraction and then does not follow the rule of mixtures (dashed line in Fig. 3).

Effect of pattern shape.  Typical global responses associated to interfacial patterns of varying shape are 
reported in Fig. 4(a). The effect of pattern orientation with respect to crack propagation direction was also 
assessed through the analysis of the elliptical patterns since Ea and Eb have the major axis perpendicular and 
parallel to the direction of crack propagation (y-). The area fraction has been kept constant at 50% for all samples. 
Global responses are generally similar among each other and are all characterized by a rising branch ( a c) 
followed by a decrease and sudden load drop (c d ). As anticipated in previous section, the pattern geometry 
apparently exerts a local control of crack propagation stability since the load drop (c d′ ) strongly depended on 
the shape and the spatial arrangements of the tougher regions. Therefore, it can be interesting to compare the 
observed load fluctuations against the geometry of the patterns. For this reason, the distance h described in 
Fig. 1(c) as well as the experimentally determined load fluctuations (ΔF) extracted from global responses are 
reported in Fig. 4(b) and (c). Apparently, the obtained ΔF does not show an obvious trend with the distance h. 
Indeed, comparing the results of Ea and Eb it is inferred that ΔF increases with h, while comparing R and Eb, 
which feature h = 0, a significant difference in ΔF is observed. However, the extent of the load drops ( c d′ ) 
depends directly on h. It can be also concluded that the orientation of the patterns has an important effect since 
the load fluctuations in Eb are pretty much lower than that displayed by Ea. The obtained results suggest that the 
shape and the arrangement of the patterns affect the mechanical response. In particular, the spatial distribution of 
tough region and the rate at which it decreases with respect to the advancing front control the propagation stabil-
ity, the amplitude of load fluctuations and originates the load jumps. Finally, the WOS needed to sever the sample 
seems to be independent of inclusions shape as indicated in Fig. 4(d) and therefore it mostly depends on Af of 
laser treated material.

Finite element results.  Three-dimensional finite element simulations were carried out to analyze the exper-
imental results and to ascertain the evolution of front propagation across the interface. Cohesive surfaces were 
used to mimic debonding within the bondline. A schematic of the model is shown in Fig. 5. It features 3D contin-
uum elements with linear order and elasto-plastic material properties and cohesive surface elements. A bilinear 
cohesive constitutive relationship (T-Δ) was employed, with T being the cohesive interaction and Δ the corre-
sponding crack face opening displacement. Fracture toughness and cohesive strength were obtained by curve fit-
ting experimental data obtained on homogeneous sanded and laser treated interfaces (i.e., no pattern) under peel 
loading. Specifically, experiments and FEA were plotted simultaneously and cohesive properties were varied until 
the differences were negligible9. The corresponding set of identified cohesive properties which were used herein 
are: cohesive strength: σs = σl = σ = 29 MPa; cohesive energy: Gc,s = (0.12 ± 0.03) kJ/m2 and Gc,l = (2.07 ± 0.63) 
kJ/m2; initial stiffness: kn = 50 GPa/mm. The simulated load-displacement curves for various pattern shapes and 

Figure 4.  (a) Experimental load versus displacement curves for patterned substrates. The area fraction is 
constant and equal to 50%. (b) Distance (h) between the outmost points of the inclusions. (c) Average load 
fluctuations (ΔF) per period of crack propagation extracted from global responses. (d) Work of separation 
(WOS) needed to sever the samples (normalized with respect to the sanded interface).
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constant area fraction (i.e., 50%) are plotted against experimental measurements in Fig. 6. Only a portion of the 
peeling history is reported because of response periodicity. In particular, the shaded areas display the range of 
finite element results obtained using lower and upper bounds values of the input cohesive properties. Overall, 
given the complexity of the decohesion mechanism that involve crack pinning, front deflection and extensive 
plasticity, a reasonably good match between experiments and simulations was achieved. The global steady state 
peeling regime is also predicted by the finite element simulations since the wavelength of the observed load fluc-
tuations is approximately twice the pattern spacing. In order to assess further this point, front evolution as the 
crack traversed the interface has been extracted from finite element simulations. The average crack length was 
determined as indicated in Fig. 7(a) and has been plotted against the applied displacement in Fig. 7(b) and (c). 
Notice that for the determination of crack length, the actual crack front was assumed to be at locations where the 
scalar stiffness degradation variable (SDEG) was equal to 1, i.e. no traction across the interface. The origin of the 
plots represents the instant at which the crack front is pinned as shown in Fig. 7(a) and which corresponds to the 
peel load at point a highlighted on the global response (cfr. Fig. 3). The straight line represents the linear scaling 
that would be expected for samples with homogeneous interfaces in the steady state peeling regime, i.e., the load 
would achieve a plateau and the applied displacement would double the crack length. However, for patterned 
samples, when the front traverses the laser treated region, that scaling is not linear because of crack pinning and 
subsequent fast propagation. The deviation from the homogeneous case scales with area fraction: the results 
indicate that smaller area fraction (Af = 25%) delays the most the crack advance and provides efficient pinning. 
Moreover, for given area fraction, the shape of the inclusions also plays an important role on crack propagation. 
As shown in Fig. 7(c) the pattern shape Ea is the most efficient in terms of delaying crack advance. Interestingly, 
as shown in Fig. 4(b), this is the pattern in which the distance h has the highest value. This indicate once more 
the important effect of the spatial arrangement of the surface feature on the mechanics of crack advance across 
the interface.

The energy dissipation associated to crack growth within one period of the pattern has been examined and the 
interface with circular patterns (Af = 50%) has been selected to the purpose. The results are given in Fig. 8(a). By 
comparing the global response and the corresponding energy dissipation it is possible to infer that the stored 
elastic energy is negligibly small with respect to other terms, while plastic bending of the flexible adherends pro-
vides the main contribution and achieves the maximum value when the applied peel load reaches the peak value. 
It has been shown in previous works that the magnitude of plastic dissipation within the copper substrates is 
affected by the root rotation, i.e., the angle at the root of the crack, to a great extent. In particular, Kim and 
Aravas34 pointed out that there might be instances in which the measured peel force is mostly contributed by the 
macro-scale plastic dissipation within the sample substrates, while fracture energy of the interface represents a 
relatively small fraction. In order to gain further insights into the effect of patterned interfaces on energy 

Figure 5.  Modeling strategy undertaken to build finite element models of copper/epoxy joints. (a) Schematic 
of the T-joint highlighting the patterns across the interface. (b) Cohesive constitutive relationship employed to 
mimic the behavior of sanded and laser treated interfaces and input stress-strain response of copper substrates 
measured in actual experimental tensile tests.
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dissipation, the crack front evolution has been extracted from finite element simulations. The results are displayed 
in Fig. 8(b) and are referred to the load-displacement data points highlighted in Fig. 8(a). The evolution of crack 
front shows the initial pinning regime followed by the lengthening of front profile and subsequent penetration 
within the laser treated area (1 3 ). This is an outcome of the variable strain energy release rate associated to the 
toughness contrast and perimeter of the patterned region17. Subsequently, when the crack growths within the 
laser treated area, the front extends approximately to the full sample width and the remote applied loading reaches 
the peak value ( 4 6). The deformed configuration of the flexible substrates corresponding to the peak peel load 
was extracted from finite element simulations. Careful analysis of the data indicated the occurrence of the highest 
root rotation when the peel load achieves the peak value.

Discussion
The results demonstrated that the introduction of discrete areas of superior toughness heavily affects the effective 
peel force which oscillates as the front negotiates weak (sanded) and tough (laser) regions. In particular, sequen-
tial events of initiation, propagation and crack arrest affected the effective peel force and the overall dissipated 

Figure 6.  Experimental versus numerical global responses for the patterned interfaces. Results are referred 
to Af = 50%. The shaded areas show the range of numerical predictions based on the lower and upper bounds 
cohesive properties of sanded and laser treated interfaces. Only portions of the global load-displacement curves 
are reported because of response periodicity.

Figure 7.  (a) Fringe plot obtained in finite element simulations displaying crack front pinning and the strategy 
employed to determine the average crack length. (b) Extension versus average crack advance across circular 
inclusions of varying area fraction. The straight line represents the linear relationship that would hold for an 
homogeneous interface in the case of steady state peeling regime. (c) Extension versus crack advance for varying 
pattern shapes.
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fracture energy thereby resulting in the serrated behavior of the load-displacement responses. It is interesting 
to note the similarities of present experimental results with those reported in35, where the crack tip interaction 
with rigid well-bonded particles in brittle composite materials was analyzed. Like the discrete regions of superior 
toughness considered in this work, the presence of tough particles in a brittle solid acted as obstacles for a crack 
front to overcome and enhance the overall energy dissipation.

The increased peel load observed in the present work enabled large plastic dissipation within the metal 
substrates and as a results the response of copper/epoxy joints was more ductile. Given the material system 
and the range of area fraction explored herein, the current technique allowed the work of fracture to increase 
up to six time higher than that recorded on the sanded baseline interface. Thus, the increased adhesion and 
toughness contrast generated through laser irradiation provided access to the large energy dissipation capac-
ity of the plastically deforming copper substrates. In particular, the laser treated areas enabled micro-scale 
mechanical interlocking and cohesive failure within the adhesive layer. The SEM images of the fracture surfaces 
shown in Fig. 9(a) and (b) illustrate this point. Several spots of cohesive failure can be identified within the 
trenches induced by laser irradiation. On the other hand, the sanded interfaces displayed a brittle response 
and near-interfacial failure. However, care should be paid because the action of the laser beam may also induce 
undesired modifications and/or damage of the target material. For instance, the extreme heating/cooling rates 
(≈103 K/s) might lead to complex metallurgical and morphological transformations of the metal and conse-
quent embrittlement. Moreover, laser processing of relatively large areas require careful choice of the beam 
positioning systems. Inaccurate control of laser beam motion may lead to inconsistent laser processing, such 
as those highlighted in Fig. 9(c). In particular, because of inaccurate beam positioning some regions of the 
target material did not receive laser irradiation. Similarly, accurate selection of laser processing parameters 
in relation to the characteristics of the target material can have a significant impact on the quality of treated 
interfaces. Laser-induced damage and drilling holes, such as those shown in Fig. 9(d), may affect the integrity 
of the substrates and the joint reliability.

Experimental results in conjunction with finite element predictions indicated that the shape of the pattern 
also plays a very important role and can be used efficiently in interfacial design. Specifically, the spatial distri-
bution of tough region controls the propagation stability, the amplitude of load fluctuations and the load jumps. 
This point was also highlighted by the results reported in Cuminatto et al.36 who proposed an analytical model 
to assess crack propagation behavior in wedge loaded DCB samples with patterned interfaces. They concluded 
that pattern width and spacing along the direction of crack growth affect the stability of crack propagation and 
the apparent toughness of the joint. Moreover, the overall crack propagation has been shown to occur in a global 
steady state peeling regime where the crack advance corresponds to roughly half of the applied displacement. 

Figure 8.  (a) Simulated load-extension and energy expenditure for a crack advancing within a patterned 
interface with circles at Af = 50%. Wp is the plastic dissipation, Wf is the work of fracture and We the non 
recoverable elastic energy. (b) Analysis of crack front evolution at selected points taken from the global response 
displayed on the left hand side. 1 3 : crack front pinning and subsequent penetration within the tough region. 
4 6: crack front evolution extracted around the peak of global response. The insert shows the contour of 

scalar stiffness degradation (SDEG) where the blue color represents no damage (SDEG = 0) while the red color 
represents complete failure (SDEG = 1).
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However, the scaling varied non-linearly within a single period and the maximum applied peel load occurs when 
the crack is running approximately in the middle of a tough surface region. Interestingly, similar observations 
were also made in Xia et al.12 which carried out peel tests on patterned thin films. They considered rectangular 
stripe patterns (Af = 25%) and, similarly to what has been reported herein, they observed that the peak peel 
force was achieved when the peel front was in the middle of the stripe and that the period of the oscillating force 
scaled with the wavelength of the stripes (i.e., global steady state fracture). However, it is recognized that in their 
work peel tests were carried out in the elastic range and the elevation of the peel load was only associated to the 
improved adhesion.

Conclusions
In the present work pulsed laser irradiation was employed to generate patterned interfaces with enhanced adhe-
sion properties. The strategy proposed herein was shown to be an original and very promising technique which 
affords the opportunity to tailor the joint behavior. In contrast to previous methods, such as template-assisted 
treatments, machining or molding, laser irradiation enables the tailored introduction of local toughening sites 
across the interface. The proposed strategy can be considered as an alternative to global/homogeneous toughen-
ing since it can reduce the manufacturing time, cost and complexity, maintain weight and structural dimensions 
as well as minimizing the adverse effects associated to classical toughening by the addition of a third phase. 
Moreover, it is quite flexible and amenable to large-scale applications where only local toughening is required at 
highly stressed regions. Finally, we note that the level of enhancement highlighted herein is bounded by practical 
factors such as the properties of the substrates. Therefore, promising avenues for future investigations include the 
analysis of materials with different thickness and yield stress as well as the fabrication of interfaces with random 
or aperiodic distribution of surface features and/or graded adhesion properties.

Figure 9.  SEM images of the fracture surface. (a) Boundary between laser treated and sanded interfaces. (b) 
Close-up view of the area highlighted in (a) displaying voids and sites of cohesive failures. (c) Example of 
interfacial areas that did not receive consistent laser processing. (d) Typical instances of laser induced damage 
across the boundary of the inclusion.
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Methods
Surface treatments.  Thin CuZn40 foils (100 × 100 × 0.5 mm3) were surface treated over a 60 × 100 mm2 
area. Baseline samples were subjected to standard manual sanding prior to bonding (400-grit 3 M Wetordry sand-
paper). Laser irradiation was carried out using a 1.06 μm ytterbium fiber laser (PLS6MW Multi-wavelength Laser 
Platform by Universal Laser Systems, NY, USA) able to deliver a maximum pulse energy equal to 2.0 mJ and 
pulse duration (FWHM) equal to 10 ns. Surface modifications are generally imparted by controlling adjustable 
laser process parameters, such as laser power, speed (i.e. speed of the beam relative to the substrate), spacing 
(i.e. laser pitch) and focal distance. Based on the outcome of a previous related work carried out by the authors9, 
laser processing was herein executed 30 W average power, 30 kHz pulse frequency, 46 mm focal distance (which 
implied a spot size of 25 μm). This choice affords the opportunity to exploit the maximum pulse fluence allowed 
by the available in-lab hardware (Fp = 200 J/cm2). Moreover, it was observed that a laser spacing equal to 60 μm 
allowed the whole substrate surface to receive laser processing and to be fully treated. Laser speed was set equal 
to 250 mm/s.

Analysis of surface chemistry and topography.  A Scanning Electron Microscope (FEI Quanta 
200) was used to analyze surface morphological modifications. Surface topography was probed using X-Ray 
Photoelectron Spectroscopy analyses carried out using a Kratos AXIS Ultra DLD spectrometer (KRATOS 
Analytical, Wharfside, UK) equipped with a monochromatic Al-K α anode emitting X-ray source of photon 
energy h v = 1486.6 eV. Measurements were performed at power of radiation beam equal to 150 W and the system 
was provided with a multichannel plate and delay line detector under a vacuum (10−9 mbar). Measurements were 
performed in hybrid mode using electrostatic and magnetic lenses. All spectra were recorded using an aperture 
slot of 300 μm × 700 μm. The survey and high-resolution spectra were collected at fixed analyzer pass energies 
of 160 eV and 20 eV, respectively. Samples were mounted in floating mode in order to avoid differential charg-
ing. Charge neutralization was required for all samples. Binding energies were referenced to the C 1 s peak of 
(C-C,C-H) bond which was set at 285.0 eV. Measurements were made at an angle of photoelectron emission of 0°, 
which corresponds to the average 10 nm examined thickness.

Samples fabrication and testing.  Mechanical tests were herein carried out using the T-peel test cou-
pon31 whose overall dimensions are given in Fig. 1(a). Sample fabrication followed procedures similar to those 
reported in9 and therefore are herein only summarized. Copper plates were cut down into 15 × 100 mm2 sub-
strates and then bonded over an area equal to 15 × 60 mm2 using a bi-component epoxy adhesive (Araldite 
420 A/B, Huntsman, Salt Lake City, UT, USA). The bond-line thickness was maintained using 250 μm thick 
optical fibers. After curing at room temperature for 24 hours, the adherents were bent by wedge splitting so as 
to confer the desired T-shape to the joint. To facilitate bending, a release film was deployed over 15 × 40 mm2 
un-bonded region. The T-joint was pulled apart at one end using an electro-mechanical tensile testing machine 
(Instron 5944, Norwood, Massachusetts, USA) equipped with a 2 kN load cell; the cross-head displacement 
rate was set equal to 5 mm/min. Four pattern types with area fraction (Af) equal to 50% were engraved over the 
baseline sanded copper substrates. Laser scanning was made in the x-direction and the resulting patterns were 
orthogonal to the direction of crack propagation (cfr. Fig. 1(a)). The geometry of the patterns is quantified by 
a minimal set of parameters which are shown in the schematic of Fig. 1(b) and (c). The spatial arrangement of 
the features, i.e., the wavelength (λn), was set equal to 15 mm for all patterns. The distance between the outmost 
point of consecutive features (h) was also obtained as described in Fig. 1(c). To explore the interaction of laser 
micro-machined patterns with the advancing crack front we focus on four types of pattern geometry, i.e., cir-
cles (C), ellipses (Ea and Eb) and rhombs (R). The radius r of each treated area as a function of the area fraction 
is given in Fig. 1(c). The effect of pattern orientation with respect to crack propagation direction was then 
assessed on the elliptical geometry, since Ea and Eb have the major axis perpendicular and parallel to the direc-
tion of crack propagation (y-), respectively. The area fraction of laser treated material was set equal to 50%. 
However, two distinct sets of samples, with circular patterns, were also included in the analysis to ascertain the 
effect of varying the area fraction, i.e. 25% and 75%.

Finite element models.  Three-dimensional finite element models were prepared using ABAQUS/
Standard37. The FEA models were based on the experimental samples. The substrates were assigned 3D brick 
elements with linear order and elasto-plastic material properties, which were obtained through dedicated tensile 
tests and provided as input in tabular form. The tensile behavior was generalized to multi-axial stress state assum-
ing isotropic hardening and using the von Mises yield surface. The adhesive layer, which supplied the resisting 
force during mechanical testing, was replaced by a single layer of cohesive surface elements. A bilinear cohesive 
constitutive relationship (T-Δ) was employed, with T being the cohesive interaction and Δ the corresponding 
crack face opening displacement. The basic input properties are represented by cohesive fracture energy (Gc), 
cohesive strength (σ̂) and initial stiffness (kn) which represent the area enclosed by the T-Δ curve as well as the 
peak stress and its initial slope, respectively. A schematic of the model, which includes bulk and cohesive elements 
constitutive models are given in Fig. 5. The input properties for cohesive elements were taken from previous work 
carried out by the authors9 and which addressed the behavior of homogeneous epoxy/copper interfaces (i.e. no 
pattern) under peel loading. Fracture toughness and cohesive strength were obtained by curve fitting, i.e., exper-
iments and FEA were plotted simultaneously and cohesive properties were varied until FEA and experiments 
were indistinguishable. The following properties were then used herein: cohesive strength: σ̂s = ̂σl = ̂σ = 29 MPa; 
cohesive energy: Gc,s = (0.12 ± 0.03) kJ/m2 and Gc,l = (2.07 ± 0.63) kJ/m2; initial stiffness: kn = 50 GPa/mm. A typ-
ical FE model comprised over 680000 continuum elements (C3D8R) and 55000 cohesive elements (COH3D8). 
The boundary conditions were such that the lower end of the sample was clamped, while the upper one was pulled 
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in y-direction. The simulations were carried out in displacement control so that to closely resemble the actual 
experimental boundary conditions. Given the relatively large geometric deformations exhibited by the samples 
geometric non linearities were accounted for in the analysis. These last were carried out using an implicit finite 
element scheme including viscous regularization (0.01 1/s) to aid convergence.
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